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Abstract 19 

The pathophysiology of Bilateral Adrenal Hyperplasia (BAH) remains obscure. Even though 20 

several genetic causes have been associated with this disease, often related to 21 

overactivation of the cAMP signaling pathway, cortisol regulation by autocrine adrenal ACTH 22 

production has also been proposed to enhance corticosteroidogenesis, cortisol secretion and 23 

adrenal cortex growth. Recently, heterozygous glucocorticoid receptor (GR) loss-of-function 24 

mutations have been discovered in patients with BAH, highlighting a potential new genetic 25 

cause of adrenal hyperplasia, as previously reported in a mouse model of GR 26 

haploinsufficiency. However, the molecular mechanisms linking adrenal hyperplasia and GR 27 

haploinsufficiency need to be further elucidated.  28 
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1 Introduction  29 

Morphological criteria to define adrenal hyperplasia remain scarce. Even though the 30 

prevalence of adrenal mass incidentally discovered during imaging or adrenal incidentaloma 31 

(AI), varies between 1-8% following autopsy studies, it seems to increase with age (1). A 32 

large number of AI are nowadays discovered and frequently referred to a clinical 33 

endocrinologist. Recent guidelines (2) define benign AI with strict radiological criteria (3). 34 

Among AI, 15% are bilateral but mainly non-functional (1). Diagnosis of Bilateral Adrenal 35 

Hyperplasia (BAH) may be considered easy. However, the definition of normal adrenal 36 

glands is still controversial. Initially, normal adrenal glands were defined as a right lateral and 37 

medial limb measurement at 2.8 cm, with the left medial limb at 3.3 cm and lateral at 3.0 cm 38 

(4). More recently, adrenal volume assessed by computerized tomography (CT) was used to 39 

define normality (5). Left adrenal gland volume was estimated at 4.5 ± 1.6 cm3 while the 40 

volume of the right adrenal gland was 3.8 ± 1.3 cm3. Volume measurements appear to be 41 

more reproducible among investigators compared with linear measurements. The 42 

association between BAH and steroid excess facilitates diagnosis and is important to 43 

recognize given the potential increased morbidity and mortality. Hypercortisolism occurs in 44 

12% of AI, while hyperaldosteronism or catecholamine excess is observed in 2.5% and in 7% 45 

of cases, respectively (2). Metabolic disorders (glucose intolerance, diabetes, hypertension, 46 

dyslipidemia and osteoporosis) can be associated with AI and subclinical hypercortisolism 47 

(2). Malignancy was described in 3% of cases (1) and congenital adrenal hyperplasia in 21% 48 

(6). A new nomenclature of BAH associated with Cushing’ syndrome was recently published 49 

(7). When the nodule size is <1cm, thus referring to micronodular adrenals, the main cause 50 

is primary pigmented nodular adrenal disease (PPNAD). However, if their size exceeds 1 cm, 51 

primary bilateral macronodular adrenal hyperplasia (PBMAH) should be considered (8). 52 

In this review, we will discuss the pathogenesis of BAH in the context of subclinical 53 

hypercortisolism, highlighting the recently discovered NR3C1 mutations as recently 54 

discussed by Nicolaides & Chrousos (9). Adrenal pheochromocytomas or 55 

hyperaldosteronism, carcinoma, metastasis or etiologies of unilateral AI were excluded.   56 
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57 

2. Adrenal hyperplasia.58 

2.1. Physiology of adrenal cortex 59 

Cortisol release is under the control of hypothalamic corticotropin releasing hormone (CRH). 60 

As illustrated in Fig. 1, CRH stimulates corticotrope cells of the anterior pituitary, which 61 

secrete adrenocorticotropic hormone (ACTH). ACTH is one of the most potent physiological 62 

modulators of steroidogenesis and binds to its 7-transmembrane G protein-coupled receptor 63 

