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Background: Labelling outbreaks in surveillance data is necessary to train advanced analytical methods for outbreak detection, but there is a lack of software tools dedicated to this task.

Aim: The goal of this study was to evaluate the usability of a web-based tool by infection control practitioners for labelling potential outbreaks.

Methods: A mixed-methods design was used to evaluate how 25 experts from France and Canada interacted with a web-based application to identify potential outbreaks. Each expert used the application to retrospectively review eleven to twelve one-year incidence time series from 23 different types of microorganisms. The interactions between the users and the application were recorded and analysed using mixed-effect models. The users' comments were analysed via qualitative methods.

Findings: Over the 240 reviews completed, 439 potential outbreaks were labelled, about half of with a high probability. A significant heterogeneity was observed between users regarding their answers and behaviours (evaluation time, usage of the different options). A significant learning effect was also observed on the experts' interactions with the tool, but it did not seem to impact their answers. The content analysis of the comments highlighted the difficulty of early outbreak identification for practitioners, but also the potential utility of web applications such as the one evaluated for routine surveillance.

INTRODUCTION

In 1976, Lawrence Kunz wrote with enthusiasm about the coming of age of computerized microbiology [START_REF] Kunz | Computerization in microbiology[END_REF], already envisioning what we now call syndromic surveillance and predictive medicine. The 1970s were indeed an era of rapid development for both informatics and infection control, and the first computerized surveillance systems within hospitals were built during this period [START_REF] Gooch | Computerized system analyzes epidemiological data[END_REF][START_REF] Phillips | Application of Clinical Laboratory Database for Monitoring Infection Control and Antibiotic Control[END_REF].

Since then, infection control professionals have continued to adapt computer science innovations to address problems in their field. Technologies in routine use now include complex computer algorithms [START_REF] Trick | Computer Algorithms To Detect Bloodstream Infections[END_REF], dedicated data warehouses [START_REF] Wisniewski | Development of a Clinical Data Warehouse for Hospital Infection Control[END_REF], and cloud-based reporting systems [START_REF] Wang | Cloud Computing for Infectious Disease Surveillance and Control: Development and Evaluation of a Hospital Automated Laboratory Reporting System[END_REF]. This computational infrastructure is used for a variety of activities, such as monitoring nosocomial infections [START_REF] Atreja | Opportunities and challenges in utilizing electronic health records for infection surveillance, prevention, and control[END_REF], identifying high-risk patients [START_REF] Escobar | The neonatal "sepsis work-up": personal reflections on the development of an evidence-based approach toward newborn infections in a managed care organization[END_REF], and guiding antibiotic prescriptions [START_REF] Lee | Digital Decision Making: Computer Models and Antibiotic Prescribing in the Twenty-First Century[END_REF].

Yet, outbreak detection -another area of computerized microbiology envisioned by Kunz-has not reached the same level of development. If several attempts have been made in the last decades to implement automated detection systems within hospitals, their characteristics and evaluations varied widely, and there is still a lack of evidence about their practical utility [START_REF] Leclère | Automated detection of hospital outbreaks: A systematic review of methods[END_REF]. A major barrier is the absence of data sets in which outbreak periods are clearly labelled that could serve as reference standards.

In order to support the creation of such data sets for the evaluation of early outbreak detection methods, we developed an interactive web tool that experts can use to retrospectively examine available data and indicate when outbreaks likely have occurred.

Our goal with this study was to evaluate the tool's usability, analyse how users interacted with it, and try to understand what influenced their behaviours.

MATERIALS AND METHODS

1.Initial Design of the Web Application

To serve its purpose, the tool had to meet several requirements. First, it had to display the necessary data. As we wanted to focus on early outbreak detection, the data available prospectively are rather minimal: most clinical and microbiological data are usually gathered after an alert is issued and would therefore not be relevant in this context. However, as outbreaks can spread more easily across wards that shared a lot of patients, additional data was necessary to help users understand how wards related to one another. Second, the tool had to be interactive, to allow the users to explore the data and label potential outbreaks.

Third, in addition to keeping track of these outbreaks, the tool also needed to record how users interacted with the data. Finally, it had to be accessible simultaneously to several users from different institutions in France and Canada.

To meet the requirements of accessibility, data visualization and interactivity, we developed a web application based on the D3 JavaScript library for interactive data visualization [START_REF] Bostock | Data-Driven Documents[END_REF]. A screenshot of the application is available in Figure 1, as well as a video demonstration. Data visualization and interactivity were allowed via three panels (incidence, network and event list). The incidence panel mainly consisted of a bar chart presenting a year's worth of weekly incidence data for a given type of microorganism, along with a moving average curve to help reviewing time series that exhibited a lot of incidence variability. A red circle over a bar indicated that a notification about a potential outbreak was recorded in the hospital's notification system that week. A description of the notification was available by hovering the mouse over the circle.

