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 18 

Abstract 19 

Mycoplasma flocculare is genetically closely related to M. hyopneumoniae, the etiologic agent of 20 

porcine enzootic pneumonia, and is frequently isolated with this second species. In this article, we 21 

report on the development of the first multilocus sequence typing (MLST) scheme for M. 22 

flocculare, based on three genes (adk, rpoB and tpiA). In total, 5,022 bp of sequence were analyzed. 23 

MLST was used to characterize seven M. flocculare isolates and the reference strain. Eight distinct 24 

sequence types were defined, showing the great intraspecies variability of M. flocculare, and the 25 

high discriminatory power of the new typing method. The relative contribution of recombinations to 26 

the genomic evolution of M. flocculare was revealed by calculating the index of association (IA: 27 

0.0185). This MLST scheme is now available for the acquisition of new knowledge on M. 28 

flocculare epidemiology via an online database comprising the DNA sequences of each allele, 29 

available at http://pubmlst.org/mflocculare/. 30 

 31 

1. Introduction 32 

Mycoplasma (M.) flocculare is commonly described as a commensal agent of the porcine 33 

respiratory tract (Thacker and Minion, 2012). However, this mycoplasmal species can adhere to 34 

respiratory epithelium and cohabits in severe gross pneumonia-like lesions with M. hyopneumoniae, 35 

the etiological agent of enzootic pneumonia and the primary agent of the porcine respiratory disease 36 

complex (PRDC). The PRDC is a multifactorial disorder causing financial losses to the pig industry 37 

worldwide (Kobisch and Friis, 1996, Fourour et al., 2018). M. hyorhinis, also detected in cases of 38 

pneumonia, can induce polyserositis (pericarditis, pleuritis, peritonitis), arthritis, ear infections, 39 

conjunctivitis and sepsis and may be present in subclinical infections (Thacker and Minion, 2012). 40 

A recent study showed that M. flocculare and M. hyorhinis were found in extensive gross 41 

pneumonia-like lesions in association with M. hyopneumoniae, but their role is not well known 42 

(Fourour et al., 2018). M. flocculare and M. hyopneumoniae are closely related genetically, and 43 
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share several virulence factors, raising the question of the potential role of M. flocculare as a PRDC 44 

agent (Paes et al., 2018). A comparative analysis between soluble secreted protein repertoires 45 

(secretome) of M. hyopneumoniae and M. flocculare strains allowed to identify 12 putative 46 

virulence factors in M. hyopneumoniae secretome and four putative virulence factors in M. 47 

flocculare secretome, with two virulence factors in common (Paes et al., 2017). Very recently, this 48 

mycoplasmal association appeared to induce an additive effect and to increase the inflammatory 49 

status of pigs, possibly involving impairment of the immune system (Fourour et al., 2019).  50 

M. flocculare can be isolated from tracheal and bronchiolar mucus, but isolation and identification 51 

are tedious and time consuming. The difficulty in culturing has led to the development of other 52 

diagnostic assays, including PCR tests (Stakenborg et al. 2006, Fourour et al., 2018). No typing 53 

method has been developed to date for M. flocculare strains. Only the comparison of 16S rRNA 54 

genes was performed from four strains and showed a certain genomic diversity (Yamaguti et al., 55 

2015). Multilocus sequence typing (MLST) scheme is an unambiguous method currently regarded 56 

as the gold standard for typing, able to replace even pulsed-field gel electrophoresis (PFGE) 57 

analysis (Gevers et al., 2005). MLST schemes already published have been used successfully to 58 

characterize M. hyopneumoniae and M. hyorhinis and demonstrated a great intraspecies diversity 59 

(Mayor et al., 2008; Tocqueville et al., 2014; Kuhnert and Overesch 2014; Trüeb et al., 2016; 60 

Michiels et al., 2017; Feld et al., 2018). This method is based on the nucleotide sequences of 61 

housekeeping genes, in which mutations are assumed to be largely neutral (Selander et al., 1986). 62 

Isolates that share the same sequence type (ST) are assumed to be members of the same clone 63 

(Selander et al., 1986), i.e., they have a recent common ancestor. Data obtained can be used to 64 

address questions about the evolutionary and population biology of bacterial species (Feil et al., 65 

