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F-59000, Lille, France6

bMedtronic, Sofradim Production, 116 avenue du Formans, 01600 Trévoux, France7
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Abstract9

The aim of this paper is to propose a multi-scale anisotropic constitutive model based on a microscopic10

description of a soft fibrous tissue. The proposed model is based on directional (or micro-sphere) strain energy11

density, linking the contribution of fibers to macroscopic elasticity. The link between the microscopic fiber12

and the macroscopic response is obtained by homogenization involving numerical integration on the surface13

of the homogenized volume. Directly from the texture analysis of microscopic observations, anisotropy is14

accounted for an ellipsoid, used as the basis for integration. In each spatial direction of the summation,15

the initial length of the fibers is penalized according to the geodesic of the anisotropic ellipsoid. Unlike16

conventional models, anisotropy is taken into account for strains, which allows the mechanical properties of17

the fibers to be maintained throughout the elementary volume. A new specific integration scheme on an18

ellipsoidal surface was then developed to facilitate numerical implementation. The strains penalization also19

ensures that the solution obtained when increasing the amplitude of anisotropy is not degraded. This model,20

with the new integration method, has been tested for its relevance on numerical tissues. The objectivity21

and invariance of rotation were then proven. Finally experimental data obtained on human abdominal wall22

connective tissues were used to verify the accuracy of the results and the predictive capabilities of the model.23

Keywords: constitutive behavior, anisotropic material, microstructure, biological material, soft tissue,24

hyperelasticity, directional model, micro-sphere model25

1. Introduction26

Controlling the behaviour of biological tissues has become a major challenge. Thanks to numerical27

simulation, behaviour under physiological or pathological loading is understood and predicted, offering28

benefits in many areas: improvement of surgical techniques (Guérin and Turquier, 2013) or medical devices29
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(Lister et al., 2011) or risk prediction for patients (Mayeur et al., 2017), allowing specific accessible treatment.30

For example, for a patient, the predictive numerical model will be used to choose one surgical method over31

another, with a customized surgical device, depending on the potential complications.32

To achieve patient-specific simulation and improve medical treatments, it is necessary to characterize33

and model the mechanical behaviour of the tissues involved in the treatment. Classically, the macroscopic34

mechanical behaviour of biological soft tissues is characterized by several hyperelastic models (Mooney,35

1940; Rivlin, 1948; Ogden, 1978; Yeoh, 1993). However, these models derive from purely phenomenological36

functions of strain energy, considered isotropic (Chagnon et al., 2015; Wex et al., 2015): they are used as a37

first approach and because of their ease of implementation. Hostettler et al. (2010), Abraham et al. (2011)38

and Silva et al. (2017) used a Mooney-Rivlin or a Yeoh model to characterize the mechanical properties of39

the liver, the pelvic floor and the meniscal attachment while a Ogden model was used to characterize the40

skin (Lapeer et al., 2010), the brain Kaster et al. (2011), the liver (Lister et al., 2011) and the bladder and41

rectum (Boubaker et al., 2015). Human connective tissues are heterogeneous, composed of an intertwining of42

collagen and elastin fibers. This entanglement leads to highly anisotropic hyper-elastic non-linear behaviour43

(Korenkov et al., 2001; Astruc et al., 2018). In recent years, this constitutive phenomenological modeling has44

incorporated a microstructure-based approach to include some parameters with a more physical meaning45

(Holzapfel et al., 2015; Polzer et al., 2015; Brieu et al., 2016). The most commonly used model is the46

generalized structure tensor (GST) model, which includes a scalar structure parameter representing the47

fiber distribution (Gasser et al., 2006; Li et al., 2018). Such models therefore assume a predetermination48

of anisotropy with a priori preferential directions and introduce many material and geometric parameters49

leading to difficult parameters identification and numerical implementation. In case of anisotropic biological50

tissues such as the abdominal connective tissues, anisotropy predetermination is not possible because of51

its patient-dependency and its variation according to location (Gräßel et al., 2005; Astruc et al., 2018). A52

model where the directions of anisotropy are directly identifiable variables is lacking. The second commonly53

used class of model is the directional approach (also called micro-sphere), based on a spatial arrangement of54

weighted fiber bundles homogenized by integration on the surface of the unit sphere, either isotropic (Miehe55

et al., 2004) or anisotropic (Alastrué et al., 2009a). In this approach structural information is included56