(GPCR) MC2R, expressed in all zones of the adrenal cortex. ACTH binding to MC2R, in 64 

association with melanocortin-2 receptors accessory proteins (MRAP), activated Gs protein, 65 

followed by activation of adenylyl cyclase, enhancing intracellular cAMP concentration (Fig. 66 

2), thus stimulating Protein Kinase A (PKA) signaling. PKA is a hetero-tetramer composed of 67 

2 catalytic subunits, encoded by three different catalytic subunits of which Cα predominates 68 

in the adrenal gland plus 2 regulatory subunits, encoded by four genes (R1α, R1β, R2α and 69 

R2β) (10). Binding of 4 cAMP molecules to PKA regulatory subunit dimers allows release 70 

and activation of the 2 PKA catalytic subunits, which phosphorylate several targets, such as 71 

cAMP response element (CRE) binding protein (CREB), or steroidogenic factor 1 (SF1), 72 

regulating StAR function. Phosphodiesterase, involved in cAMP degradation, act as negative 73 

regulators of this pathway.  74 

StAR is the first step of steroidogenesis, involved in cholesterol flux into the inner 75 

mitochondrial membrane (11). Cortisol, the final steroidogenic compound, exerts a negative 76 

feedback loop on hypothalamic CRH and pituitary ACTH (Fig.1).  77 

ACTH also plays a major role in the vasculature development via local synthesis of VEGF 78 

and in adrenal tissue growth. ACTH may be locally produced by medullary chromaffin cells, 79 

thus playing a major autocrine/paracrine role in the adrenal gland (12). Activation of 80 

cAMP/PKA signaling pathway may lead to hypercortisolism (13). A functional link between 81 

PKA and Wnt pathways was reported, as demonstrated by a cell-specific PKA-activated 82 

downregulation of β-catenin phosphorylation in H295R cells (14). 83 
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84 

2.2. Genetic abnormalities 85 

Every enzyme or protein involved in these pathways could be mutated and responsible for 86 

overactivation of signaling cascades resulting in hypercortisolism and adrenal hyperplasia. 87 

(summarized in Table 1). 88 

2.2.1 PPNAD 89 

PPNAD, an autosomal dominant manner disorder, is often observed in patients with 90 

Carney’s complex. Seventy percent of index cases are familial, while the remaining cases 91 

are de novo germline mutations (15). One hundred and thirty-five pathogenic mutations have 92 

been reported to date. PPNAD is mainly related to germline inactivating mutations of the 93 

PRKAR1A gene, associated with constitutive activation of PKA (16), or phosphodiesterases 94 

PDE11A and PDE8B mutations (17). PPNAD can be associated with hypercortisolism 95 

leading to ACTH-independent Cushing syndrome. Of note, the glucocorticoid receptor (GR) 96 

was shown to be overexpressed in PPNAD nodules, underlying paradoxical dexamethasone 97 

(DXM) induction of cortisol secretion (18). 98 

2.2.2 PBMAH 99 

Expression of illicit receptors in the adrenal glands (GIP, LH/HCG, vasopressin, 100 

catecholamines, serotonin 5 HT, angiotensin II or glucagon) was first identified as a leading 101 

cause of regulatory mechanism of cortisol production in PBMAH. The prevalence of these 102 

illegitimate membrane receptors is rather high (up to 77-87% of cases), leading to 103 

cAMP/PKA pathway activation and enhanced corticosteroidogenesis (19). Intra-adrenal 104 

ACTH secretion responsible for an autocrine/paracrine regulation in cortisol production, was 105 

recently reported in PBMAH (20). Activating MC2R mutations (19), or point mutations of the 106 

α subunit types of G proteins responsible for altered GTPase activity (21) leading to 107 

constitutive activation of the cAMP/PKA pathway, have been also described less frequently 108 

in PMBAH. Recently, a new tumor suppressor gene, inactivation of Armadillo Repeat 109 

Containing Familly (ARMC5), was discovered after whole genome sequencing of 26 patients 110 

with corticotropin-independent macronodular hyperplasia (22). ARMC5 was described in 111 
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familial and sporadic forms of PBMAH, but the mechanism by which ARMC5 was 112 

responsible for hypercortisolism and adrenal hyperplasia remains unknown (23). Recently, 113 

