Aymen Meziani 
  
Karim Djouani 
  
Tarek Medkour 
  
Abdelghani Chibani 
  
A Lasso quantile periodogram based feature extraction for EEG-based motor imagery

Keywords: BCI, Motor Imagery, Feature extraction, Quantile periodogram, Lasso Quantile Periodogram

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

BCI-based systems are very important in multiple fields, such as rehabilitation, assistive technology, and robotics [START_REF] Mcfarland | Brain-computer interface operation of robotic and prosthetic devices[END_REF][START_REF] Daly | Brain-computer interfaces in neurological rehabilitation[END_REF]. BCI's makes use of signals extracted from the brain's electrical activity measured by an electroencephalogram (EEG) [START_REF] Niedermeyer | Electroencephalography: basic principles, clinical applications, and related fields[END_REF].

The EEG signals have been largely used for the investigation of the motor imagery (MI) brain phenomena [START_REF] Wolpaw | Brain-computer interfaces for communication and control[END_REF]. Based on event-related synchronisation (ERS) and event-related desynchronisation (ERD), the MI-related EEG can be characterised and recognised. The spectral and temporal contents of the EEG signals have been recognised as an effective way to obtain discriminant information [START_REF] Akay | Time Frequency andWavelets in Biomedical Signal Processing[END_REF].

There are specific regions of the brain that are responsible for voluntary body movements located in the precentral cortex. Within the 32 electrodes system that could be used to extract the information from these regions, the following electrodes are typically used (C3, C4, Cz, CP5, CP1, CP2, CP6) ( Figure [START_REF] Mcfarland | Brain-computer interface operation of robotic and prosthetic devices[END_REF]) [START_REF] Matanga | A matlab/simulink framework for real time implementation of endogenous brain computer interfaces[END_REF]. Changes in real and imaginary body movements can be observed in specific frequency bands known as sensorimotor rhythms, called the µ-rhythm (8-12Hz) and the β-rhythm (18-25Hz) [START_REF] Pfurtscheller | Motor imagery activates primary sensorimotor area in humans[END_REF][START_REF] Pfurtscheller | Eeg-based discrimination between imagination of right and left hand movement[END_REF].

Feature extraction is one of the most challenging tasks in BCI-based motor imagery since the objective is to extract distinctive information from the EEG signals. The nature of EEG signals is challenging for classical spectral analysis, due to the non-stationarity and non-linearity of the signals obtained from the complex brain activity [START_REF] Niedermeyer | Electroencephalography: basic principles, clinical applications, and related fields[END_REF][START_REF] Popivanov | Testing procedures for non-stationarity and non-linearity in physiological signals[END_REF][START_REF] Medkour | Graphical modelling for brain connectivity via partial coherence[END_REF]. Based on the original idea of quantile estimators proposed by Li [START_REF] Li | Quantile periodograms[END_REF] and in order to overcome some drawbacks related to the satisfaction of the robustness regarding outliers, new approaches are proposed.

