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A hybrid Lattice Boltzmann(LB)-Finite Difference(FD) numerical scheme for the simulation of reacting flows at low Mach numbers is presented. The FD solver is used to model the energy and species fields while the LB model computes the flow field. The proposed LB solver is a modified version of the classical iso-thermal weakly compressible LB scheme with the hydrodynamic pressure as its zeroth-order moment instead of density, recovering the well-known low Mach number approximation for thermo-compressible flows. The proposed numerical approach is used to model a variety of test-cases ranging from 1-D to 3-D configurations, involving premixed and non-premixed flames. In all cases results obtained by this solver are shown to agree very well with reference data.

Introduction

The lattice Boltzmann (LB) method, proposed in the early 80's has grown very popular during the past decades. The rapid emergence of this numerical method is mainly due to the simplicity and strict locality of the involved time-evolution operators. The locality of the operators and intrinsic coupling between the pressure and velocity fields through the distribution function, as opposed to pressure-based incompressible or low Mach solvers allows for better performances on parallel clusters and a much more efficient treatment of flows in complex geometries [START_REF] Krüger | The lattice boltzmann method[END_REF]. During the past decade, the LB method for computational fluid dynamics (CFD) has been extended to many complex flow configurations ranging from non-Newtonian [START_REF] Wang | A localized mass-conserving lattice boltzmann approach for non-newtonian fluid flows[END_REF], to multi-phase [START_REF] Eshghinejadfard | Fully-resolved prolate spheroids in turbulent channel flows: a lattice Boltzmann study[END_REF][START_REF] Abadi | Conservative phase-field lattice-Boltzmann model for ternary fluids[END_REF][START_REF] Wöhrwag | Ternary free-energy entropic lattice boltzmann model with a high density ratio[END_REF][START_REF] Amirshaghaghi | Large eddy simulation of liquid sheet breakup using a two-phase lattice boltzmann method[END_REF][START_REF] Safari | Consistent simulation of droplet evaporation based on the phase-field multiphase lattice Boltzmann method[END_REF] and multi-component flows. Although initially limited to low-Mach iso-thermal flows with an ideal gas equation of state, the LB approach was later modified to lift many of these restrictions. Releasing the restriction on thermo-compressibility is an essential step to develop LB solvers for many applications such as reacting flows at low Mach numbers. The topic of low-Mach combustion modeling with LB was first touched upon in 1997 in an article by Succi et al. [START_REF] Succi | Lattice kinetic theory for numerical combustion[END_REF]. Since then a limited number of publications have appeared on the topic, all limited to simplified 1 and 2-D test-cases. To go from the classical LB formulation to one adapted to combustion simulation, one must take into account additional independent fields -i.e., species mass fractions and energy-and consistently couple them. As a side-note, it is also worth mentioning that stability might become a major restriction with the single relaxation time collision operator when confronted to such flows. This issue has been dealt with to some extent through a variety of more advanced collision operators, e.g. multiple relaxation time [START_REF] Humières | Generalized lattice-Boltzmann equations[END_REF][START_REF] Lallemand | Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, galilean invariance, and stability[END_REF], central moments or cascaded LB [START_REF] Geier | Cascaded digital lattice Boltzmann automata for high Reynolds number flow[END_REF][START_REF] Geier | A factorized central moment lattice Boltzmann method[END_REF][START_REF] Dubois | On the stability of a relative velocity lattice Boltzmann scheme for compressible Navier-Stokes equations[END_REF][START_REF] De Rosis | Role of higher-order Hermite polynomials in the central-moments-based lattice Boltzmann framework[END_REF], Cumulants [START_REF] Geier | The cumulant lattice Boltzmann equation in three dimensions: Theory and validation[END_REF][START_REF] Geier | Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part I: Derivation and validation[END_REF][START_REF] Geier | Parametrization of the cumulant lattice Boltzmann method for fourth order accurate diffusion part II: Application to flow around a sphere at drag crisis[END_REF][START_REF] Geier | Fourth order Galilean invariance for the lattice Boltzmann method[END_REF], regularized [START_REF] Latt | Lattice Boltzmann method with regularized precollision distribution functions[END_REF][START_REF] Chen | Recovery of full rotational invariance in lattice Boltzmann formulations for high Knudsen number flows[END_REF] and Entropic [START_REF] Karlin | Perfect entropy functions of the lattice Boltzmann method[END_REF][START_REF] Boghosian | Entropic lattice Boltzmann methods[END_REF]. The issue of stability will not be treated here as it is not the focus of the article. As such the single relaxation time collision operator will be used. To date, two main categories of solvers, either purely or partially based on the LB formulation, have been proposed in the literature. In the context of the present work these categories will be referred to as : (1) single-fluid and (2) multi-fluid models. The latter formulation comprises a set of N sp distribution functions (one for each species present in the flow) solving the corresponding set of continuity and Navier-Stokes-Fourier equations for each species. Inter-species interactions such as mass diffusion are modeled through appropriate collision operators. Notable examples of such formulations can be seen, for instance, in [START_REF] Arcidiacono | Lattice Boltzmann simulation of catalytic reactions[END_REF][START_REF] Kang | Lattice Boltzmann model for thermal binary-mixture gas flows[END_REF][START_REF] Kang | Thermal multicomponent lattice Boltzmann model for catalytic reactive flows[END_REF][START_REF] Lin | A multi-component discrete boltzmann model for nonequilibrium reactive flows[END_REF][START_REF] Lin | MRT discrete Boltzmann method for compressible exothermic reactive flows[END_REF]. The models proposed in [START_REF] Arcidiacono | Lattice Boltzmann simulation of catalytic reactions[END_REF][START_REF] Kang | Lattice Boltzmann model for thermal binary-mixture gas flows[END_REF][START_REF] Kang | Thermal multicomponent lattice Boltzmann model for catalytic reactive flows[END_REF] are based on the standard LB discretization of velocity and physical space, standard first-neighbour