Lecoq et al (24), identified somatic duplications in the 19q13.32 chromosome region in three 114 

patients. These genetic rearrangements lead to a new genomic environment in which cis-115 

regulatory regions, containing glucocorticoid response elements of the ZMYND8 gene, drive 116 

ectopic expression of glucose-dependent insulinotropic polypeptide receptor (GIPR) in two 117 

GIP-dependent cortisol secreting adenomas and one adrenal tumor with PBMAH. PBMAH 118 

was also described in genetic syndromes, as multiple endocrine neoplasia type 1, or APC 119 

syndrome (1). 120 

2.2.3 Mutations of steroidogenesis players 121 

Mutations of important players, either transporters (StAR) or enzymes (CYP11A1, HSD3B2, 122 

CYP17A1, POR, CYP11B1 and CYP21A2) involved in steroidogenesis, are responsible for 123 

adrenal hyperplasia associated with a cortisol secretion defect and high levels of ACTH. 124 

125 

3. Glucocorticoid resistance126 

3.1. Definition 127 

Glucocorticoid hormones (including Cortisol) regulate various biological functions involved in 128 

development, metabolism, inflammatory processes and stress. Their actions are mediated 129 

mainly by GR, a member of the nuclear receptor superfamily, which is an intracellular 130 

receptor protein acting as a ligand-activated transcription factor. Human GR (hGR) is 131 

encoded by the NR3C1 gene (MIM#138040). GR may exist in multiple isoforms generated by 132 

alternative splicing: hGRα, hGRβ, hGRγ, hGR-A and hGR-P. Eight alternative initiation sites 133 

into hGRα have been previously described (11, 12), leading to distinct GR protein variants 134 

(GRα-A to D3). GRα-A results from translation of GRα mRNA from the first AUG codon 135 

(Met1) while the shorter GRα-B results from translation beginning from the second AUG 136 

codon (Met27). Even though numerous GR variants have been discovered by next generation 137 

sequencing  (NGS) methods (27), only twenty-eight NR3C1 loss-of-function mutations have 138 

been clearly associated with a glucocorticoid resistance syndrome (MIM#615962) (28, 29, 139 
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30) while 30 index cases were studied (28, 29, 30). Eight patients out of 12 in whom an 140 

adrenal CT examination was performed, presented with BAH, bringing into question the role 141 

played by GR mutations and on the involvement of glucocorticoid resistance in the 142 

pathophysiology of adrenal hyperplasia. 143 

144 

3.2. Role of GR in adrenal cortex 145 

The presence of GR in the normal adrenal gland remains controversial. Several authors 146 

reported a significant contribution of GR in the pathogenesis of hyperplastic glands (18, 31). 147 

Bourdeau et al (18) demonstrated, by RT-qPCR and immunohistochemistry, that PPNAD 148 

cells and some PBMAH cells overexpress endogenous GR. Later on, Louiset et al (31) 149 

showed, using PPNAD cells, the involvement of GR in a paradoxical response to cortisol by 150 

measuring cortisol release by RIA in culture supernatants (31). They demonstrated that DXM 151 

decreased cortisol production using a PKA inhibitor, indicating that DXM stimulates PKA 152 

catalytic subunits. The GR antagonist RU486 was found to decrease basal glucocorticoid 153 

production, suggesting that cortisol exerts an ultrashort positive feedback on its own 154 

production in PPNAD, via GR and supporting GR dependent up-regulation of PKA catalytic 155 

subunit genes (18). 156 

More recently, our group demonstrated that GR directly impacts human adrenocortical 157 

H295R cell function by increasing key factors of steroidogenesis, including MC2R 158 

expression, as shown by pharmacological GR inhibition or RNA interference strategy (32). 159 

Finally, the presence of GR was confirmed in human normal adrenal tissue by RT-PCR and 160 