assuming a fiber orientation distribution function (ODF).57

Bergonnier et al. (2005) then Witz et al. (2008) found a clear link between image texture and linear58

elastic behaviour. For textured material as crimped glass wool, elastic properties were identified directly59

from quantitative images analysis of the heterogeneous texture of the sample. In this study, we propose60

to extend this approach to non-linear 3D hyper-elastic behavior. Images of tissues at the fiber scale were61

obtained using multiphotonic microscopy. Then texture analysis of the whole image gives access to the main62

orientation and the disorientation rate, i.e. the anisotropy rate. By applying the structure tensor method63

developed by Rao and Schunck (1991), the 3D texture gives an image of the anisotropy of the tissue in64
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the form of an ellipsoid, oriented along the main direction and whose minor axes correspond to the rate of65

disorientation of the fibers in space.66

Biological tissues, composed of polymeric fibers, can be assimilated to hyperelastic macromolecular67

network (Brieu et al., 2016). It is then possible to use formulations developed for long-chain macromolecular68

network (Wang and Guth, 1952; Arruda and Boyce, 1993; Kuhl et al., 2005). Each type of fiber is described69

by physically-based parameters related to its macromolecular properties, i.e. its material properties. Based70

on the formalism of (Brieu et al., 2016) for the isotropic directional model, the microstructure can be taken71

into account by integrating on the surface of the ellipsoid representing the anisotropy. With such an approach,72

material and microstructural parameters are independent and uncorrelated. Material (intrinsic) parameters73

can be determined while microstructural (extrinsic) parameters can be identified from the texture analysis74

according to the location of the tissue and the patient. Anisotropy is accounted by changing the fibers75

initial length according to the ellipsoid geodesic, which means that anisotropy only impacts the structure76

of the tissue and not its intrinsic properties. The studied tissue is considered as composed of similar unit77

elements, i.e. the fiber, with the same intrinsic properties, only the spatial arrangement of the unit elements78

confers the extrinsic properties to the entire tissue. Moreover, unlike the micro-sphere model, working in79

deformation rather than stress avoids an increase in the number of integration points in the event of very80

significant anisotropy (Alastrué et al., 2009b; Verron, 2015), allowing implementation in finite element code81

with reasonable calculation times.82

The purpose of this paper is to propose a multi-scale anisotropic constitutive model based on a directional83

strain energy density, using a microscopic description of the tissue to predict its macroscopic behaviour.84

One of the main interests lies in the limited number of parameters. The intrinsic parameters, linked to the85

material, are set common to all individuals and the extrinsic parameters, linked to the microstructure, are86

the only variable information. The first part describes the modeling framework and in particular the strain87

energy density integrated on the surface of a volume directly coinciding with the anisotropy of the tissue.88

A new method of integrating over a revolution ellipsoid surface is then proposed. The second part deals89

with the validation of the model, with several cases of anisotropy. The third part focuses on its application90

to experimental tests on human abdominal rectus sheath and the demonstration of the model’s ability to91

identify the microstructure by setting constant material parameters.92

2. Theoretical study93

2.1. Constitutive equations94

Biological fibrous soft tissues have an anisotropic hyper-elastic response (Martins et al., 2012; Astruc95

et al., 2018). To model the hyper-elastic behavior under large strains, a strain energy densityW is introduced96

to formulate constitutive equations. The deformation gradient tensor F allows to describe the transformation97
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from an initial configuration to a deformed one. Stresses may be expressed with the second Piola-Kirchhoff98

stress tensor, S, as:99

S =
∂W
∂E
− pC−1 (1)

with C =
(
F T .F

)
, the right Cauchy-Green strain tensor and E = 1

2 (C − I), the Green-Lagrange strain100

tensor. p is a Lagrange multiplier, treated as a hydrostatic pressure resulting from the incompressibility101

assumption of the tissue. Incompressibility also implies:102

det(C) = 1 (2)

A biological tissue is a polymer constituted of fibers (Gräßel et al., 2005), considered as a spatial network103

of fibers, spread in every directions of space. Treloar and Riding (1979) proposed a full network model104

assuming that each spatial direction u contributes to the global elasticity of the material. The strain-energy105

function, W, is obtained by a summation over all directions, u, on the spatial material layout S of the106

elementary strain energy densities, w, related to the contribution of fiber aligned with u:107

W(C) =
1

S

∫∫
S
w(λ(C, u))dS (3)

where λ is the stretch measure seen by the direction u (Arruda and Boyce, 1993; Diani et al., 2004):108