stencils and equilibrium distribution function (EDF) for each component supplemented with a slow/fast manifold decomposition of the collision operator using a quasi-equilibrium state allowing for independent viscosity and mass diffusion coefficients. Furthermore, as the populations do not necessarily propagate on-lattice the standard collision and streaming is followed by an interpolation step. As the standard stencils do not correctly recover the higher order moments (at third-and fourth-orders), correction terms are added to the equations. On the other hand the approach proposed in [START_REF] Lin | A multi-component discrete boltzmann model for nonequilibrium reactive flows[END_REF][START_REF] Lin | MRT discrete Boltzmann method for compressible exothermic reactive flows[END_REF][START_REF] Lin | Discrete Boltzmann modeling of unsteady reactive flows with nonequilibrium effects[END_REF][START_REF] Lin | Mesoscopic simulation of nonequilibrium detonation with discrete boltzmann method[END_REF] relies on different velocity and time-space discretization strategies. The discrete phase-space and the EDF are constructed using the moment-matching method, while physical space and time are discretized using the finite difference (FD) method. The larger velocity stencil employed allows for the model to correctly recover higher order moments, and capture non-equilibrium effects. While decoupling time and space discretization from phase-space, thus potentially facilitating simulations at higher Mach numbers and with large temperature variations, the classical space discretization of the hyperbolic system of equations comes at a higher cost-compared to the LB algorithm. The first category carries the "single-fluid" denomination because just like classical CFD solvers, a single so-called "mixture-averaged" set of NS and energy balance equations are solved. These are supplemented with a balance equation for each one of the chemical species involved in the flow. While the flow solver is based on the LB method in all cases, the additional fields can be solved using various LB formulations [START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF][START_REF] Chen | A simple lattice Boltzmann scheme for combustion simulation[END_REF][START_REF] Chiavazzo | Coupling of the model reduction technique with the lattice Boltzmann method for combustion simulations[END_REF][START_REF] Chiavazzo | Combustion simulation via lattice Boltzmann and reduced chemical kinetics[END_REF] or classical solvers for the macroscopic balance equations. The so-called "Advection-Diffusion" LB formulation has usually been employed to model the additional fields. Contrary to multifluid solvers, the additional LB solvers only need to correctly recover the zeroth, first and second-order moments, and therefore require fewer discrete velocities. In its classical form, this formulation comes with a number of restriction, e.g. incompressible flow, generalized Fick approximation for the diffusion term etc, that have to be dealt with [START_REF] Hosseini | Weakly compressible lattice boltzmann simulations of reacting flows with detailed thermo-chemical models[END_REF]. Extensions to this model allowing to incorporate more complex physics and variable density for the species, and variable specific heat capacities for the energy equation have also been developed [START_REF] Hosseini | Mass-conserving advectiondiffusion lattice Boltzmann model for multi-species reacting flows[END_REF][START_REF] Hosseini | Lattice boltzmann advectiondiffusion model for conjugate heat transfer in heterogeneous media[END_REF][START_REF] Chai | Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures[END_REF]. The other possibility, i.e. solving the additional fields through classical solvers for the macroscopic balance equations, has also been considered in a number of publications [START_REF] Lallemand | Hybrid finite-difference thermal lattice Boltzmann equation[END_REF][START_REF] Mezrhab | Hybrid lattice-Boltzmann finitedifference simulation of convective flows[END_REF]. The choice of the solver for the additional fields (i.e., species and energy), and a comparative performance study of these approaches is not as straightforward as for the flow solver as no velocity-pressure-type coupling issues for the species and temperature fields are encountered. The comparison is even more subtle as due to the reduced number of conserved moments the memory consumption of the LB solver is drastically reduced and becomes comparable to its FD counter-part. Furthermore, the LB formulation results in a slightly extended linear stability domain compared to a second-order FD scheme [START_REF] Hosseini | Stability limits of the single relaxation-time advection-diffusion lattice Boltzmann scheme[END_REF]. However, some researchers have reported computational efficiency gains when replacing the LB solver with a finite difference solver. In [START_REF] Feng | Regularized thermal lattice boltzmann method for natural convection with large temperature differences[END_REF], a factor of 1.5 is reported when using a Rung-Kutta scheme in combination with a finite difference solver. The main restriction at this point, for LB advection-diffusionbased solvers for the additional fields is related to stability issues for vanishing non-dimensional diffusion coefficients and the recovered physics. As mentioned previously and reported in [START_REF] Hosseini | Mass-conserving advectiondiffusion lattice Boltzmann model for multi-species reacting flows[END_REF][START_REF] Hosseini | Lattice boltzmann advectiondiffusion model for conjugate heat transfer in heterogeneous media[END_REF][START_REF] Chai | Maxwell-Stefan-theory-based lattice Boltzmann model for diffusion in multicomponent mixtures[END_REF], incorporation of more complex models, better-suited for combustion simulations, in these solvers is currently under investigation. As such in the present article, an FD solver will be used to model the species and temperature fields. Of the limited number of LB-based articles on combustion field simulation, the majority were restricted to the cold flame approximation, where the flow field is decoupled from energy and species (no thermal dilatation). The coupling of energy and species fields can be seen by looking at the compressible NS equa-tions:

∂ρu i ∂t + ∂ρu i u j ∂x j + ∂p ∂x i - ∂ ∂x j µ ∂u i ∂x j + ∂u j ∂x i - ∂ ∂x i ζ - 2 3 µ ∂u j ∂x j = 0, (1) 
where here and in the rest of this article Einstein's convention for repeated indices is used. The symbols µ and ζ respectively denote the shear and bulk viscosities, the pressure p is related to local density ρ and temperature through the equation of state, and u i is the i th component of the fluid velocity vector.