Feature extraction techniques have been developed in the time domain as well as in the frequency domain [START_REF] Yamawaki | An enhanced time-frequencyspatial approach for motor imagery classification[END_REF]. Common spatial patterns (CSP) have been largely applied for the BCI feature extraction [START_REF] Ramoser | Optimal spatial filtering of single trial eeg during imagined hand movement[END_REF][START_REF] Zhang | Optimizing spatial patterns with sparse filter bands for motor-imagery based braincomputer interface[END_REF]. Power spectrum estimation, autoregressive (AR) models [START_REF] Schlögl | Using adaptive autoregressive parameters for a brain-computer-interface experiment[END_REF][START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF], multivariate autoregressive models (MVAR) [START_REF] Anderson | Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks[END_REF] and periodogram-based feature extraction have successfully been used in BCI [START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF][START_REF] Machado | A study of the naive bayes classifier for analyzing imaginary movement eeg signals using the periodogram as spectral estimator[END_REF]. In order to characterise the non-Gaussian information contained within EEG signals, the bispectrumbased feature extraction approach has been proposed [START_REF] Zhou | Classifying mental tasks based on features of higher-order statistics from eeg signals in brain-computer interface[END_REF].More recently, the authors in [START_REF] Sun | An advanced bispectrum features for eeg-based motor imagery classification[END_REF] introduced an advanced variations based bispectral feature extraction method to overcome the problem of sensitivity to non-linear and non-Gaussian noises of the widely used bispectrum. Time-frequency and time-scale analysis have been recognised as useful tools for oscillatory EEG component in BCI-based motor imagery. Quadratic t-distribution and wavelet-based methods have been investigated [START_REF] Wang | Classifying eeg-based motor imagery tasks by means of time-frequency synthesized spatial patterns[END_REF][START_REF] Fatourechi | A waveletbased approach for the extraction of event related potentials from eeg[END_REF][START_REF] Hsu | Eeg-based motor imagery classification using neuro-fuzzy prediction and wavelet fractal features[END_REF]. A non-linear method named parametric t-Distributed Stochastic Neighbour Embedding (P. t-SNE) has been proposed in order to extract the non-linear features from the EEG-MI signals [START_REF] Li | Extracting the nonlinear features of motor imagery eeg using parametric t-sne[END_REF]. Recently, a Riemannian geometry-based BCI method has been proposed for feature extraction and classification of EEGbased signals through the estimation of the covariance matrices [START_REF] Kalunga | Online ssvep-based bci using riemannian geometry[END_REF]. More recently, features based on analytic intrinsic mode functions (AIMFs) were proposed for classifying motor imagery EEG signals in BCI applications [START_REF] Taran | Features based on analytic imf for classifying motor imagery eeg signals in bci applications[END_REF]. Different comparative studies [START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF][START_REF] Oikonomou | A comparison study on eeg signal processing techniques using motor imagery eeg data[END_REF][START_REF] Bhattacharyya | Performance analysis of lda, qda and knn algorithms in left-right limb movement classification from eeg data[END_REF] of feature extraction methods including CSP, wavelets and spectral density have shown that the use of spectral density is effective and robust in extracting distinctive patterns in motor imagery-based BCI.

Due to the non-stationarity and the non-Gaussianity properties of the EEG signals, classic spectral analysis techniques are not suitable to extract useful and important information. This paper introduces a new type of spectral estimators named respectively the quantile periodogram and the lasso quantile periodogram. Theses methods are based mainly on quantile regression and L 1 -norm regularisation techniques. Due to their successful usage in many domains, quantile regression and L 1 -norm regularisation have attracted a lot of attention recently in spectral analysis theory. However, to our knowledge they have not been used yet in the context of EEG-based MI systems. The performance of these new approaches is compared along with the classical techniques like Fast Fourier transform (FFT) and Welsh periodogram estimators (Table 1 shows the advantages and disadvantages of the FFT and the Welsh periodogram). The results show that the quantile periodogram and the L 1 -Quantile periodogram greatly improve the classification performance.

In Motor imagery-based BCI systems, features are fed into the classifiers to identify user's mental tasks. Various classifiers have been considered in the literature to predict the user's mental task. Comparisons between linear and non-linear classifiers are given in [START_REF] Garrett | Comparison of linear, nonlinear, and feature selection methods for eeg signal classification[END_REF] and [START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF]. This paper also considers multiple linear and non-linear classifiers to compare the performance of the different spectral density estimators.

The paper is organised as follows. Sections 2 discussed the proposed approaches. Section 3 describes the dataset used in the study. In Section 4, different spectral density estimators as feature extraction for EEG-based motor imagery are analysed. A brief analysis of the EEG signals using the spectral estimators under consideration is discussed in section 4. Section 5 presents the signal processing chain or the statistical learning protocol, and finally, the results are discussed in section 6. Conclusion and future work are presented in section 7. Let representation, Y t is given by

Y t = {Y 1 , Y
Y t = λ 0 + q j=1 β 1j cos(ω j t) + β 2j sin(ω j t), (1) 
with t ∈ 1, .., n, ω j = 2πj/n, j = 1, .., q = n/2, the Fourier frequencies, and (λ 0 , β 1j , β 2j ) ∈ R 3 are the coefficients to be estimated. The spectrum of Y t is defined as follows

f (ω) = 1 2π ∞ n=-∞ γ(n)e -inω for all, ω ∈ [-π, π] (2) 
with

γ(h) = E[(Y t+h -µ)(Y t -µ)]
is the auto-covariance function of Y t and f (ω) is the real spectrum. Based on definition (2), various estimation techniques have been proposed in the literature. In this paper, only non-parametric estimators are considered. One of the most common non-parametric estimators is the ordinary periodogram:

I n (ω j ) = 1 n n t=1 Y t exp(-iω j ) 2 , (3) 
with ω j = 2πj/n are the Fourier frequencies. The ordinary periodogram has the advantage of fast calculation through the Fast Fourier Transform (FFT). However, it requires restrictive conditions concerning the signal properties (stationarity and Gaussianity). The Welch periodogram is a modified version of the ordinary periodogram based on Bartlett's method. It aims at reducing the noise of the periodogram by averaging small periodogram's windows of the signal at every frequency [START_REF] Welch | The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms[END_REF]. The Welch periodogram is defined by the following:

W n,m (ω j ) = 1 n n t=1 Y t w(t -m) exp(-iω j ) 2 , (4) 
where w(.) is the window function, commonly a Hann window or Gaussian window centred around zero are used.

With respect to the two aforementioned estimators, the Quantile periodogram defined by [START_REF] Li | Quantile periodograms[END_REF] is a new approach that estimates the spectrum through the distribution of the signal. It can provide a complete view and a richer breadth of information compared to the ordinary periodogram. The Quantile periodogram uses the quantile regression estimate instead of least squares when doing the projection into the sinusoid's Hilbert space, exhibiting under specific conditions, robustness against outliers, invariance to nonlinear distortion and against heavy-tailed signals [START_REF] Li | Quantile periodograms[END_REF], [START_REF] Hagemann | Robust spectral analysis[END_REF].

The quantile periodogram is defined as follows

Q τ (ω j ) = 1 4 n β τ (ω j ) 2 2 (5) 
with

β τ (ω j ) = arg min β∈R 2 n t=1 ρ τ (Y t -λ 0 -x T t (ω j )β) (6) 
with λ 0 being the sample quantile, x t (ω j ) = [cos(ω j ), sin(ω j )] T , and ρ τ (u) is the loss function defined by

ρ τ (u) = u{τ -I(u < 0)} = -1(1 -τ )u, if u < 0. τ u, if u ≥ 0.
where I(.) is the indicator function, and τ is the quantile level. The quantile periodogram is found to perform well in cases of outliers and non-linear distortion compared to the ordinary periodogram [START_REF] Li | Quantile periodograms[END_REF]. However, it suffers from unstable performance in the case of multiple dominant frequencies [START_REF] Meziani | Penalized quantile periodogram for spectral estimation[END_REF]. Hence, a new regularised version defined by [START_REF] Meziani | Penalized quantile periodogram for spectral estimation[END_REF] is proposed to rectify this drawback.

Using a L 1 norm, the LASSO quantile periodogram can be regarded as a sparse representation of the quantile spectra. The L 1 norm penalisation has attracted a lot of attention in the literature. In particular, under the term of LASSO and Basis pursuit denoising [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], [START_REF] Chen | Application of basis pursuit in spectrum estimation[END_REF]. The geometric property of the constraints region represented by a polyhedral, giving it the ability to shrink some of the parameters toward zero. If the solution is unique, then some of the coefficients tend to be exactly zero.

The LASSO quantile periodogram can be defined as follows:

Q (L) τ,α (ω j ) = n 4 β (L) τ,α (ω j ) 2 2 , (7) 
where

β (L) τ,α (ω j ) = arg min β∈R 2 n t=1 ρ τ (Y t -λ -x T t (ω j )β) + α β 1 , (8) 
α ≥ 0, is the regularization parameter. The Lasso quantile periodogram shows a similar behaviour as the quantile periodogram in terms of characterising the information within non-linear signals via the conditional distribution, in addition to its robustness against outliers and noisy signals [START_REF] Meziani | Penalized quantile periodogram for spectral estimation[END_REF]. Considering EEG signals properties concerning non-linearity, non-stationarity and non-Gaussian noise, the estimators based on LASSO Quantile periodogram are of main interest in this case.

Dataset description

The Dataset has been collected during a study of BCI motor imagery project conducted at Tshwane University of Technology (TUT), Pretoria, South Africa [START_REF] Matanga | A matlab/simulink framework for real time implementation of endogenous brain computer interfaces[END_REF][START_REF] Matanga | Analysis of user control attainment in smr-based brain computer interfaces[END_REF]. The scope of the study was to analyse the causes of the slow rise of control attainment in SMR-based BCI systems. 5 subjects participated, all of them had no previous experience except subject 3 who participated in one BCI session a few months prior to the experiment. The subjects have to do MI tasks (right hand vs. left hand, or right hand vs. rest) over 5 sessions, except the first subject who did just four.