WB (33), while the GRα-D isoform, that had a reduced transcriptional activity compared to 161 

GRα-B, was reported in normal and adrenal cortex tumors (34). Later, it was also 162 

demonstrated that an overexpression of GR variant: A3669G and BclI polymorphism, can be 163 

associated with AI. The BclI polymorphism was also overrepresented in patients with BAH 164 

(35). To conclude, the involvement of GR in adrenal cortex and in the pathogenesis of 165 

different diseases with adrenal hyperplasia remains unclear, but its link with different 166 

signaling pathways in the adrenal cortex needs to be further elucidated. To address this 167 
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issue, we recently used CRISPR/Cas 9 technology to introduce a GR loss-of-function 168 

mutation, previously functionally characterized (36), in human H295R cells. 169 

 170 

4. BAH in patients with NR3C1 mutations  171 

The French National Hospital Clinical Research Program (PHRC), Muta-GR, was launched 172 

to determine the prevalence of NR3C1 mutations in a cohort of one hundred patients 173 

presenting with BAH, associated with high blood pressure (HBP) and/or biological 174 

hypercortisolism without Cushing features. Forty patients had abnormal DXM suppression 175 

tests (plasma cortisol concentration remains >50 nmol/L) and high urinary free cortisol levels 176 

sometimes associated with unsuppressed ACTH levels. Five novel heterozygous NR3C1 177 

mutations were discovered, among which three have been already functionally characterized 178 

(36, 37), leading to the 5% prevalence of GR mutations. The phenotype of glucocorticoid 179 

resistant patients was much milder than the initial description (Table 2) (38). We recently 180 

unraveled the molecular mechanisms of defective GR-dependent regulation of 11β-HSD2 in 181 

patients carrying GR loss-of-function mutations, associated with 182 

pseudohypermineralocorticism (39). These findings emphasize the importance of GR genetic 183 

screening in selected patients enabling their appropriate management and optimized follow-184 

up. Primary fibroblast cultures were obtained after skin biopsy in four mutated patients 185 

(R469X, R477S, R491X, Q501H GR mutations) and GR haploinsufficiency was further 186 

demonstrated by a reduced DXM induction of FKBP5 mRNA levels, consistent with 187 

glucocorticoid resistance observed in the mutated patients. 188 

The study of the first heterozygous GR stop mutation, R469X, was very informative (37). 189 

Indeed, among 8 mutated family members spanning three generations, four had BAH, 190 

among them a 9-y-old child, suggesting the involvement of GR haploinsufficiency in the 191 

pathogenesis of BAH.  192 

However, the exact mechanisms by which GR haploinsufficiency could modulate adrenal 193 

hyperplasia remain unknown. Up to now, it was proposed that ACTH overstimulation of the 194 

adrenal gland accounts for BAH in the context of GR loss-of-function mutations, supported 195 



9 

by several  human studies, including three heterozygous GR mutations associated with BAH 196 

and high ACTH levels (29, 35, 40). This was also reminiscent of the homozygous Nr3c1 197 

gene inactivation in mouse models (41) in which 90% of these mice died 1-2 h postnatally, 198 

while an aberrant GR binding site was recovered in different tissues of the 10% of mouse 199 

survivors despite overt glucocorticoid resistance (42). An enlarged adrenal gland size and 200 

disorganized adrenocortical cells were reported in homozygous GRKO mice that presented 201 

with high corticosterone and ACTH levels, consistent with altered HPA regulation (41). 202 

However, a heterozygous GR mouse model was recently published in which one functional 203 

GR allele, responsible for GR haploinsufficiency, also had enlarged adrenal glands (29) but 204 

normal ACTH levels, precluding an exclusive role of high circulating ACTH levels in the 205 

pathogenesis of adrenal hyperplasia.  206 

207 

5. Conclusion208 

Adrenal hyperplasia is often associated with overactivation of cAMP signaling pathways, 209 

related to well-characterized GPCR or other genetic alterations. Given that GR is expressed 210 

in the adrenal cortex and owing to the recent discovery of heterozygous GR mutations in 211 