λ =
√
u.C.u (4)

In order to obtain a microstructurally-based modeling of the behavior, the model is based on a physical109

description of the fibers. A form of w was introduced by Kuhn and Grün (1942), with a single-chain110

probability density function:111

wsc(λ,N) = κBTN

(
β(λ)

λ√
N

+ ln

(
β(λ)

sinh(β(λ))

))
with β(λ) = L−1

(
λ√
N

)
(5)

which, after derivation, brings to:112

∂wsc(λ,N)

∂λ
= κBT

√
NL−1

(
λ√
N

)
(6)

where κB is Boltzmann’s constant and T the absolute temperature. N is the average length of the113

macromolecules, with
√
N the limit of extension of the chains and the function L−1 is the inverse of the114

Langevin’s function: L(x) = coth(x) − 1/x, generally approximated by Padé approximant (Cohen, 1991;115

Jedynak, 2015) or a Taylor serie, chosen as long as λ is not to close to the limit of extension (Gillibert et al.,116

2010). The total chain energy density derivative per unit volume is then:117

∂w(λ,C,N)

∂λ
= C
√
NL−1

(
λ√
N

)
(7)

where C = nκBT with n the chain density per unit reference volume (Arruda and Boyce, 1993; Diani et al.,118

2006). C is homogeneous to a stress and is therefore treated as the rigidity of the chains.119
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The elastic energy density partial derivative from Eq. (3) with (1) comes as:120

∂W
∂C

=
2

S

∫∫
S

∂w(λ)

∂λ

∂λ

∂C
dS (8)

By substitution of Eq. (7) in (8), the expression of the second Piola-Kirchhoff stress tensor becomes:121

S = S′ − pC−1 (9)

with :122

S′ =
1

S

∫∫
S

C
√
N

λ
L−1

(
λ√
N

)
(u⊗ u) dS (10)

However a problem occurs with this formulation in its initial state, for F = I. The directional invariant123

does not allow a state free of stress, the addition of a prestress is therefore required to ensure an unloaded124

state (Diani et al., 2004; Kuhl et al., 2005). In literature, few studies (Criscione et al., 2002; Ciarletta125

et al., 2011) have examined the development of structural invariants ensuring a stress free initial state while126

others (Chagnon et al., 2015) have used higher-order functions involving structural invariants. Similarly, the127

structural invariant used in this study, directional elongation, can be modified to ensure a stress free state128

without pretension. In order to maintain the use of the Langevin inverse function as extensibility function,129

the new structural invariant becomes:130

ν(E, u) = (u.E.u)
2

+ 1 (11)

as a function of E, derived from the directional stretch and adapted to ensure an unloaded state in the131

initial configuration, for the stress tensor part S′ in Eq. (9) expressed by:132

S′ =
2

S

∫∫
S
C
√
N
√
ν − 1 L−1

(
ν√
N

)
(u⊗ u) dS (12)

This form of the stress tensor depends on only two material (intrinsic) parameters, C and N and equals133

zero at zero deformation by definition. Moreover, considering a higher order deformation function allows us134

to achieve the same objectives as in worm-like chain models (Kuhl et al., 2005): the unitary element is not135

loaded in the same way as the global tissue. During uniaxial traction, not all fibers are directly recruited:136

the fiber does not deform as quickly as the overall tissue and is recruited in a more non-linear way. The137

deformation measurement thus modified therefore makes it possible to take this phenomenon into account,138

without the addition of parameters.139

Thereafter, we will work with the first Piola-Kirchhoff stress tensor τ , also called the nominal stress140

tensor, expressing the experimentally measurable stress, as:141

τ = FS =
2F

S

∫∫
S
C
√
N
√
ν − 1 L−1

(
ν√
N

)
(u⊗ u) dS − pF−T (13)
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2.2. Analytical solution142

In order to conduct analytical solutions, we consider an uni-axial tensile test performed according a given143

loading direction, with an imposed stretch and a sought stress, on an anisotropic soft tissue sample with144

arbitrary material properties, C and N , with an unidentified material reference.145

The Cauchy stress tensor σ, also named the true stress tensor, defined in the principal stresses reference146

(eσI , eσII , eσIII ) (i.e. the load reference) is, for an uni-axial load in the eσI direction:147

σ =


σI 0 0

0 σII = 0 0

0 0 σIII = 0


(eσI ,eσII ,eσIII )