The shortcomings of the classical LB formulation for thermo-compressible flow simulations are two-fold. In classical LB schemes, the solver being based on the iso-thermal Hermite expansion of the continuous EDF around a reference stencil sound speed c s = k B T0 3m0 , where k B is Boltzmann's constant, T 0 is a reference temperature and m 0 is a reference molecular mass [START_REF] Hosseini | Stability of the lattice kinetic scheme and choice of the free relaxation parameter[END_REF]. The pressure is only function of local density and of the said reference sound speed, i.e. p = ρc 2 s . Furthermore, due to the lack of symmetry of the classical first-neighbour stencils, the discrete EDF does not recover the correct third-order moments. On a minor note, the classical LB formulation does not account for additional degrees of freedom in poly-atomic molecules (i.e. rotational, vibrational) and as such can not correctly recover terms modeling dissipation of isotropic stress components (especially important in sudden compression and dilatation). For mono-atomic gases, the bulk viscosity (tied to isotropic stress dissipation) is equal to 0, while the LB solver recovers 2 3 µ due to the iso-thermal approximation [START_REF] Dellar | Bulk and shear viscosities in lattice Boltzmann equations[END_REF]. A number of LB-based solvers have been proposed to correctly recover thermal dilatation. They have mostly taken one of two possible approaches; The first approach, a straight-forward extension of the classical weakly compressible isothermal LB, involves an EDF based on a thermal Hermite expansion of the continuous EDF around the reference sound speed, i.e. :

f (eq) α (u, θ) = w α ρ N n=0 1 n!c 2n s a (eq) n (u, θ) : H n (c α ) , (2) 
where a (n) and H (n) are tensors of rank n respectively representing the n th order Hermite coefficient and polynomial, c α are the discrete velocity vectors, w α are the corresponding weights obtained from the Gauss-Hermite quadrature,

θ = k B T /m c 2 s
is the non-dimensional temperature, N is the order of truncation and ":" is the Frobenius inner product operator. The first few Hermite coefficients and polynomials are given as:

a (0) 0 = 1, (3a) 
a (1) i = u i , (3b) 
a (2) ij = u i u j -c 2 s (1 -θ) δ ij , (3c) 
H (0) α = 1, (4a) 
H

α,i = c α,i , (1) 
H (2) α,ij = c α,i c α,j -c 2 s δ ij . (4b) 
The second-order moment of this EDF being Π (eq) ij = ρu i u j +ρc 2 s θδ ij , the correct thermal pressure is recovered at the Euler level. More details on this approach, and its coupling to FD solvers can be found in [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF]. The quality of the approximation of the EDF by Hermite polynomials (using an expansion around a reference temperature and a reference frame at rest), regardless of the order of the subsequent quadrature, is very sensitive to the maximum deviation from the reference temperature. Large deviations from the reference temperature result in non-negligible errors in higher order moments. The deviations in the thirdorder moments tensor of the EDF are usually accounted for using appropriate correction terms in the time-evolution equations, as derived in [START_REF] Prasianakis | Lattice boltzmann method for thermal flow simulation on standard lattices[END_REF] and [START_REF] Saadat | Lattice boltzmann model for compressible flows on standard lattices: Variable prandtl number and adiabatic exponent[END_REF]. Another way to overcome this issue is to have a Hermite polynomial expansion around the local fluid temperature and on a reference frame moving with the local fluid velocity, similar to Grad's original formulation [START_REF] Grad | On the kinetic theory of rarefied gases[END_REF], which results in local temperature and velocity-dependent abscissae in the Gauss-Hermite quadrature. This concept has been applied and used through "shifted lattices" [START_REF] Frapolli | Lattice kinetic theory in a comoving galilean reference frame[END_REF] and off-lattice propagation of populations [START_REF] Dorschner | Particles on demand for kinetic theory[END_REF]. A similar on-grid formulation based on the reconstruction of the collision operator in the local velocity frame and re-scaled by the local temperature has recently been proposed in [START_REF] Li | Temperature-scaled collision process for the highorder lattice Boltzmann model[END_REF]. The concept of variable lattice sound speed (equivalent to off-lattice propagation with a fixed time-step) was also used in [START_REF] Chen | A novel coupled lattice boltzmann model for low mach number combustion simulation[END_REF] in the form of a "particle characteristic temperature" (as referred to by the authors) and a variable time-step, δt defined so as to keep the distribution function streaming on-lattice. Another approach to include thermal dilatation effects into the LB flow solver, follows the overall concepts of a formulation referred to as the "Low Mach Number Approximation" (LMNA) in classical CFD [START_REF] Giovangigli | Multicomponent flow modeling[END_REF]. In this approach, the local pressure is decomposed into "thermodynamic" and "hydrodynamic" components (p = p th + p h ), the hydrodynamic component being a first-order (in , a small perturbation expansion parameter function of the flow Mach number) perturbation to the "equilibrium" thermodynamic pressure. The density is a dependent property computed through the ideal gas law and the local thermodynamic pressure (assumed to be uniform in the entire domain) and temperature. Further details on the LMNA, its derivation and application to low Mach combustion can be found, among other sources, in [START_REF] Lai | A projection method for combustion in the zero mach number limit[END_REF][START_REF] Giovangigli | Multicomponent flow modeling[END_REF][START_REF] Abdelsamie | Towards direct numerical simulations of low-Mach number turbulent reacting and two-phase flows using immersed boundaries[END_REF]. The classical LB formulation being a (weakly compressible) solver for the incompressible flow formulation (vanishing Mach number), it can be used to solve the LMNA. In LB, the diagonal components of the second-order moment tensor of the EDF acting as pressure are a linear function of density. As such, density and pressure (in LB) must be decoupled, in order to enforce temperature-dependent density in the context of a LMNA formulation. A limited number of modified EDFs have been developed to that effect. The EDFs are usually modified to get "hydrodynamic" pressure as the zeroth-order moment (instead of density). For more details on some of these schemes, interested readers are referred to [START_REF] Chen | A novel coupled lattice boltzmann model for low mach number combustion simulation[END_REF][START_REF] Filippova | A novel lattice BGK approach for low mach number combustion[END_REF]. This work will focus on presenting a hybrid LB-FD solver for combustion simulations able to recover the macroscopic balance equations in the context of 45 the LMNA formulation, based on the thermo-compressible scheme proposed in [START_REF] Safari | A lattice Boltzmann model for thermal compressible flows at low mach numbers beyond the boussinesq approximation[END_REF]. The details of the numerical method are presented in section 2, while the third section presents validation test-cases along with the obtained results. The developed model is shown to be appropriate for low Mach number combustion simulations through a variety of test-cases with increasing levels of complexity. 