Table 2 shows the total number of the considered trials and sessions for each subject. The total duration of each session is 8 seconds. The recording of the trial begins after 3 seconds for a duration of 5 seconds. After a beep to attract the attention of the subject, a red arrow appears on the screen indicating the task to perform (Figure 2). The data considered for the analysis is the last 2 seconds of the recording. The recordings were made using a 32 active dry electrodes wireless kit, with a sampling rate of 250 Hz, bandpassed between 2Hz-60Hz. with band rejection at Powerline noise frequency (48Hz-52Hz) and filtering using the common average (CAR).

EEG Analysis

The ERD (Event related desynchronization) is a phenomenon that appears as a blocking of mu and beta waves in reaction to diverse types of stimuli such as voluntary and motor imagery movements [START_REF] Pfurtscheller | Event-related eeg/meg synchronization and desynchronization: basic principles[END_REF]. In the motor imagery case, it starts when the subject begins to imagine the movement which results in a decrease in the mu and beta frequency bands. An illustration of this behaviour can be seen in Figure 3 for subject 2 on the C3 electrode data. The plots represent the median over all trials of the different spectral estimators under consideration, while performing left hand imagery movement task. We can see from figure 3, that all spectral estimators exhibit a similar overall shape, which captures the ERD phenomenon as a decrease in the mu and beta frequency bands. It is to be noted that the band rejection of (48Hz-52Hz) does not have a big effect on the quantile periodogram.

Figure 4 illustrates the median over all trials of the LASSO Quantile periodogram applied on the data of subjects 2 and 5 with the electrode C3 while performing left hand imagery movement. The estimation was performed with different common quantile values (τ = [0.25, 0.5, 0.75, 0.95]). As can be seen, the quantile of interest has an impact on the behaviour of the quantile estimators. The difference in behaviour is observed as a shift and change in the amplitudes of the different estimators for some frequencies in the bands of interest.

For instance, the difference between the first three quartiles and the 95th quantile, around the frequency of 12Hz for subject 5. Therefore, a proper choice of the quantile of interest is needed. The same discussion applies to the Quantile periodogram case. Besides, the behaviour of the spectral estimators is subject dependent. For instance, the spectral estimator in the case of subject 2, exhibits a large spike around 3Hz before decreasing to 0, while for the subject 5, a second spike appears around the frequency of 12Hz (Figure 4)

Figure 5 represents the median over all trials of the spectral estimators for left and right imagery movement tasks. The C3 electrode signal for subject 2 was used for the experimentation. As shown in Figure 5, tasks 

Signal processing chain

The analysis of MI tasks in this study is based on a statistical learning classification protocol. Figure 6 summarise the signal processing chain. The learning protocol begins by a simple preprocessing technique based on a (CAR) filter, with a focus on using the EEG signals from the channels C3, C4 and Cz as commonly adopted in the literature [START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF][START_REF] Machado | A study of the naive bayes classifier for analyzing imaginary movement eeg signals using the periodogram as spectral estimator[END_REF] The spectral approaches used in the literature for BCI-based motor imagery, are found to have discriminative information in what we call the sensorimotor rhythms, which are respectively the µ (8-12Hz) and β (18-25Hz) frequency bands.

In this paper, the quality of the features extracted is analysed using the quantile periodogram, the Lasso quantile periodogram, the FFT and the Welch periodogram defined by (5, 7, 3 and 4) respectively, in µ and β frequency bands.

In the case of FFT and Welch periodogram, the feature vector can be written as follows:

F = (r C3 µ , r C3 β , r C4 µ , r C4 β , r Cz µ , r Cz β ) Where r C i
k represents the amplitude over k ∈ {µ, β} frequency band, of the spectral representation of the channel C i , i ∈ {3, 4, z}:

r C i k = j∈k f C i (ω j ),
where f is the spectral estimator.

For the quantile periodogram, the feature vector depends on the quantile τ , is given by the following:

F τ = (r C3 µ, τ , r C3 β, τ , r C4 µ, τ , r C4 β, τ , r Cz µ, τ , r Cz β, τ )
The quantile of interest τ is estimated using Cross validation (CV) over the quantiles often used (τ = 0.25, 0.5, 0.75 and 0.95).