(14)

Because of anisotropy, the principal stresses reference and the principal strains reference are not necessarily148

coincident. They coincide only in case of isotropy or when loading direction corresponds to material direction.149

Then the deformation gradient tensor F can be expressed in the principal stresses reference as:150

F =


F11 F12 F13

F21 F22 F23

F31 F32 F33


(eσI ,eσII ,eσIII )

(15)

where F11 is known as the elongation sustained by the material in the loading direction. The others 8 Fij151

components of the tensor are unknown. Eq. (14) and (15) provide the first Piola-Kirchhoff stress tensor τ152

as:153

τ = JσF−T =


σI(F22F33 − F23F32) = τ11 σI(F23F31 − F33F21) σI(F21F31 − F22F31)

0 0 0

0 0 0


(eσI ,eσII ,eσIII )

(16)

where τ11 is the experimental stress as τ11 =
F

S0
, with F the recorded force in N and S0 the measured initial154

cross section in mm2. τ can then be re-expressed only according to Fij and τ11 in terms of:155

τ =


τ11 τ11

(F23F31 − F33F21)

(F22F33 − F23F32)
τ11

(F21F31 − F22F31)

(F22F33 − F23F32)

0 0 0

0 0 0


(eσI ,eσII ,eσIII )

(17)

The management of the incompressibility is achieved by the introduction of p (Eq. (1)). Finally, the system156

presents 10 unknowns: τ11, p and Fij (except F11). With Eq. (13), we obtain 9 equations, from the tensor157

components, binding Fij , τ11 and p. The incompressibility equation Eq. (2), linking the F components,158

provides the additional equation, rendering the problem solvable.159

For any solicitation in a given direction, we can assess the mechanical stress exerted on the material and160

the related deformation gradient tensor.161
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2.3. Material anisotropy162

Directional models (or micro-sphere models) were previously developed on isotropic (Miehe et al., 2004;163

Brieu et al., 2016) or Mullins softening induced anisotropic (Göktepe and Miehe, 2005; Merckel et al.,164

2013) materials. Such materials are organized in a three-dimensional network of long chains. Each chain165

is described with an elementary strain energy density with the same mechanical properties, C and N that166

contributes equally to the material, constituting an isotropic three-dimensional lattice. The global strain167

energy density is obtained by integration over the unit sphere according to Eq. (3). For computational time168

aspects, discrete distributions with a finite number of directions are introduced (Wang and Guth, 1952;169

Arruda and Boyce, 1993). Bažant and Oh (1986) directional integration networks are traditionally used,170

in particular the 2x21 ui directions network, providing a good precision of the integral. In this study, the171

2x66 network is chosen for its accuracy and efficiency (Gillibert et al., 2010). The discretized strain energy172

density is expressed as the summation of each elementary strain energy density wi of direction ui, weighted173

by the integration weights ωi:174

W(E) =

M∑
i=1

ωiw(ν(E, ui)) (18)

In case of an anisotropy resulting from Mullins effect, the same set of directions is chosen according to the175

initial isotropy and the integration weights of the loading direction is penalized with an anisotropic damage176

law (Diani et al., 2006). The network remains spherical but the penalty allows to induce the anisotropy.177

In case of anisotropic materials, anisotropy ought to be taken into account from the outset. Micro-sphere178

models (Alastrué et al., 2010) depict the dispersion of fibers with the Bingham (Bingham, 1974; Spronck179

et al., 2016) or Von Mises ODF, assigning to each direction of the unit sphere an orientation concentration180

factor (Sáez et al., 2016).181

The proposed model reflects the dispersion directly on the three-dimensional network. Texture analysis182

with the structure tensor method (Krause et al., 2010; Knutsson et al., 2011) establishes a distribution of183

the spatial orientations of the observed anisotropic sample (Fig. 1-A), from which an ellipsoid reflecting the184

anisotropy of the material is created (Fig. 1-B): the main direction of the ellipsoid coincides with the main185

directions of the fibers and the semi-minor axis coincides with the distribution width σ. The greater the186

anisotropy, the smaller the variance of the distribution, the thinner the integration ellipsoid becomes.187