Governing equations and numerical model

Flow field

Starting from the classical LB formulation, in its time and space-continuous form one gets:

∂f α ∂t + c α,i ∂f α ∂x i = 1 τ f (eq) α -f α -F i ∂f ∂ξ i , (5) 
where f α is the distribution function, F i the i th component of the sum of body forces on the fluid element and τ is the relaxation coefficient. The last term on the RHS is a first-order approximation of the forcing term appearing in the continuous Boltzmann equation as follows:

F i ∂f ∂ξ i ≈ F i ∂f (eq) ∂ξ i = - ξ i -u i ρc 2 s F i f (eq) . (6) 
Here we have used ξ to designate the particle velocity instead of c α as we are dealing with the phase-space continuous Boltzmann equation, and distribution function f . Following [START_REF] Safari | A lattice Boltzmann model for thermal compressible flows at low mach numbers beyond the boussinesq approximation[END_REF][START_REF] Lee | Effects of incompressibility on the elimination of parasitic currents in the lattice Boltzmann equation method for binary fluids[END_REF][START_REF] Lee | Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces[END_REF][START_REF] Sun | A diffuse interface method for simulating the dynamics of premixed flames[END_REF], a new distribution function, g α is introduced as:

g α = c 2 s f α + w α p h -ρc 2 s . (7) 
Putting this equation back into Eq. 5 the following time-evolution equation is obtained for g α :

∂g α ∂t + c α,i ∂g α ∂x i = 1 τ g (eq) α -g α -w α c 2 s ∂ρ ∂t + c α,i ∂ρ ∂x i + w α ∂p h ∂t + c α,i ∂p h ∂x i + 1 ρ (c α,i -u i ) F i f (eq) α . ( 8 
)
Terms involving the time-derivative of pressure are dropped as they are negligible [START_REF] Filippova | A novel lattice BGK approach for low mach number combustion[END_REF]. Furthermore the material derivative of density can be evaluated using the continuity equation as:

∂ρ ∂t + c α,i ∂ρ ∂x i = (c α,i -u i ) ∂ρ ∂x i -ρ ∂u i ∂x i . (9) 
As mentioned earlier, the iso-thermal thermodynamic pressure in the classical LB affects the momentum balance equation through the second-order moment of the EDF. To take out this term and include contribution from the hydrodynamic pressure, p h , the forcing term appearing in Eq. 8 is defined as:

F i = c 2 s ∂ρ ∂x i - ∂p h ∂x i + F b,i , (10) 
where F b represents other body forces, such as gravity. Including this force term results in:

∂g α ∂t + c α,i ∂g α ∂x i = 1 τ g (eq) α -g α + w α c 2 s ρ ∂u i ∂x i + (c α,i -u i ) f (eq) ρ -w α c 2 s ∂ρ ∂x i + f (eq) α ρ (c α,i -u i ) F b,i - f (eq) ρ -w α c α,i ∂p h ∂x i + f (eq) ρ u i ∂p h ∂x i ∝M a 3 . (11) 
Neglecting terms of order three in Mach, the final form of the equation is obtained:

∂g α ∂t + c α,i ∂g α ∂x i = 1 τ g (eq) α -g α + w α c 2 s ρ ∂u i ∂x i + (c α,i -u i ) f (eq) ρ -w α c 2 s ∂ρ ∂x i + f (eq) α ρ (c α,i -u i ) F b,i . ( 12 
)
Integrating the continuous equation along characteristic lines and introducing a change of variables, i.e. :

ḡα = g α - δt 2τ g (eq) α -g α - δt 2 w α c 2 s ρ ∂u i ∂x i + (c α,i -u i ) f (eq) α ρ -w α c 2 s ∂ρ ∂x i + f (eq) α ρ (c α,i -u i ) F b,i , (13) 
to make the resulting equation explicit, the following collision-streaming algorithm is obtained:

ḡα (x + c α δt, t + δt) -ḡα (x, t) = δt τ ḡ(eq) α (x, t) -ḡα (x, t) + δtc 2 s w α ρ (x, t) ∂u i (x, t) ∂x i + δt (c α,i -u i (x, t)) f (eq) α (x, t) ρ (x, t) -w α ∂c 2 s ρ (x, t) ∂x i +F b,i f (eq) α (x, t) ρ (x, t) , (14) 
where δt and δx are respectively the time-step and grid sizes, and the relaxation time is now defined as:

τ = ν c 2 s + δt 2 . ( 15 
)
The hydrodynamic pressure p h is computed through the zeroth-order moment of the distribution function as:

p h = c 2 s δt 2 u i ∂ρ ∂x i + ρ ∂u i ∂x i + α ḡα , (16) 
while the velocity is defined as:

u i = 1 ρc 2 s α c α,i ḡα + δt 2 F b,i . (17) 
For the sake of simplicity, the overbars on g α and τ will be dropped in the remainder of the article. The asymptotic analysis of this scheme and the corresponding macroscopic equations can be found in [START_REF] Safari | A lattice Boltzmann model for thermal compressible flows at low mach numbers beyond the boussinesq approximation[END_REF]. The velocity divergence appearing in Eqs. 14 and 16 is computed as:

∂u i ∂x i = 1 rT ∂ rT ∂t + u i ∂ rT ∂x i - 1 p th dp th dt , (18) 
with :

r = R M , ( 19 
)
where T is the temperature, and M is the mass-averaged molar mass computed as:

1 M = Nsp k Y k M k , (20) 
where Y k and M k are the mass fraction and molar mass of species k and N sp is the total number of species. Using Eq. 19, Eq. 18 can be further expanded as:

∂u i ∂x i = 1 T ∂T ∂t + u i ∂T ∂x i + Nsp k M M k ∂Y k ∂t + u i ∂Y k ∂x i - 1 p th dp th dt . (21) 
Contrary to the weakly compressible LB model, here the local density is not an independent variable. It is computed from the temperature through the ideal gas equation:

ρ = p th rT . (22) 

Energy and species fields

Writing the conservation equation for sensible enthalpy one gets, neglecting higher-order effects [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]:

ρ ∂h s ∂t + u i ∂h s ∂x i - ∂p ∂t + u i ∂p ∂x i - ∂ ∂x i λ ∂T ∂x i + ∂ ∂x i   ρ Nsp k Y k h s,k V k,i   -µ ∂u i ∂x j + ∂u j ∂x i ∂u i ∂x j = ωT , (23) 
where h s is the sensible enthalpy per unit mass of the mixture defined as h s = h-

Nsp k

Y k h k (T 0 ), λ the thermal conductivity and ωT the heat release rate due to combustion defined as ωT = -Nsp k h k (T 0 ) ωk , where ωk is the k th species mass production rate per unit volume. In the context of the LMNA, Eq. 23 can be re-written as:

∂T ∂t + u i ∂T ∂x i = rT ∂ T h s dp th p th dt + 1 ρ∂ T h s ∂ ∂x i λ ∂T ∂x i - 1 ∂ T h s   Nsp k ∂ T (h s,k )Y k V k,i   ∂T ∂x i + ωT ρ∂ T h s , (24) 
where ∂ T h s and ∂ T h s,k can be replaced with the mixture and species specific heat capacities at constant pressure, c p and c p,k . The species transport equation can be written as [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]:

ρ ∂Y k ∂t + u i ∂Y k ∂x i + ∂ ∂x i (ρY k V k,i ) = ωk , (25) 
where V k is the species diffusion velocity vector. The diffusion velocity is ideally computed from the Maxwell-Stefan system of equations [START_REF] Hosseini | Weakly compressible lattice boltzmann simulations of reacting flows with detailed thermo-chemical models[END_REF][START_REF] Giovangigli | Multicomponent flow modeling[END_REF][START_REF] Poinsot | Theoretical and numerical combustion[END_REF][START_REF] Hilbert | Impact of detailed chemistry and transport models on turbulent combustion simulations[END_REF]. This system of equations being rather time-consuming to solve at each node and 9 time-step, simpler approximations are used instead. One of the approximations commonly used in combustion is the Hirschfelder-Curtiss approximation with a correction for the diffusion velocity. In the context of this approximation the diffusion velocity is defined as [START_REF] Poinsot | Theoretical and numerical combustion[END_REF]:

Y k V k,i = - D k Y k X k ∂X k ∂x i + Y k V c,i , (26) 
where D k is the effective diffusion coefficient and X k is the mole fraction of species k and V c the diffusion velocity correction. The mole fraction is related to the mass fraction through:

Y k X k = M k M . (27) 
Using Eq. 27, Eq. 26 can be re-written as:

Y k V k,i = - D k M k M ∂X k ∂x i + Y k V c,i . (28) 
In order to guarantee mass conservation one must have:

Nsp k Y k V k,i = 0. ( 29 
)
Under this condition the diffusion velocity correction should be defined as:

V c,i = Nsp k D k M k M ∂X k ∂x i . ( 30 
)
It is also worth mentioning that even simpler approximations are also frequently used. One of these approximations, used later for the first free-flame test-case as well as for the 2-D and 3-D counter-flow simulations, is the Fick approximation where the diffusion velocity V k is computed as:

Y k V k,i = -D k ∂Y k ∂x i . (31) 
In the context of the present study, both convection and diffusion terms in the species and energy balance equations are discretized using a second-order, 55 central FD approximation in space, while to update the corresponding fields a first-order explicit Euler discretization is used in time.

For the 1-D test-case involving detailed thermo-chemistry (detailed kinetics, thermodynamic and transport properties) all parameters (local mixture-average specific heat capacity, effective diffusion coefficients etc) are evaluated using the 60 in-house library REGATH. A detailed description of the models and equations can be found in [START_REF] Hosseini | Weakly compressible lattice boltzmann simulations of reacting flows with detailed thermo-chemical models[END_REF].

Overall structure of the code

The code consists of three main building blocks, namely 1) a module to evaluate thermodynamics and transport properties, 2) the lattice Boltzmann LMNA solver for the flow field, and 3) an FD module for solving the species and temperature fields. The overall code structure is depicted in Fig. 1. At the beginning of each time-step, first thermo-chemical parameters (production rates, heat capacity and average molar mass) are evaluated at each node. Then, these parameters are used to compute the transport properties, i.e. the diffusion coefficients for momentum, energy and species. Once all parameters have been evaluated, the left-hand side of the species and energy transport equations are evaluated, and used to compute the divergence of the velocity field using Eq. 21, as well as temperatures and mass fractions at the next time-step. Using the obtained divergence, the flow solver populations are updated (collision, streaming and subsequent application of boundary conditions) and finally used to get the zeroth and first-order moments.