1999). Moreover, it appears that the MLST scheme can also be used to relate M. hyorhinis strains, 66 

according to the pathology observed in pig, to a particular phylogenetic group (in addition to 67 

providing data on genetic diversity), even though the targets are housekeeping genes (Tocqueville et 68 

al., 2014). In this article, we discuss development of the first typing method for M. flocculare, an 69 
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MLST scheme. We also report on findings concerning genomic polymorphism in this mycoplasmal 70 

species, obtained with the new method.  71 

 72 

2. Materials and methods 73 

One reference strain (ATCC 27399) and seven isolates obtained from seven farms in 2016 (Table 74 

1) were used. All isolates were cultured from lung specimens in Friis liquid medium at 37 ± 2 °C 75 

(Friis, 1975). The isolates derived from a single colony, cloned twice maximum, and the purity was 76 

ensured by multiplex qPCR (Fourour et al., 2018).  77 

DNA was extracted from a 12 mL culture with the QIAamp® DNA Mini Kit (Qiagen, Courtaboeuf, 78 

France), and quantified with a Qubit® 2.0 fluorometer (Invitrogen, Paris, France). DNA was sheared 79 

by sonication using a Bioruptor® Plus (Diagenode) apparatus. Libraries were prepared using a 80 

NEBNext® Ultra DNA library Prep Kit for Illumina® and NEBNext® Multiplex Oligos for 81 

Illumina®, according to the manufacturer’s instructions (New England Biolabs, Evry, France). Size 82 

selection and purification steps were conducted with magnetic beads (Agencourt AMP pure XP 83 

system; Beckman-Coulter, Villepinte, France). Sequencing was performed using MiSeq Illumina 84 

technology (paired-end sequencing 2x150 cycles, MiSeq Reagent kit v2-300 Cycles, Illumina). 85 

Reads were cleaned with Trimmomatic 0.36 (Bolger et al., 2014) 86 

(ILLUMINACLIP:oligos.fasta:2:30:5:1:true LEADING:3 TRAILING:3 MAXINFO:40:0.2 87 

MINLEN:36). Cleaned reads were then aligned versus known references (AFCG01000001.1 to 88 

AFCG01000014.1) with bwa (0.7.15-r1140, Li and Durbin, 2009). Reads were down-sampled to fit 89 

a global coverage estimation of 80×, cleaned with Trimmomatic (same parameters as before), and 90 

submitted to SPAdes (v3.10.0, Nurk et al., 2013). The de novo contigs were then submitted to 91 

MEGABLAST (2.2.26, Chen et al., 2015) on a local copy of the NCBI “Nucleotide” databank (nt). 92 

The ordered set of contigs was obtained using MauveReorder (Rissman et al., 2009) on CP007585.1 93 

reference genome. The next step was to annotate the draft genome using the Rapid Annotation 94 

using Subsystem Technology (RAST) server with genetic code 4 (Mold, Protozoan, and 95 
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Coelenterate Mitochondrial Code and the Mycoplasma/Spiroplasma Code) (Aziz et al., 2008). The 96 

contigs shorter than 200 bp were removed from the analysis. The Mycoplasma species of each strain 97 

was verified with the primer sequences described by Fourour et al. (2018) in the insilico.ehu.es 98 

website.  99 

The new MLST scheme was developed for M. flocculare using the complete genes adk, rpoB and 100 

tpiA (Table 2). We chose to work on these three genes alone because they have been used 101 

successfully for the development of MLST M. hyopneumoniae scheme. These housekeeping genes 102 

were searched with blastn (NCBI BLAST+blastn). For each M. flocculare strain (including the 103 

reference strain ATCC 27399, Accession: CP007585.1 and the seven isolates of this study), the 104 

alleles at each of the three loci (e.g. 2,8,7) defined the allelic profile or ST (e.g. ST7) (Calcutt et al., 105 

2015). The STs were assigned arbitrary numbers in order of description. The allelic profile of M. 106 

flocculare ATCC 27399 is 1,1,1 (ST1). A web-accessible database has been set up for the MLST 107 

scheme for M. flocculare at http://pubmlst.org/mflocculare/ (Jolley & Maiden 2010). The number of 108 

nucleotide polymorphic sites was determined by using specially designed software, BIGSdb 109 