The ellipsoid is then used as an homogenization alternative to the unit sphere. Instead of considering188

an homogeneous network such as the unit sphere, the network is deformed according to the ellipsoid of189

revolution determined by image analysis. The vector materializing the direction ui is no longer a unit190

vector, but its norm is correlated to the geodesic of the ellipsoid: a vector oriented in the direction of the191

major axis of the ellipsoid has a unitary norm while a vector oriented in the orthogonal plane, containing192

the minor axis, has a norm equal to R (Fig. 1-B). Physically, this is equivalent to locally changing the initial193

length of the fibers when projecting deformations on the directions (Eq. (11)), and not their stiffness as in194
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Figure 1: (A)-Gaussian type distribution of the spatial orientations of a transverse isotropic sample fibers and (B)-its related

revolution ellipsoid: the major axis of the ellipsoid is oriented in the direction of the most represented orientation (θ, ϕ)max

and the minor axis length corresponds to the Gaussian variance σ.

conventional models with ODF. The ellipsoid maintains the mechanical properties of the fibers, the average195

length N and the density n, proportional to the stiffness C, and angularly varies the initial lengths of the196

fibers along the geodesic of the ellipsoid. The deformation applied to the network impacts only the direction197

and the norm of the network, in other terms the structure, but not the material properties of each direction.198

The intrinsic properties, i. e. the chains properties C and N , are not modified. Only the extrinsic properties199

are modified, namely the properties related to its structure, the initial length in each direction, which will200

vary according to the degree of anisotropy indicated. In this study, only transverse isotropy is considered.201

In case of a different anisotropic nature, an ordinary ellipsoid would be considered with two different minor202

axes, correlated to the particular distribution of the spatial orientations.203

2.4. Numerical integration204

Previous works (Bažant and Oh, 1986; Heo and Xu, 2001) used different schemes to evaluate integrals over205

the surface of a sphere providing accurate results. However, these methods cannot be used for ellipsoids.206

Pre-defined networks on the spheres cannot be deformed into ellipsoids. The distribution of integration207

points, homogeneous on the surface of a sphere (Fig. 2-A), is indeed no longer uniform once the sphere is208

deformed into an ellipsoid.209

A customized integration scheme has therefore been developed to evaluate integrals over a revolution210

ellipsoid, allowing to select privileged directions. The directions are then chosen arbitrarily or according to211

the material microstructure. Fig. 2-B shows a specific distribution on a sphere, which can be easily applied212

to discontinuous materials with specific directions such as textiles (Morch et al., 2019). For anisotropic213

material, the parameterization of the surface, by angular discretization provides uniform distribution of the214

integration points on the revolution ellipsoid surface (Fig. 2-C).215
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A B C

Figure 2: Comparison of the distribution of the integration directions over a sphere with the 122-directions set of Bazant-(A)

and over a sphere-(B) and a revolution ellipsoid-(C) with the customized integration scheme with 112 directions.

The customized method is used to evaluate the integral Q of a function q on the surface of a revolution216

ellipsoid, with semi-major axis a and semi-minor axis b. Directions are located on the surface by the set217

of spherical coordinates (u, v) (Fig. 3-A). By virtue of the first fundamental form in differential geometry218

(Weisstein, 1999), the infinitesimal ellipsoid surface element is defined as: dS =
√
a2 − (a2 − b2) sin2 u dudv.219

The integral Q then becomes:220

Q(u, v) =

∫ π

u=0

∫ 2π

v=0

q(u, v)

√
a2 − (a2 − b2) sin2 u dudv (19)

Spheroid surface is discretized with a tiling using nine-nodes quadrangles (Fig. 3-B-C). The discretization221

is used as the integration basis for the function q, approximated with quadratic Lagrange polynomials for222

each quadrangle.223

q(u, v) =

2∑
i,j=0

αiju
ivj (20)

For each quadrangle I, q is evaluated on the nine nodes of I (Fig. 3-C) as qi (i = 1...9), with node

I II x

y

z

x

y

z

uv (u1,v2) (u2,v2)

(u1,v1) (u2,v1)

(u1,v3)
(u3,v3)

(u2,v3)

(u3,v1)

(u3,v2)

1
5

2

6

37

9

4

8 u

v
A B C

Figure 3: Numerical integration scheme: (A)-spherical angles defined in Cartesian basis, (B)-quadrangles tiling of the ellipsoid

and (C)-representation of the nine-nodes quadrangle in the (u, v) space.
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224

coordinates, providing an analytical expression of the coefficients αij of the Lagrange polynomials, only225

related to nodes and qi by reversing the following system:226 

q1 =
∑2
i,j=0 αij u

i
1v
j
1

q2 =
∑2
i,j=0 αij u

i
3v
j
1

q3 =
∑2
i,j=0 αij u

i
3v
j
3

q4 =
∑2
i,j=0 αij u

i
1v
j
3

q5 =
∑2
i,j=0 αij u

i
2v
j
1

q6 =
∑2
i,j=0 αij u

i
3v
j
2

q7 =
∑2
i,j=0 αij u

i
2v
j
3

q8 =
∑2
i,j=0 αij u

i
1v
j
2

q9 =
∑2
i,j=0 αij u

i
2v
j
2

(21)