Validation of the hybrid solver

To validate the proposed scheme and showcase its performance, two classes of test-cases are considered. First, pseudo 1-D freely propagating flames with simple and detailed thermo-chemistry are modeled. Then, to demonstrate the ability of the proposed algorithm to deal with more realistic geometrical configurations, 2-D and 3-D flames are modeled. This configuration consists of a 2-D simulation domain bounded by an inlet and outlet boundary condition in the x-direction and periodic boundary conditions (with only two grid-points)in the y-direction. At the inlet, a given mass flow-rate with a fixed temperature and composition is imposed through a fixed-velocity boundary condition on the flow solver and a set of Dirichlet boundary conditions on the temperature and species solvers. These boundary conditions correspond to the fresh gas composition. At the outlet, to emulate open-boundary conditions, constant hydrodynamic pressure -for the flow-field solver -and Neumann first-order zero-gradient boundary conditions -for the species and temperature fields, are enforced. The simulations are initialized by imposing respectively fresh and burnt gas composition, temperature and density on the left and right half of the domain. Taking into account all time-step and grid-size restrictions emanating from the different solvers, namely: a lower and upper bound on the Fourier number Fo= Dδt δx 2 brought about respectively by the LB and FD solvers, an upper bound on time-step due to the stiffness of the chemical reaction terms, and finally an upper bound on the Courant-Friedrichs-Lewy (CFL) number umax δx/δt tied to the stability of the LB solver, the time-step and grid-size were set to δt = 5 × 10 -8 s and δx = 1.55 × 10 -5 m, respectively. It is worth mentioning that the generic parameter D appearing in the definition of the Fourier number is the parameter controlling diffusion in each solver, namely the viscosity, species diffusion coefficients, and thermal diffusivity, respectively. The simulations were performed over a 6.2 cm long domain in x-direction.

For this test-case, the Fick approximation is used to model species mass diffusion, while the dynamic viscosity is approximated through a Sutherland model following [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF];

µ = µ(T * ) T T * β , (32) 
where T * -here taken to be 298 K -is a reference temperature, independent from the temperature used for the non-dimensionalisation of the heat transport equation, µ(T * ) is the dynamic viscosity at this temperature and β is a parameter set to 0.69 [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF]. The thermal and species diffusion coefficients are determined through fixed Prandtl and Schmidt numbers given in Table 1.

Parameter For the sake of simplicity, the mixture heat capacity is taken to be constant and equal to 1008 J/kg.K. The chemistry is described through a one-step global reaction:

C 3 H 8 + 5 (O 2 + γN 2 ) -→ 3CO 2 + 4H 2 O + 5γN 2
and an Arrhenius-type forward reaction rate, k f = kT β e -Ea RT , where the reaction rate constant k, the activation energy E a and the constant β are respectively set to 9.9 × 10 -7 m 3 .mol -1 s -1 , 125520 J and 0. Furthermore, the overall heat of reaction is taken to be equal to 2.0 × 10 6 J/mol [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF][START_REF] Yamamoto | Simulation of combustion field with lattice Boltzmann method[END_REF].

The simulations were ran for a range of equivalence ratio φ = (YC

3 H 8 /Y O 2 ) (YC 3 H 8 /Y O 2 ) st -
going from 0.5 to 1. The obtained results were assessed by comparing the adiabatic flame temperatures and flame propagation speeds to results reported in [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF]. The flame propagation speed was computed by following the position of the flame-front-taken to be the position of the production-rate maxima. The obtained results for flame propagation speed and adiabatic flame temperature are shown in Fig. 2. Furthermore, the species and temperature profiles are also compared to results from [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF] in Fig 3 . The results obtained by the developed LB-FD code are in very good agreement with those reported in [START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF]. To better showcase the effect of the temperature and species fields on the flow solver, the density and velocity profiles are also shown separately in Fig. 4.

3.1.2. Detailed thermo-chemistry: Methane/Air 1-D freely-propagating flame As a proof of concept, and in order to show that the proposed model can be used with any type of formulation (also for multi-component diffusion and complex chemistry), results for an additional 1-D free-flame configuration are shown here. The case presented in this section is that of a premixed pseudo 1-D Methane/Air freely-propagating flame at an equivalence ratio of 1. The reduced chemical scheme is made of 7 chemical species and 4 reactions and is based on [START_REF] Jones | Global reaction schemes for hydrocarbon combustion[END_REF]:

CH 4 + 1 2 O 2 -→ CO + 2H 2 CH 4 + H 2 O -→ CO + 3H 2 H 2 + 1 2 O 2 H 2 O CO + H 2 O CO 2 + H 2
At the inlet (left side) a constant flow rate of fresh gas at room temperature is applied while at the outlet (right side) zero-gradient boundary conditions are applied to the species and energy fields while a constant hydrodynamic pressure is enforced on the flow field. For this test-case, detailed thermo-chemical properties, as reported and detailed in [START_REF] Hosseini | Weakly compressible lattice boltzmann simulations of reacting flows with detailed thermo-chemical models[END_REF] are used in conjunction with the Hirschfelder-Curtiss approximation with a correction velocity for the species diffusion term. Thermodynamics and transport properties are handled using an in-house code, REGATH, coupled to the in-house LB solver, ALBORZ. The simulation was performed over a domain of size 80 mm. The simulation domain was spanned with 8000 grid-points with δx = 1 × 10 -5 m and δt = 1 × 10 -9 s. Given the stiffness of the reaction terms involved in the present chemical scheme, an IMPLEX (Implicit-Explicit) approach was used for the species and energy equations. The source terms were evaluated using a 5 th -order Runge-Kutta implicit solver (RADAU5) [START_REF] Wanner | Solving ordinary differential equations II[END_REF] while the remainder of the terms were advanced in time using a forward Euler scheme. The species profiles, as obtained from simulations with the hybrid solver are compared to their reference counterparts from [START_REF] Jones | Global reaction schemes for hydrocarbon combustion[END_REF] in Fig. 5. The agreement is excellent.