Finally, the lasso quantile periodogram depends on an extra variable which is the regularization parameter α. Hence, the feature vector is defined using τ and α:

F τ,α = (r C3
µ, τ , α , r C3 β, τ , α , r C4 µ, τ , α , r C4 β, τ , α , r Cz µ, τ , α , r Cz β, τ , α ) In order to estimate the Lasso quantile periodogram's feature vectors, we used the previously estimated τ (with the quantile periodogram) and for the regularisation parameter α, we used a cross-validation approach in the range of [10 -2 , 10].

Finally, the feature space will be of the size 100×6 for every subject, except the first one for which the size is of 80×6.

Classification algorithms

Statistical classification algorithms aim to create a model that predicts whether a new observation belongs to a category or another. It creates a decision function using the feature space to produce a prediction of new data.

This paper compares the performance of 5 machine learning classification algorithms. We consider k-nearest neighbourhood, Support vector machine, linear discriminant analysis and Random forest algorithms, because they were successfully used in the literature.

The k-nearest neighbourhood is a non-parametric classification algorithm that predicts a new feature vector based on the vote of k neighbours from the training feature space (k ∈ N + ). The neighbours can be determined using a Euclidean distance function.

Support vector machine is a supervised learning classifier that can assign a new feature vector to a class or another, by separating the training feature space using a hyperplane. The hyperplane is estimated by a margin maximization so that the distance between it and the two data sides is maximized.

The Linear discriminant analysis is a linear classification algorithm that assigns a new observation to a class based on the optimisation of the loglikelihood, under the assumption that the conditional probability density functions are normally distributed [START_REF] Duda | Pattern classification[END_REF].

The random forest approach [START_REF] Breiman | Random forests[END_REF] which can be regarded as a form of the k nearest neighbourhood algorithm, is an ensemble of uncorrelated decision trees classifiers. A decision tree classifier is constructed from a set of binary rules in a hierarchical structure containing nodes and directed edges. Decision trees are known to have a high variance, since they tend to overfit the training data. Using bootstrap aggregating methods, the random forest can generate models that can reduce the trees variance, which can provide better performance.

Neural networks are sets of machine learning algorithms inspired by the brain's biological neural networks. They could be used for classification as well as for regression problems. Neural networks have been successfully used in the BCI based EEG context [START_REF] Antelis | Dendrite morphological neural networks for motor task recognition from electroencephalographic signals[END_REF][START_REF] Lotte | A review of classification algorithms for eeg-based brain-computer interfaces[END_REF]. This paper considers the multi-layer perceptron model (MLP), which is an artificial neural network with multilayer feed-forward architecture [START_REF] Webb | Statistical pattern recognition[END_REF].

Finally, the statistical learning algorithms are evaluated using the accuracy score function (AS). In what follows, experimentations and comparative study using the protocol presented above are discussed.

Experimentation and comparative study

The objective of the study is twofold; (a) Evaluation of the quality of information of the quantile periodograms approaches in the BCI-based systems, and (b) a comparative evaluation of a set of machine learning classifiers using the introduced quantile periodograms. We refer to K-nearest neighbourhood as Knn, Support vector machine as SVM, linear discriminant analysis as LDA, random forest as RF and neural network-based multilayer perceptron model as MLP.

In this study, features are extracted from EEG signals through the spectral estimators and injected into the machine learning classifiers to decide if it is corresponding to left-right or resting imagery tasks.

Two experiments were performed to compare the performance of the classification algorithms. In the first experiment, the objective is the measurement of the separability of each spectral estimator approach, using an innerouter CV scheme (10-fold CV with multiple runs) with all classifiers under consideration. The accuracy score (AS) rate was obtained as the average over runs plus/minus the standard deviation from the mean.

The second experiment's objective is to measure the so-called session-tosession performance, since the BCI-based systems are known to have large variations due to the EEG dynamics between sessions [START_REF] Herman | Comparative analysis of spectral approaches to feature extraction for eeg-based motor imagery classification[END_REF]. These variations considerably decreases the intersession performance of BCI's [START_REF] Shenoy | Towards adaptive classification for bci[END_REF]. Note that in the present study, the last session is used as a test session and the remaining are used as training sessions.