BAH patients, it is likely that GR haploinsufficiency might affect adrenal function and 212 

proliferation. The molecular mechanisms involved remain to be elucidated. Genome editing 213 

technology may help unravel these issues. 214 
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Figure Legends 474 

Figure 1: Hypothalamus-Pituitary-Adrenal gland axis 475 

Cortisol release is under the control of hypothalamic corticotropin releasing hormone (CRH). 476 

CRH stimulates secretion of pituitary adrenocorticotropic hormone (ACTH) which is 477 

responsible the production of cortisol by adrenal cortex. Paracrine/autocrine regulation of 478 

cortisol and ACTH secretion in adrenal glands has also been described (20, 33). Cortisol 479 

exerts a negative feedback loop on hypothalamic and pituitary cells. 480 

481 

Figure 2: Steroidogenesis in adrenal cells 482 

ACTH binds its MC2R receptor and activates a cAMP pathway leading to PKA activation 483 

through release and activation of the 2 PKA catalytic subunits. Subsequent phosphorylation 484 

of several targets allows StAR activation. 485 

486 

Figure 3: Bilateral adrenal hyperplasia in mutated GR patients 487 

Examples of CT images in BAH patients; (A) left and right, lateral and medial limb >5mm 488 

without nodules;(B) nodules and right and left lateral and medial limb >5 mm; (C) Adrenal 489 

macronodules >10 mm. 490 

491 
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Table 1:Genetic alteration involved in adrenal hyperplasia 492 

 493 

Genes involved in adrenal hyperplasia and corresponding altered signaling pathways. 494 

ACTH, adrenocorticotropic hormone; BAH, bilateral adrenal hyperplasia; CAH, congenital 495 

adrenal hyperplasia; GR, Glucocorticoid receptor; PBMAH, primary bilateral macronodular 496 

adrenal hyperplasia; PPNAD, primary pigmented nodular adrenal disease. 497 

  498 

Gene  Bilateral adrenal hyperplasia

PRKAR1A PPNAD

PDE11A PPNAD

PDE8B PPNAD and BAH

MC2R PBMAH

GNAS PBMAH

ARMC5 PBMAH

NEM 1 PBMAH

FH PBMAH

StAR lipoid CAH

CYP11A1 (P450scc) lipoid CAH

HSD3B2 CAH

CYP17A1 CAH

POR CAH

CYP11B1 CAH

CYP21A2 CAH

NR3C1 BAH

chromosome 19q13 microduplication BAH

CTNNB1 PBMAH

APC PBMAH

ACTH pathways

Steroidogenesis enzyme

GR pathways

Wnt/β catenin pathway
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Table 2: Phenotype comparison between mutated GR patients described in Muta-GR 499 

study (35) and the first mutated GR patient (38) 500 

501 

502 

BMI: Body mass index; SBP / Systolic Blood Pressure; DBP: Diastolic Blood Pressure; UFC: 503 

Urinary Free Cortisol, DST: 1 mg DXM suppresion test , _: negative. 504 

Mutated patients Muta-GR study First described patient Normal range

Type of Mutation Heterozygous Homozygous

Age (Years) 53.2 ± 7.7 58

BMI (kg/m
2
) 30.7 ± 9.5 24.01 <25

SBP (mmHg) 123 ± 4.5 190 <140

DBP (mmHg) 72 ± 4.5 130 <90

Kalemia (mmol/L) 3.6 ± 0.2 ↘ 3.5-5

Aldosterone (pg/mL) 17.3 ± 9.9 ↘ 19-117

Renin (pg/mL) 47.2 ± 92.6 Normal 3-16

Adrenal Hyperplasia Yes No

8-AM ACTH (pg/mL) N 2.1N <1

UFC (ULN) 1.7 ± 0.65 30-40 <1

DST ─ ─
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Fig. 1   506 
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Fig. 2  508 
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Fig. 3 511 