(http://pubmlst.org/software/database/bigsdb/) (Jolley & Maiden 2010). The degree of clonality 110 

within the data set was estimated by calculating the index of association (IA). The standardized IA 111 

was used to test the null hypothesis of linkage equilibrium for multilocus data, and therefore 112 

determine the relative contribution of mutation and recombination to the diversity seen by MLST. 113 

An IA value significantly different from 0 indicates that a population is clonal (linkage 114 

disequilibrium), while IA equal to zero indicates a recombining population structure (linkage 115 

equilibrium). Analysis was performed with the LIAN program (http://guanine.evolbio.mpg.de/cgi-116 

bin/lian/lian.cgi.pl) by using 10,000 resampling of the data. The calculation of H (representing 117 

genetic diversity) was also performed with LIAN. To investigate whether positive or negative 118 

selection had occurred at the protein level, the average non-synonymous/synonymous substitution 119 

rate ratio (dN/dS) was calculated using START2 software 120 

(https://pubmlst.org/software/analysis/start2/webstart/start2.jnlp). Low ratios indicate a lack of or a 121 
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very limited contribution of environmental selection to the sequence variation in the housekeeping 122 

genes analyzed, which are thus assumed to be suitable for a population genetics study. DnaSP 123 

genetic software, version 5.10.01 was used to calculate Tajima’s D statistic in order to test the 124 

neutrality of the observed DNA polymorphisms 125 

(http://www.ub.es/dnasp/software/dnasp51001.msi). 126 

The MLST sequences concatenated head-to-tail of each strain were aligned and one phylogenetic 127 

tree was drawn on “Phylogeny.fr” (http://phylogeny.lirmm.fr/phylo_cgi/index.cgi) with the “One 128 

Click” mode. BURST analysis was carried out to reveal the relationships between MLST sequence 129 

types, and to analyze clonal complexes (http://pubmlst.org/analysis/), then to (i) divide strains into 130 

groups according to their allelic profiles, and (ii) count the number of single locus variants (SLVs), 131 

double locus variants (DLVs), and satellites (SATs) for each ST, and identify the potential ancestral 132 

type (AT). The original BURST algorithm was previously developed (Feil et al., 2004). The version 133 

used was adapted as a plugin for BIGSdb database software by Keith Jolley 134 

(http://pubmlst.org/software/database/bigsdb/) (Jolley & Maiden 2010).  135 

The relationships between ST patterns, ST phylogenetic groups, and BURST groups detected in this 136 

study and the mycoplasmal combinations or pneumonia-like macroscopic lesion scores observed on 137 

the origin farms (Fourour et al. 2018) were analyzed. The statistical analyses were performed using 138 

the Fisher exact test (n ≤ 5) on independence in two-by-two tables 139 

(https://marne.u707.jussieu.fr/biostatgv/?module=tests/fisher). Differences were considered to be 140 

significant when p < 0.1. 141 

 142 

3. Results and discussion 143 

The assemblies of M. flocculare isolates yielded 29 to 71 contigs, covering a total of 739,183 to 144 

782,983 bp (mean genome size, 762,578 ± 13,290 bp), with an N50 value of 67,566 to 123,263 bp 145 

(mean N50 value, 82,858 ± 18,873 bp), an average coverage of 74.8× to 93.4× (mean coverage, 83.8 146 

± 7.7×), and an overall G+C content of 29.0% to 29.6% (mean G+C content, 29.1 ± 0.2%). The 147 
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seven M. flocculare isolates yielded 620 to 669 coding sequences (CDSs), whereas the previously 148 

published M. flocculare ATCC 27399 genome contained only 585 CDSs (Siqueira et al., 2013). 149 

One hypothesis would be that this difference might be related to the presence of more CDSs 150 

encoding, for example, virulence factors in our current isolates. The reference strain cultivated 151 

many times on culture medium may have lost non-essential genetic elements for in vitro growth, 152 

while these elements were essential to the colonization of the animal. For our seven M. flocculare 153 

isolates and the reference strain ATCC27399, the discriminatory ability of the different loci, 154 

measured as number of alleles, varied from six (adk) to eight (rpoB and tpiA) (Table 2). The 155 

genetic diversity (H) obtained from the three genes varied from 0.9286 (adk) to 1.000 (rpoB and 156 

tpiA) (Table 2). The standardized IA was calculated at 0.0185. Most polymorphisms resulted in 157 

nonsynonymous substitutions, with the ratio of nonsynonymous to synonymous substitutions 158 