Because of the size of the expressions, coefficients details are not shown. The coefficients αij are then227

included into the expression of q (Eq. (20)), expressed only with nodes parameters qi (i = 1...9) and uj , vj228

(j = 1...3). The function q is integrated on each basis element X of the ellipsoid to evaluate the integral229

QX and the relative contributions of the element to the associated nodes (A...I)X . To determine a node230

contribution, we consider a function q equal to 1 on this node and 0 on all the other nodes of the element.231

For the first quadrangle I, the integral is expressed as:232

QI =

∫ u3

u1

∫ v3

v1

q(u, v)

√
a2 − (a2 − b2) sin2 u dudv

= AIq1 +BIq2 + CIq3 +DIq4 + EIq5 + F Iq6 +GIq7 +HIq8 + IIq9

(22)

with AI , BI , CI , DI , EI , F I , GI , HI et II , only expressed with nodes coordinates ui and vi (i = 1...3). For233

the second quadrangle II, the integral is expressed with nodes coordinates ui (i = 3...5) and vj (j = 1...3):234

QII = AIIq2 +BIIq10 + CIIq11 +DIIq3 + EIIq12 + F IIq13 +GIIq14 +HIIq6 + IIIq15 (23)

The integration weights of each node are obtained by assembling elements, in the context of finite elements.235

Node weight ω is the summation of the contributions of every element in which the node is implicated as:236

ω =



node 1 : AI + ...

node 2 : BI +AII ...

node 3 : CI +BII ...

node 4 : DI + ...

node 5 : EI + ...

node 6 : F I +HII + ...

...

(24)
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The integral Q can then be written, for a set of M directions ui, with M integration weights ωi:237

Q(u, v) =

M∑
i=0

ωiq(ui) (25)

In order to verify the relevance of numerical integration, a non-linear function, f(x) = ex, is integrated238

on the surface of different revolution ellipsoids, i) the unit sphere (SR=1), ii) an ellipsoid with an axis ratio239

equals to 0.5 (SR=0.5) and a degenerated ellipsoid with an axis ratio equals to 0.01 (SR=0.01), with four240

numerical integration schemes based on:241

– Bažant and Oh (1986)’s 122 directions network. The spherical network is deformed in ellipsoid and242

integration weights from the unit sphere are used.243

– Bažant and Oh (1986)’s 122 directions network. The spherical network is conserved and integration244

weights from the unit sphere are penalized according to ellipsoidal geodesic.245

– a network of 112 directions with numerical integration, previously defined in the present paper.246

– a network of 422 directions with numerical integration, previously defined in the present paper.247

In the first Bazant case, the anisotropy is taken into account on the deformations, as in the approach248

developed in the present paper while in the second Bazant case, anisotropy is taken into account on stresses,249

as in the micro-sphere approach. The results are compared with numerical integration computed with Scipy250

python library, using Gauss-Kronrod quadrature formula (Kronrod, 1965). Numerical results, longer to251

assess (10 times longer than an unoptimized straightforward implementation of the presented method) and252

therefore not usable in optimization or finite element simulation codes, are considered accurate and used as253

a basis for comparison on Table 1 which provides the relative errors between the different methods.254

SR=1 SR=0.5 SR=0.01

Bazant (directions penalization) 1.10−6% 4.8% 7.9%

Bazant (weights penalization) 1.10−6% 5.2% 32%

Proposed method (112 directions) 2.10−3% 2.10−3% 3.10−3%

Proposed method (422 directions) 2.10−4% 3.10−4% 3.10−4%

Table 1: Relative error for numerical integration over a sphere, an ellipsoid with an axis ratio of 0.5 and an ellipsoid with an

axis ratio of 0.01 with four methods.