Table 3 summarises the results of the first experiment corresponding to the CV scheme. This table depicts the average of classification performance results associated with different spectral techniques: FFT, Welsh periodogram, Quantile periodogram, and Lasso quantile periodogram. The parameters estimated using the Cross validation explained in section IV, are the following: the quantiles estimated are τ = [0.5, 0.95, 0.25, 0.5, 0.5] respectively for every subject, and the regularisation parameters estimated are α = [1, 1, 2, 2, 2] respectively for every subject. We put the best results in every line in bold. According to the experimental results, it is clear that the two proposed approaches outperform the classical techniques with all subjects and all machine learning algorithms. For the Knn classifier with subject 1, the classification accuracies were obtained as 65%, 67.5%, 73.25% and 75% for the FFT, the Welch periodogram, the quantile periodogram and the Penalised Quantile periodogram respectively. On the other hand, the accuracies of RF classifier were obtained as 69.35%, 70%, 78% and 84% respectively for the FFT, the Welch periodogram, the Quantile periodogram and the Penalised quantile periodogram. It is clear from the obtained results that the Lasso quantile periodogram-based feature extraction associated with the Random forest classifier exhibits the best performance. The Lasso quantile periodogram shows significant improvement with all classifiers, which could be explained by the robustness of the lasso quantile periodogram against non-linear distortion, outliers and noisy signals [START_REF] Meziani | Penalized quantile periodogram for spectral estimation[END_REF]. We note that the MLP has strong standard deviation from the mean, which suggest that the MLP is not well suited to classify spectral density features. In order to investigate the impact of the use of different quantiles and regularisation parameter values on the results of the quantile-based approaches, we performed a grid experiment with the first subject's data. Table 4 shows the results of the classification algorithms using quantile periodogram as a feature extraction method, with different quantiles. We can see that the choice of the quantile has noticeable effects on the performance of the classifiers. Thus, optimisation techniques could be proposed to overcome this problem. In this case, the minimum quantile is a global minimum for all classifiers. That being said, we note that other quantiles could also provide useful information. But it has been our experience that feeding multiple quantile estimators as variables to the classifier algorithms did not present major improvements in the over results.

Table 5 summarises the results of the classifiers using the LASSO quantile periodogram as feature extraction method, with different regularisation parameter values in the interval [10 -2 , 10]. As shown in the results, the choice α also matters. Optimisation techniques could then be proposed for the regularisation parameter. We note in this case that the minimum α is not global for all classifiers. Thus, minimisation techniques could be applied to each classifier separately. The objective of the second experiment is to analyse the session-to-session performance of Knn, RF, LDA and SVM respectively, with all subjects and with the spectrum estimators under consideration. It is clear from the results obtained that Knn, and RF methods show better results, which depicted in Figures ( 7 and8). In the case of Knn classifier, the results are 55%, 60%, 65% and 80% respectively for the FFT, the Welch periodogram, the Quantile periodogram and the Lasso Quantile periodogram for the subject one's data. While the RF classifier has 60%, 62%, 75% and 75% respectively for the FFT, the Welch periodogram, the Quantile periodogram and the Lasso Quantile periodogram. The results are quite similar for all subjects. Therefore, the quantile-based approaches and in particular the Lasso quantile periodogram do give performance improvement for all the subjects.

The results in figures (9 and 10) could be explained by the restrictive requirements of the LDA and SVM, which are considered as linear classifiers. As mentioned in section 4, the LDA classifier works under the assumptions of the normality distribution of the conditional probability density functions. Where the SVM algorithm needs a linearly separable feature space to be efficient. The KNN and RF do not require any specific assumptions on the data structure.

Conclusion

In this paper, an implementation of recently introduced spectral estimators: quantile periodogram and LASSO quantile periodogram, is proposed in the context of BCI-based MI systems. These new approaches are used to en-hance feature extraction methods for the EEG signals. The proposed estimators are based on quantile regression and L 1 norm regularisation. Cross validation along with session-to-session experiments were conducted to compare the performances of the proposed estimators with the classical techniques such as FFT and Welch periodogram. The experimental results demonstrate that the new spectrum estimators outperform the classical techniques such as FFT and Welsh periodogram irrespectively of the classifier used in this experiment. This suggests that the quantile periodogram and the LASSO quantile periodogram appear to be well suited to characterise the information contained within the non-stationary, non-Gaussian and non-linear EEG signals. future research is necessary in order to optimise the computation time and to find the optimum choice of the parameters.
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 1 Figure 1: The region responsible for voluntary and imagery body movements presented in a 32 electrode system

Figure 2 :

 2 Figure 2: Timing scheme of the experiment.[START_REF] Matanga | Analysis of control attainment in endogenous electroencephalogram based brain computer interface[END_REF] 

Figure 3 :

 3 Figure 3: The median and the 0.95-quartile of the different spectral estimators for left hand imagery movement (Subject2, electrode C3) over all trials. (a) represents the FFT, (b) the Welch periodogram, (c) the Quantile periodogram and (d) the LASSO Quantile periodogram. The parameters (τ = 0.5, α = 5) were used respectively as the quantile of interest and the regularisation parameter for the Quantile estimators.