(dN/dS) varying from 0.0164 (for tpiA) to 0.1482 (for adk), and Tajima’s D values varying from -159 

0.351 (for adk) to 0.459 (for tpiA) (with none of these values significantly deviating from zero, p > 160 

0.10). These values show that the genetic variation was roughly in linkage equilibrium, and seemed 161 

to be due to recombination (with mutation playing a much smaller role) (Haubold et al., 1998). 162 

Homologous recombination was also high for M. hyopneumoniae and M. hyorhinis (Mayor et al., 163 

2008; Tocqueville et al., 2014). In M. hominis, the frequency of recombination is not correlated 164 

with the level of variability, and recombination does not induce more variation in the genes but 165 

rather shuffles the existing mutations, thereby creating new alleles (Søgaard et al., 2002). 166 

Recombination in M. hyopneumoniae, M. hyorhinis and M. flocculare is particularly interesting 167 

since no phages or plasmids have been described in these species. However, for Mycoplasma 168 

species sharing the same hosts, a significant number of genes undergoing horizontal transfer have 169 

been described (Sirand-Pugnet et al., 2007).  170 

This MLST scheme of three housekeeping genes, adk, rpoB and tpiA (concatenated 5022 nt) was 171 

able to type seven M. flocculare isolates and the M. flocculare reference strain and to identify eight 172 

distinct sequence types, showing the great intraspecies variability of M. flocculare, and offering a 173 
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very highly discriminatory typing method. The MLST scheme for M. hyopneumoniae was also 174 

based on the same three housekeeping genes (Mayor et al., 2008). This simple scheme has been 175 

found to be sufficient for epidemiological investigations of M. hyopneumoniae, and also seems to 176 

be sufficient for M. flocculare. However, more strains should be typed to confirm these preliminary 177 

results. Our MLST scheme confirms that sequence variations occur within housekeeping genes, 178 

which indicates that the core genome is also variable.  179 

The genetic relationships between the eight M. flocculare STs are shown in the phylogram in 180 

Figure 1. Three ST groups, named “a” to “c”, were identified. The BURST analysis revealed two 181 

groups of two M. flocculare isolates, BURST groups A and B. BURST group A was composed of 182 

DLVs ST2 and ST7. BURST group B was composed of DLVs ST3 and ST4. ST1, 5, 6 and 8 were 183 

not linked to groups and were singletons. The BURST analysis did not highlight a clonal complex 184 

for M. flocculare strains, whereas several clonal complexes were identified for M. hyopneumoniae 185 

and M. hyorhinis (Mayor et al. 2008; Tocqueville et al., 2014; Kuhnert and Overesch 2014; Trüeb et 186 

al., 2016; Michiels et al., 2017; Feld et al., 2018). Helicobacter pylori and Staphylococcus aureus 187 

populations, also with rich histories of interstrain recombinations, are structured in clonal 188 

complexes (Achtman et al., 1999; Day et al., 2001). The analysis of more M. flocculare isolates 189 

should make it possible to determine whether such clonal structures are found in this species. 190 

This is the first time that M. flocculare strains isolated from pneumonia have been typed. All M. 191 

flocculare isolates from farms with a mean gross pneumonia-like lesions score above 5/28 are in the 192 

same ST group (group “b”) (Table 3), showing genomic homogeneity. However, with a p value of 193 

0.142, this result must be confirmed. No relationships between the combination of M. flocculare 194 

with M. hyopneumoniae and/or M. hyorhinis and ST groups or BURST groups were observed (p > 195 

0.1) (Table 3).  196 

An online database for the M. flocculare MLST scheme, comprising DNA sequences of each allele, 197 

was developed and is available in Pubmlst (http://pubmlst.org/mflocculare/). New data concerning 198 