The network panel was created to help users understand how the different wards were connected. The wards were represented as connected circles in a graph, laid out in such a way that the distances reflected the number of patients transferred between wards in the previous year: the more patients transferred, the closer the wards were to each other.

The incidence and network panels interacted with each other. When a user selected a period within the bar chart, the wards with new cases during that period were highlighted in the network view. The user could then hover the mouse over the nodes for these wards to obtain more information (type of ward, number of cases) and could click on the nodes to see the incidence data for these wards appear as a new layer on the bar chart (Figure 1).

To label a selected period as a potential outbreak, the user had to click on a button to add the period to the third panel of the application, the event list. The user would then be asked to describe their certainty (low, medium or high) that the event corresponded to an actual outbreak.

At the end of a review, the user clicked on a validation button to save the created events to a PostgreSQL database. Using Google Analytics, we also collected data about the duration of the review, how many selections were made in the incidence view, and how many clicks and mouse hovering events were made in the network view.

Evaluation of the Web Application

Surveillance data

We chose to focus the surveillance on twenty-three types of microorganism, based on their frequency and potential harm for the patients (Table I). A patient infected or colonized with one of these microorganisms (i.e. presenting a positive bacteriological culture) for the first time within a year was considered as a case. We used data from the bacteriological laboratory's information system to identify every case that occurred from 2013 to 2016 at Nantes University Hospital. The number of cases was aggregated by week for each type of microorganism and each year, resulting in 92 time series.

To build the network view, we used admission-transfer-discharge data that allowed us to tally the number of transfers for every pair of wards. For each year, the network was based on the data from the preceding year. The distances on the graph were calculated based on these counts using the Kamada-Kawaii layout algorithm [START_REF] Kamada | An algorithm for drawing general undirected graphs[END_REF]. Potential outbreak notifications were gathered from the hospital's adverse events and incident reporting system and a short summary was written for each of them.

Application trial

A convenience sample of twenty-five French and Canadian experts in infection control

surveillance was asked to test the application. Each expert had to review eleven to twelve randomly assigned time series between October and December 2017. After receiving their consent to participate, we sent the experts an email with detailed instructions, login credentials and links to the application and to a video tutorial. Two follow-up emails were sent one and two months after the beginning of the study.

After their initial login, each user was asked about their position, specialty and years of experience in that field. They also self-rated their Internet, computer, and surveillance skills and reported how many hours they spend on average in front of a computer each day. After completing all of their evaluations, they were asked to assess the application's usability using the System Usability Scale (SUS), a ten-item scale with a score ranging from 0 to 100 [START_REF] Brooke | SUS-A quick and dirty usability scale[END_REF]. They also had the opportunity to give their opinion about the application in an open text field.

Analysis

In order to account for the repeated nature of the measures, we estimated potential variations between users and time series with random effect models, adjusting for characteristics of users and time series when necessary. To enable comparisons between the models, the sizes of the random effects are displayed in this article using intra-cluster correlations (ICCs), which represent the percentages of the overall model variance explained by the effects.

The number of events by time series was modelled using a Poisson model, after verifying the absence of overdispersion. The length of the events and data from the Google Analytics trackers were modelled using log-linear models. The probability of the event was modelled as a quantitative variable (0 for no outbreak to 4 for a high probability) and was also modelled using a log-linear model. All statistical analyses were performed with R, version 3.5.1 [START_REF] Core | R: A Language and Environment for Statistical Computing[END_REF].

The users' comments were examined via a qualitative content analysis using the RQDA package [START_REF] Huang | RQDA: R-based Qualitative Data Analysis[END_REF] version 0.3.1 within R. Each comment was read thoroughly to identify the units of meaning, which were then coded and gathered into categories. In the article, verbatim citations of the comments are displayed within quotation marks, and modifications made for clarity are indicated with brackets.

RESULTS

Users & Participation

Out of the 25 experts recruited, 23 evaluated at least one time series. Their characteristics are displayed in Table II. Most were infection control physicians or pharmacists (78.3%), had 20 or more years of experience in their field (52.2%) and considered themselves to have high or very high skills in disease surveillance (82.6%). The majority of the experts also reported having medium to high Internet and computer skills (91.2% and 78.2%, respectively) and working on average six or more hours on a computer every day (52.2%). Most of the experts reviewed all of the time series they were assigned, and a total of 240 reviews were completed, out of the 276 initially planned (87.0%). Five time series were reviewed once (5.4%), 26 were reviewed twice (28.3%) and 61 were reviewed three times (66.3%).

Application usage

It took the users between 16 minutes and 9 seconds to evaluate a time series, with a median of 2.7 minutes. During these evaluations, they made between 1 and 194 selections in the bar plot (median: 24), hovered the mouse over the network nodes between 1 and 290 times (median: 29), and clicked on the nodes to see ward-specific incidences between 1 and 146 times (median: 14).