Figure 4 :Figure 5 :

 45 Figure 4: The median of the LASSO quantile periodograms for right hand motor imagery class (electrode C3) over all trials. (a) The curves represents the median of the LASSO Quantile periodogram of the subject 2's data for the quantiles (0.25, 0.5, 0.75 and 0.95). (b) The curves represents the LASSO Quantile periodogram of the subject 5's data for the quantiles (0.25, 0.5, 0.75 and 0.95). α = 5 was used as the regularisation parameter.

Figure 6 :

 6 Figure 6: Signal processing chain

  First subject the τ estimated is 0.5, and α = 1. Second subject τ = 0.95 and α = 1. Third subject τ = 0.25 and α = 2. Fourth subject τ = 0.5 and α = 2. Fifth subject τ = 0.5 and α = 2

Figure 7 :

 7 Figure 7: Accuracy rate for Knn algorithm with different spectral estimators for all subjects. Session-to-session performance. For the quantile periodogram, the quantiles estimated are respectively τ = [0.5, 0.5, 0.25, 0.5, 0.5] with respect to subjects. For the Lasso quantile periodogram, the regularisation parameters estimated are respectively α = [1, 1, 1, 10, 10] with respect to subjects.

Figure 8 :

 8 Figure 8: Accuracy rate for Random Forest algorithm with different spectral estimators for all subjects. Session-to-session performance. For the quantile periodogram, the quantiles estimated are respectively τ = [0.5, 0.5, 0.25, 0.5, 0.5] with respect to subjects. For the Lasso quantile periodogram, the regularisation parameters estimated are respectively α = [1, 1, 1, 10, 10] with respect to subjects.

Figure 9 :

 9 Figure 9: Accuracy rate for Linear discriminant analysis algorithm with different spectral estimators for all subjects. Session-to-session performance. For the quantile periodogram, the quantiles estimated are respectively τ = [0.5, 0.5, 0.25, 0.5, 0.5] with respect to subjects. For the Lasso quantile periodogram, the regularisation parameters estimated are respectively α = [1, 1, 1, 10, 10] with respect to subjects.

Figure 10 :

 10 Figure 10: Accuracy rate for Support vector machine algorithm with different spectral estimators for all subjects. Session-to-session performance. For the quantile periodogram, the quantiles estimated are respectively τ = [0.5, 0.5, 0.25, 0.5, 0.5] with respect to subjects. For the Lasso quantile periodogram, the regularisation parameters estimated are respectively α = [1, 1, 1, 10, 10] with respect to subjects.

Table 1 :

 1 2 , .., Y n } be any real valued time series. Using Fourier Comparative summary between FFT and Welch periodograms.

	Method Advantages	disadvantages
		Simplicity	Leakage
	FFT	Speed	Not consistent
		Well defined distribution properties	Not robust
		Well defined distribution properties	
	Welch	Not biased Reduced leakage	Kernel dependence Not robust
		Consistency	

Table 2 :

 2 Total number of the considered trials and sessions for every subject

	Subject Number of sessions Number of trials BCI experience
	1	4	80	No
	2	5	100	No
	3	5	100	Yes
	4	5	100	No
	5	5	100	No

Table 3 :

 3 Results of the different spectral estimators, with the classifiers under consideration.

Table 4 :

 4 Quantile periodogram with different quantiles using the first subject's data

	Regularization		α=10 -2		α=10 -1		α=1		α=5	α=10
		knn	65+/-0%	knn	65 +/-0%	knn	75+/-1%	knn 75+/-0%	knn 75+/-0%
	Classifiers	LDA SVM	65+/-0% 50+/-0%	LDA SVM	65 +/-0% 50 +/-0%	LDA 62.5+/-0% SVM 61.75 +/-1%	LDA 55+/-0% SVM 50+/-0%	LDA 70+/-0% SVM 50+/-0%
		RF 73.5+/-1%	RF 78.5+/-1%	RF	84+/-1%	RF	68+/-1%	RF	70+/-3%

Table 5 :

 5 Lasso Quantile periodogram with different values of α using the first subject's data
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