For the integration on the surface of a sphere, Bažant and Oh (1986) method is the most efficient,255

with a relative error close to 10−6%. Penalization has no effect whatsoever. However, the error becomes256

very large, multiplied by several million, when integrating on the surface of an ellipsoid. For a very thin257

ellipsoid, the error is almost 8% when ellipsoid directions are considered and 32% when spherical integration258

weights are penalized. With the method described in the present paper, the error remains constant and259
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weak whatever the shape of the surface to be integrated. Integration is thus objective. By increasing the260

number of directions, the relative error could be reduced. A compromise must therefore be chosen between261

computation time and precision. For the remainder of the study, the 422 directions network was chosen,262

considering the error insignificant.263

With this numerical integration method, a random network of directions can be used or a specific network,264

coinciding with the structure of the material (Morch et al., 2019) for specific integrations. In addition, the265

surface element may be modified in a sufficiently direct way to achieve integration on any shape. Finally,266

the discretization according to anisotropy (Alastrué et al., 2009b) no longer requires significant refinement,267

thanks to the integration directly on the deformed network. For qualitative purposes, two methods are268

compared. Integration is first carried out on a spherical network with a penalty of rigidities (Fig. 4-A) as269

in microsphere models, then the network is deformed according to the geodesic of an ellipsoid, penalizing270

deformations (Fig. 4-B).271

A B

z

x

y

Figure 4: Integration points distribution for 874 directions: (A)-for a spherical network with a penalty on the rigidities according

to the geodesic of an ellipsoid such as R = 0.3 and (B)-for an ellipsoidal network such as R = 0.85

An arbitrary material (C = 5 MPa, N = 5) whose anisotropy direction is set to θ = 0◦ and the anisotropy272

amplitude (related to ellipsoid axis ratio R) is chosen in order to obtain the same anisotropy ratio AR, i.e.273

the ratio between the stresses obtained for loading perpendicular to the anisotropy direction and for loading274

coincident with the anisotropy direction, is numerically tested. To obtain an AR in the range of 0.5, the275

spherical network is penalized with an ellipsoid with R = 0.3 and the ellipsoidal network is formed according276

to an ellipsoid with R = 0.85. To obtain an AR in the range of 0.3, the spherical network is penalized with277

an ellipsoid with R = 0.02 and the ellipsoidal network is formed according to an ellipsoid with R = 0.75.278

The study is also performed for a deformed network according to a degenerated ellipsoid with R = 0.2 to279

obtain an AR around 0.001. The stability of the AR is studied according to the number of integration280

directions, from 112 to 19184 in Fig 5 using as a reference the value obtained for 19184 directions.281

As expected, when integrating over spherical networks, the accuracy decreases with the number of282
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Figure 5: Variation of the anisotropy ratio AR error as a function of the number of integration directions obtained by

integration over spherical networks penalized in rigidities (Sph 0.5,Sph 0.3) and ellipsoidal networks penalized in deformations

(Ell 0.5,Ell 0.3,Ell 0.001). Each value is compared to the value obtained with the greatest number of directions (19184),

considered as a reference.

integration points. In addition, this accuracy decreases rapidly with the increase in anisotropy. The higher283

the anisotropy, the more directions is needed. On the other hand, on ellipsoidal networks, the intensity of284

anisotropy does not affect accuracy. Regardless of the type of anisotropy, the values obtained are essentially285

the same. The number of directions can therefore remain constant for any case of anisotropy.286

It should be noted that this integration method is subject to the same integration difficulties observed287

by Verron (2015) and Itskov (2016). A very large number of directions is required in case of multi-axial288

loading in very large deformation. The field of application is therefore limited to biological tissues where289

deformation rates are lower compared to synthetic polymers.290

2.5. Model admissibility requirements291

In order to be able to use the model to identify mechanical parameters, it is necessary to verify the292

thermodynamically eligibility of the model. As an illustration, an arbitrary numerical sample is selected293

with moderate anisotropy oriented (if not specified) along x axis: R = 0.5, θ = 0◦, C = 5 MPa and N = 5.294

One of the main concerns in the constitutive modeling of materials is the validation of material frame295

indifference principle. Load responses must be unaffected by the rotation of the reference or material. To296

verify model objectivity, the example sample is rotated around z axis: the main orientation of the fibers297

varies accordingly. Loading is applied to the main direction of anisotropy, to the apex of the ellipsoid.298

Stress-stretch responses are shown in Fig. 6-A. Curves are superimposed with a relative error (RE) of299