M. flocculare genomes, obtained or not by next generation sequencing, can now be included in the 199 
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database for comparison between laboratories. This genomic approach, certainly coupled with other 200 

omics techniques (proteomic, secretomic), will facilitate epidemiological investigations and the 201 

acquisition of new knowledge about the porcine respiratory disease complex, in connection with the 202 

presence of M. flocculare.  203 

 204 
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Table 1. Main characteristics of the eight M. flocculare (MF) strain/isolates and sequence types 329 

identified by MLST. 330 

Isolate 

Mycoplasmal 

combinationsa 

Mean 

pneumonia 

score (/28)b 

ST 

profilec 

STd 

ATCCe_27399 NKf NK 1,1,1 1 

MF11 MHP/MHR/MF 4.9 2,2,2 2 

MF12 MF/MHR 2 4,6,3 3 

MF18 MHP/MHR/MF 8.9 4,3,4 4 

MF22 MF/MHP 2.3 3,7,5 5 

MF29 MHP/MHR/MF 7.3 5,4,6 6 

MF30 MF/MHR 1.4 2,8,7 7 

MF33 MF/MHP 6.3 6,5,8 8 
a Mycoplasmal combination observed in pig lungs at the farm level (Fourour et al., 2018). MHP: M. hyopneumoniae, MHR: M. 331 

hyorhinis 332 
b Mean score of gross pneumonia-like lesions by farm, estimated as previously described by Madec and Kobisch (1982) 333 
c Results of M. flocculare typing obtained with the complete genes adk, rpoB, and tpiA using the MLST scheme described in this 334 

study.  335 
d ST: sequence type  336 
e ATCC: American Type Culture Collection, Rockville, USA 337 
f NK: Not known 338 

  339 
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 340 

Table 2. Characteristics of the three genes used in the M. flocculare (MF) typing scheme 341 

Locus 

Putative 

function of gene 

product 

Positiona 

Seq. size  

(bp) 

No. of 

alleles 

identified 

No. of 

polymorphic 

nucleotide sites 

(%) 

Genetic 

diversity 

(H) 

dN/dS
 b

 Tajima's 

Dc 

adk Adenylate kinase 555204 639 6 6 (0.94) 0.9286 0.1482 -0.351 

rpoB 
RNA polymerase 

β-subunit 
675017 3654 8 44 (1.20) 1.0000 0.0306 -0.126 

tpiA 
Triose-phosphate 

isomerase 
120812 729 8 10 (1.37) 1.0000 0.0164 0.459 

a Position in MF ATCC 27399 (accession CP007585.1) 342 
b Ratio of nonsynonymous to synonymous mutations 343 
c Tajima's D, none of the values significantly deviated from zero (p > 0.10) 344 

  345 
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 346 

Table 3. Distribution of ST patterns, ST groups, and BURST groups in relation to M. flocculare isolate 347 

origins. 348 

  
Mycoplasmal combinationsa

 
 Pneumonia-like 

lesion scoreb
 

 

n MHP/MHR/MF MHP/MF MHR/MF NKc  ≤5/28 >5/28 NKc  

No. of strains/isolates 8 3 2 2 1d  4 3 1d  

No. of STs 8 3 2 2 1  4 3 1  

No. of strains/isolates in ST groups 

      

 
   

 

a 1 0 0 1 0  1 0 0  

b 4 2 1 1 0  1 3 0  

c 3 1 1 0 1  2 0 1  

No. of strains/isolates in BURST groups      

group 1 2 1 0 1 0  2 0 0  

group 2 2 1 0 1 0  1 1 0  

singletons 4 1 2 0 1  1 2 1  
a Mycoplasmal combinations observed on the farms of origin (Fourour et al. 2018) 349 
b Mean score of gross pneumonia-like lesions by farm, estimated as previously described by Madec and Kobisch (1982) 350 
c NK: not known 351 
d M. flocculare strain ATCC 27399 with genome available in GenBank (accession CP007585.1) 352 
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 353 

 354 

                                            355 

Figure 1. Genetic relationships between seven M. flocculare STs and the reference ST1* (strain M. 356 

flocculare ATCC 27399), as estimated by clustering analysis of STs revealed by MLST, with loci 357 

of genes adk, rpoB and tpiA concatenated (5,022 bp) for M. flocculare. The phylograms were 358 

constructed using tools at www.phylogeny.fr and the “one click” mode. Bootstrap support values 359 

are in red.  360 

 361 
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