3.1.3. Order of accuracy: Methane/Air 1-D freely-propagating flame with BFER scheme To assess the overall order of accuracy of the proposed solver, a 1-D freely propagating Methane/Air flame (similar to the previous test-case) is modeled using the BFER 2-step chemistry model [START_REF] Franzelli | Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame[END_REF]. The two-step chemical reactions are:

CH 4 + 3 2 O 2 -→ CO + 2H 2 O CO + 1 2 O 2 CO 2
Corresponding reaction rates can be found in [START_REF] Franzelli | Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame[END_REF]. Detailed transport and thermodynamic properties are used for this simulation. The physical size of the domain is 1 cm. Initially, the domain is divided into two equal-sized sections. The left-hand side is initialized using fresh gas while the right-hand side is filled with burnt gas. The initial conditions are given in Table 2. Similar to the pre-Parameter fresh gas burnt

T [K] 800 2230 u[m/s] 0 0 Y CH4 0.0393 0 Y O2 0.2239 0.0682 Y H2O 0 0.0883 Y CO2 0 0.1046 Y CO 0 2.01 × 10 -3
Table 2: Methane/Air BFER free flame initial conditions vious test-cases, at the inlet fresh gas composition, temperature and density are imposed along with constant velocity, while the outlet is modeled using zerogradient boundary conditions. Simulations were performed using five different grid-sizes, namely 10 -5 , 1.5 × 10 -5 , 2 × 10 -5 , 3 × 10 -5 and 4 × 10 -5 m. The time-steps determined based on diffusive scaling were taken as: 5 × 10 -9 , 1.125 × 10 -8 , 2 × 10 -8 , 4.5 × 10 -8 and 8 × 10 -8 s, respectively. After convergence, the flame-front propagation speeds were measured and corresponding errors (as compared to a reference REGATH simulation) were computed. The obtained results are shown in Fig. 6. As can be observed, the overall solver shows second-order convergence behavior in space. This is in agreement with the order of each individual solver, and of the coupling scheme.

Multi-dimensional configurations

2-D configuration I: premixed Propane/Air counter flow flame

The next test-case considered here, is that of a 2-D premixed counter-flow burner. The corresponding geometry is represented in Fig. 7. As shown there, at the inlets, the fresh gas mixture comes in at a constant velocity (therefore constant mass flow-rate), an equivalence ratio of φ = 0.6 and a constant temperature of 300 K, and at the outlets (left and right) a constant hydrodynamic pressure is imposed on the flow field while the species and temperature fields are subjected to zero-gradient boundary conditions. At solid walls, zero diffusive flux is imposed on both the temperature and species fields. The simulation is initialized with fresh gas in the blank region in Fig. 7 while the grey-colored region is filled with burnt gas. In the simulations, due to the symmetrical configuration of the burner, only the upper right quadrant is considered. The chemical Parameter fresh gas burnt scheme, thermodynamic and transport properties follow those set in subsection 3.1.1. The test-case is modeled using both the proposed hybrid scheme, and the commercial CFD solver ANSYS-FLUENT for comparison. The initial conditions are given in Table 3. The background thermodynamic pressure in both solvers is set to atmospheric pressure.

T [K] 300 1970 ρ[kg/m 3 ] 1.17 0.162 u[m/s] 0 0 Y C3H8 0.037 0 Y O2 0.224 0 Y H2O 0 0.061 Y CO2 0 0.111
In FLUENT, the pressure-based solver is used to model the previously defined flow on a uniform grid of size δx = 2 × 10 -5 m. The correlations for viscosity, thermal conductivity, and species diffusion coefficients are imposed using external user-defined functions. The inlet and outlet are respectively modeled using the constant velocity and outflow boundary conditions. In the LB-FD simulation, the D2Q9 stencil is used, while the grid and time-step sizes are respectively set to δx = 5.55 × 10 -5 m and δt = 5 × 10 -7 s. The inlet, walls and outlet boundary conditions are imposed using a modified version of the non-equilibrium extrapolation method, while the symmetry boundary conditions are applied using the classical approach, given in details in [START_REF] Krüger | The lattice boltzmann method[END_REF].

For the non-equilibrium extrapolation boundary conditions [START_REF] Zhao-Li | Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method[END_REF], the missing population at the boundary node are computed as:

g α (x w , t + δt) = g (eq) α (x w , t + δt) + g α (x w + n, t + δt) -g (eq) α (x w + n, t + δt) , ( 33 
)
where n is the inward pointing vector perpendicular to the boundary surface.

For velocity boundary condition, g

(eq) α (x w , t + δt) and g (eq) α (x w + n, t + δt) are defined as:

g (eq) α (x w + n) = w α p h (x w + n) -c 2 s ρ(x w + n) + c 2 s f (eq) α (ρ(x w + n), u(x w + n)) , (34) 
where the hydrodynamic pressure, density and velocity at x w + n can be computed as all populations are known:

g (eq) α (x w ) = w α p h (x w + n) -c 2 s ρ(x w ) + c 2 s f (eq) α (ρ(x w ), u(x w )) . ( 35 
)
In both equations, the local hydrodynamic pressure is approximated by the neighbor node pressure, the velocity is imposed, and the temperature is computed from the local temperature and composition (through the ideal gas law).

For the pressure boundary condition, the last equation is replaced by:

g (eq) α (x w ) = w α p h (x w ) -c 2 s ρ(x w ) + c 2 s f (eq) α (ρ(x w ), u(x w + n)) . ( 36 
)
At steady-state, the solutions obtained using both codes are compared. First, the density and Propane net production rates are compared in Fig. 8; these quantities can be used to identify the position of the flame front. As observed in this figure, there is an excellent agreement concerning position and shape of the flame fronts for both solvers. Furthermore, to verify that the thermal dilatation effect is correctly captured, the y-component of the velocity vectors along the vertical center-line are compared for both codes in Fig. 9. It is readily observed that the proposed hybrid scheme is able to correctly capture thermocompressible effects.