Part of these variations could be explained by significant differences in users' behaviour (p-values<0.001). Indeed, according to the ICC, the user effect accounted for 37% of the evaluation time variance. Similarly, differences among users explained a quarter to a third of the variances of the number of clicks (34%), the number of selections (28%) and the number of hover events (26%).

When a random effect was included for users, none of the recorded baseline user characteristics influenced the way in which the experts interacted with the application, except for the average daily computer time and the reported Internet skills. The average daily computer time was positively correlated with the number of clicks on the network nodes (p=0.02), whereas the reported Internet skills were correlated with the number of selections in the bar plot (p=0.047).

The way users interacted with the application was also partly determined by the time series they had to review. Indeed, the nature of the time series significantly influenced how many selections the users made in the bar plot (ICC=21%, p=0.047) and how much time it took to complete the evaluation (ICC=22%, p=0.02). However, they did not significantly influence how the users interacted with the network. These significant variations between time series were almost completely due to differences in the type of microorganisms, with corresponding ICCs equal to 17% (p=0.003) for the number of selections, and 18% (p=0.008) for the evaluation time.

Taking account of all of these significant effects, we also observed that the way users interacted with the application changed as they gained experience. The time to complete an evaluation decreased log-linearly with the number of time series evaluated, as did the number of selections, clicks and hover events (Figure 2).

The results of the final models are presented in the appendix.

Created events

Over the 240 evaluations completed, the users created 439 events, out of which 196 were flagged with a high outbreak probability (44.6%), 167 with a medium probability (38.0%) and 76 with a low probability (17.3%). The number of events by time series varied from 0 to 15 (median=2) and the length of the events varied from 1 to 53 weeks (median=4). As shown in the examples in Figure 3, the number, length and estimated probability of the events varied significantly between users (p-values<0.001), with ICCs equal to 46%, 35%, and 35% respectively. These measures also varied significantly between the types of microorganisms, with ICCs of 20% (p<0.001), 7% (p=0.003) and 11% (p<0.001) respectively. With the random effects taken into account, these characteristics did not vary significantly as the users gained experience with the application, nor did they change with their baseline characteristics.

Application evaluation

All of the experts who completed their set of evaluations also completed the final questionnaire (n=21). They gave on average a SUS score of 67.33, with a median at 69. Out of ten, two items of the SUS score were less favourably graded by the users: items 4 ("I think that I would need the support of a technical person to be able to use this app") and 9 ("I felt very confident using the app"). In their comments, several experts reported a "very good general opinion" and highlighted how enjoyable their experience with the application was, even if "understanding all of [its] subtleties [was] necessary to use it at its full potential".

Many experts expressed their desire to see the future developments of this work.

Besides the application itself, some experts felt that the task they were assigned was too complex, either because of the difficulty of envisioning what a potential outbreak could be ("I sometimes had trouble understanding what you meant by 'event'") or because of the difficulty of estimating the outbreak probability ("the main challenge for me was to understand the level of likelihood of each scenario"). The main difficulty, however, seemed to have been identifying the underlying "endemic trend", because "the background noises [were] too important". To help them in this task, several experts suggested adding some features, such as ward-specific statistics. For some experts, the task would have been easier

with additional microbiological and clinical data, such as the antibiotic resistance profiles, the type of infection and the case-mix of each ward. Because these data were not available, one expert noted that he had "little confidence in the answers [he had] given", and another had doubts about the reproducibility of the evaluations.

Ultimately, many experts noted the potential usefulness of the application in the context of routine surveillance. As one expert stated, "if this application could work in real time, it would be very interesting for infection control practitioners to identity wards with potential outbreaks". In this context, the lack of clinical and microbiological data was considered less critical, because "in real life [practitioners] would already have this information". Indeed, as stated by another expert, "this tool is surely very useful when used in one's own hospital, with knowledge of the different wards and of the background microbial epidemiology".

DISCUSSION

Building surveillance data in which outbreaks are correctly labelled is necessary to evaluate algorithms for early outbreak detection. In this study, we showed that the application we developed for this task was both usable and useful: it allowed experts to review incidence charts in under a couple of minutes and to identify several dozens of potential outbreaks.

The comments were for the most positive and encouraging, with several experts expressing their wish to see the application developed further. However, the application's usability was only average on the SUS score [START_REF] Brooke | SUS: a retrospective[END_REF]: users did not feel extremely confident using it and felt that they needed technical support. Even if about half of the events were categorized with a high probability, several users expressed a lack of confidence in the answers they had given.

The qualitative analysis of the comments was particularly useful to explore these apparent contradictions: it seemed indeed that the difficulties lied in the task the users were assigned, rather than in the application usage.

Identifying outbreaks is indeed complex, notably because there is no clear definition for them. Textbooks usually describe outbreaks as localized increases in the incidence of a disease [17,[START_REF] Horsburgh Cr | Infectious Disease Epidemiology[END_REF], but more practical definitions acknowledge that they cannot be reduced to mere statistical events. In practice, as Buehler et al. wrote, "the confirmation of an outbreak is a judgment that depends on past experience […], the severity [and] communicability of the condition, confidence in the diagnosis […], public health concern about outbreaks at the time, having options for effective prevention or control, and the resources required and available to respond." [START_REF] Buehler | Framework for evaluating public health surveillance systems for early detection of outbreaks: recommendations from the CDC Working Group[END_REF] To summarize, identifying outbreaks requires much information and the definition is susceptible to change depending on the context and the persons involved. This probably explains the significant amount of heterogeneity that we observed among users. Providing more data, as some experts suggested, might have compensated for the lack of a formal definition, and improved the overall homogeneity of the answers. But it would have been incompatible with our goal of building data for outbreak identification at an early stage when, precisely, specific data are not yet available. This lack of specificity is common in early detection systems which usually identify situations that require human scrutiny or further investigation. Sensitivity and timeliness are priorities for such systems.

With regards to timeliness, clinical and biological signs are the first data to be available, and they constitute the theoretical basis of what is called syndromic surveillance. As data about clinical symptoms are not yet routinely computerized, our tool relied primarily on bacteriological test results. In the future, additional data could be incorporated in the tool, but for this study, the reliance on bacteriological results is a potential limitation. However, infections are sometimes treated empirically without bacteriological documentation, and even if bacteriological tests are performed, they do not have perfect sensibility and specificity.

Knowledge can also come from experience, rather than data. In our study, we only included experts without any prior knowledge of the local context to ensure blinded evaluations and to achieve a reasonable sample size. It is possible that local users would have identified different, possibly more relevant events. Experience with the tool itself could also influence the answers given by the experts: the events identified by novices might be different from those identified by more advanced users. In our study, we did observe a change in users' behaviours as they gained experience, but this learning effect did not significantly influence their answers. Unfortunately, we were not able to compare our results with those of other studies, as few tools are available to support outbreak labelling. The only one that we know of was proposed by Debin et al. for determining influenza outbreak periods at a national level [START_REF] Debin | Determination of French influenza outbreaks periods between 1985 and 2011 through a web-based Delphi method[END_REF].

However, this tool is not suitable for labelling hospital-acquired infection outbreaks, because they are less predictable than seasonal influenza outbreaks, which have one incidence peak per winter season.

One particularly encouraging result from the qualitative analysis was that many experts emphasized the great potential of the application for routine surveillance. Although it was not its initial purpose, the application could indeed easily be integrated with a hospital information system and used in daily infection control practice, notably by letting the user decide the germ and antibiotic resistance profile for which they want to explore the incidence trends. With the addition of other readily available data (e.g., antibiograms, patient transfer history) it could help practitioners investigate outbreaks. This evolution of our tool from ad-hoc outbreak labelling to routine surveillance could in fact be very useful for automated outbreak detection: infection control practitioners could record outbreaks prospectively, generating true data with a good face validity [START_REF] Buckeridge | Algorithms for rapid outbreak detection: a research synthesis[END_REF] that could be used to continuously refine the algorithms. This strategy of reinforcement learning [START_REF] Sutton | Reinforcement learning: An introduction[END_REF] could be a great example of a learning healthcare system [START_REF] Olsen | Institute of Medicine (US). Roundtable on Evidence-Based Medicine. The learning healthcare system: workshop summary[END_REF], where data on performance are routinely analysed to produce knowledge that can guide future decisions.

Of course, all these efforts to computerize infection control surveillance are not simply about integrating new technologies. They are part of a continuous process of automating some of the most demanding tasks to allow practitioners to reinvest their time in prevention activities [START_REF] Russo | Impact of electronic healthcare-associated infection surveillance software on infection prevention resources: a systematic review of the literature[END_REF]. With hindsight, the relative delay in the automation of hospital outbreak detection is understandable: the task is difficult, and the data hard to gather. For Kunz, more than forty years ago, the main problem with outbreak surveillance was that "the significant data […] are not readily available; they are buried in masses of routine background data not immediately applicable to the problem." Today, informatics can help with the complex preprocessing [START_REF] Shmueli | Statistical Challenges Facing Early Outbreak Detection in Biosurveillance[END_REF]. However, effort is still needed to improve the way in which relevant data are presented to practitioners and to facilitate outbreak detection overall, a complex but highly beneficial task for both practitioners and patients. 
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Conclusion:
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Appendix. Results of the mixed models

Estimates and p-values are provided for the fixed effects, as well as the estimated variances for the random effects. The evaluation rank refers to the position of the review in the expert's list (1 = first review, 2 = second review, etc.). 

Estimate