2-D configuration II: co-current jet Methane/Air diffusion flame

To illustrate the ability of the proposed algorithm to deal with diffusion flames, a laminar co-flow Methane/Air diffusion flame is considered here. The simulation uses the same thermo-chemical settings as those used in subsection 3.1.3. The geometrical configuration along with boundary conditions are given in Fig. 10 and Table 4. The fuel is injected at the center while the oxydant comes in from the sides. In the context of this study only the right-half of domain is modeled, and a symmery boundary condition is applied on the lefthand side. The time-step and grid-sizes were respectively set to δt = 5 × 10 -8

Parameter central inlet left/right inlets T shown in darker gray. To validate the results, the temperature and species mass fractions, along with the z-component of the velocity vector along the central vertical line are compared to a pseudo 1-D simulation in cylindrical coordinates obtained from REGATH in Fig. ??. Though the hybrid LB-simulation is 3-D while the solution from REGATH is 1D-axisymmetric, the distance from the vertical centerline to the domain boundaries is so large that the solutions are expected to closely agree. Indeed, as for all previous test-cases, the results obtained with the proposed hybrid LB-solver are in excellent agreement with their REGATH counterparts corresponding to a pure FD-approximation.

[K] 950 950 u 0 [m/s] 0.3 0.3 Y C3H8 0.1 0 Y O2 0 0.224 Y H2O 0 0 Y CO2 0 0 Y CO 0 0

Conclusions and perspectives

A hybrid LB-FD solver for low Mach number combustion has been developed. The different test-cases studied here have shown that the proposed scheme is able to correctly recover the physics of low Mach flames. This is true for simple as well as for detailed thermo-chemical models; in 1-D, 2-D, and 3-D configurations; and considering geometries with different levels of complexity. To the knowledge of the authors this is the first time that results are published for 3-D combustion simulations taking into account thermo-compressibility using (in part or entirely) the LB method. Application of the proposed model to turbulent combustion is the topic of our present research.
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 1 Pseudo 1-D freely propagating flame-front 3.1.1. Simple thermo-chemistry: Propane/Air 1-D freely propagating flamefront A 1-D freely-propagating Air/Propane premixed flame is first considered.

s and δx = 2 . 5 ×

 25 10 -5 m. The temperature, CO and CO 2 mass fraction fields are shown in Fig.11. The results obtained from this simulation are compared to their counterpart from FLUENT in Fig.12.3.2.3. 3-D configuration: premixed Propane/Air counter flow flameThe last test-case considered here, is the 3-D version of the previously discussed 2-D counter-flow premixed flame. All parameters and boundary conditions are similar to the previous case. The corresponding geometry in 3-D is shown in Fig 13.For the 3-D simulation in LB, the D3Q27 stencil is used while the grid and time-step sizes are respectively set to δx = 1.67 × 10 -4 m and δt = 6×10 -6 s, leading to a simulation domain of 200×200×120 grid points. The pressure outlet, velocity inlet and wall boundary conditions are applied through the modified non-equilibrium extrapolation scheme, similar to the previous 2-D simulation. The computation was performed in parallel on the Neumann high-performance cluster at the university of Magdeburg, using 125 processing units. The steady-state fields obtained from the hybrid LB-FD simulation are displayed inFig 14. In this figure, the flame front, represented by a Propane production rate iso-surface is shown in light gray, while the combustor walls are

Figure 1 :

 1 Figure 1: Overall structure of the proposed algorithm (in green the steps handled by the LB solver, in magenta those handled by the FD solver, and finally in red the thermo-chemistry module)

Figure 2 :

 2 Figure 2: Adiabatic temperature (in red, left axis) and flame propagation speed (in black, right axis) obtained from the present hybrid LB-FD solver () compared to published reference data ( ) from[START_REF] Feng | A lattice-Boltzmann model for low-Mach reactive flows[END_REF] 

Figure 3 :

 3 Figure 3: Species (left axis) and temperature (right axis) profiles obtained from hybrid LB-FD simulations shown with plain lines, compared to reference values from [44] shown with markers: ( ) Y O 2 , ( ) Y C 3 H 8 , ( ) Y H 2 O , ( ) Y CO 2 , and ( ) temperature

Figure 4 :-Figure 5 :

 45 Figure 4: Density (left axis, ) and velocity profile (right axis, ) distribution around the 1-D freely-propagating flame-front at φ=1

Figure 6 :Figure 7 :

 67 Figure 6: Methane/Air flame propagation speed error for different resolutions using the BFER scheme

Figure 8 :Figure 9 :

 89 Figure 8: Density(lower half of the domain) and Propane net production rate (upper half of the domain) fields as obtained using FLUENT (left half) and the proposed Hybrid solver (right half).

Figure 10 :Figure 11 :Figure 12 :

 101112 Figure 10: Geometrical configuration of the 2-D co-flow Methane/Air diffusion flame.

Figure 13 :

 13 Figure 13: Geometrical configuration of the 3-D counter flow premixed Propane/Air flame.

Figure 14 :

 14 Figure 14: Flow field obtained at steady-state for the 3-D counter-flow test-case. Shown in this figure: Iso-surface of Propane consumption rate ωC 3 H 8 in light gray; streamlines colored with velocity magnitude (see color scale); cut showing the z-component of the velocity vector in the central plane (see color scale)

Table 1 :

 1 Prandtl and Schmidt numbers used for the 1-D Propane/Air simulations

		value
	Pr	0.682
	Sc C3H8	1.241
	Sc O2	0.728
	Sc H2O	0.941
	Sc CO2	0.537
	Sc N2	0.682

Table 3 :

 3 2-D counter-flow burner initial conditions

Table 4 :

 4 

2-D counter-flow burner initial conditions