10−9% and are considered therefore equal, confirming rotation invariance. The same sample, oriented along300

x axis is also charged with two symmetrical loads (+π/4 and −π/4). Stress-stretch responses are plotted301

in Fig. 6-B. Symmetrical responses are strictly equal with a RE of 10−11%, confirming model objectivity.302

Then, the constitutive laws do not depend on the external frame of reference used to describe them.303
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e1

e2

RE = 9.2e-10 %

A

RE = 1.5e-11 %

e1

e2
B

Figure 6: Influence of material rotation, nominal stress τ11 vs longitudinal stretch F11 responses of : (A)-3 different anisotropic

materials with loadings in the main anisotropy orientation and (B)-an anisotropic material with 3 loadings including 2

symmetrical loads with respect to the anisotropy axis, with 422 directions integration scheme.

Moreover, in the context of hyperelastic problems, the polyconvexity of the strain energy density is304

a sufficient condition for the existence of the solution (Hill, 1956; Ball, 1976). The values of the strain305

energy density with its first and second derivatives with respect to the stretch are always positive and306

increasing, as observed in Fig. 7, meaning that the proposed density is an increasing monotonic function307

and is polyconvex with respect to its argument. Thus, the strain energy density satisfies the polyconvexity308

condition and guarantees the existence of a single solution. The material stability of the proposed model is309

therefore established.310

Figure 7: Strain energy density and its first and second derivatives according to ν with respect to longitudinal stretch F11. For

comparative purposes, the curves have been normalized, the shape remains unchanged.

In order to verify thermodynamic admissibility and convexity, the equivalent elasticity stiffness tensor C311

can be determined as:312

C =
∂S′

∂E
=

4C

S

∫∫
S
β

(√
N

2
+

(ν − 1)β sinh (β)
2

sinh (β)
2 − β2

)
((u⊗ u)⊗ (u⊗ u)) dS (26)
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with β = L−1
(

ν√
N

)
. The fourth-rank tensor may be written in 2-index Mandel notation as the matrix:313

C =



C1111 C1122 C1133

√
2C1123

√
2C1131

√
2C1112

C2211 C2222 C2233

√
2C2223

√
2C2231

√
2C2212

C3311 C3322 C3333

√
2C3323

√
2C3331

√
2C3312

√
2C2311

√
2C2322

√
2C2333 2C2323 2C2331 2C2312

√
2C3111

√
2C3122

√
2C3133 2C3123 2C3131 2C3112

√
2C1211

√
2C1222

√
2C1233 2C1223 2C1231 2C1212


(27)

Whatever the state of deformation applied and the type of sample, this matrix becomes:314

C =



C11 C12 C12 0 0 0

C12 C22 C23 0 0 0

C12 C23 C22 0 0 0

0 0 0 C22 − C23 0 0

0 0 0 0 2C55 0

0 0 0 0 0 2C55


(28)

The shape of C is consistent with the transverse isotropy hypothesis. To verify the polyconvexity hypothesis,315

it is sufficient that C is defined as positive regardless of the state of deformation applied. The diagonalization316

of the matrix shows that the terms are always positive and increasing. Moreover, during the loading phase,317

the coefficients Cij exhibit a convex evolution.318

The thermodynamic admissibility hypothesis leads also to restrictions on the elastic coefficients of319

C. Through the generalized Hooke’s law, the Young moduli and Poisson ratios verify Lempriere (1968)320

inequalities and thus ensure the existence and admissibility of the micro-ellipsoid model.321

3. Theoretical results of the proposed model322

In order to verify its relevance and consistency, the proposed model is applied to numerical uni-axial323

tensile tests performed in various directions of loadings on specimen from:324

• Isotropic sample with evenly distributed fibers (Fig. 8-A)325

• Anisotropic sample with a broad fibers distribution (moderate anisotropy) centered on θ (Fig. 8-B)326

• Anisotropic sample with highly oriented fibers (huge anisotropy) at θ (Fig. 8-C)327

It is assumed that samples are transversely isotropic. For an isotropic sample, the fibers distribution is328

homogeneous, so the ratio between major and minor ellipsoid axis, R, equals 1. The anisotropy thus can be329

defined as: A = 1−R. When anisotropy is increasing (A > 0), ratio R is decreasing (R < 1).330
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Figure 8: Examples of numerical samples with three types of anisotropy and the associated ellipsoid of orientation distribution:

(A)-isotropic with a spherical distribution, (B)-moderately anisotropic with a large ellipsoidal distribution and (C)-very

anisotropic with a thin ellipsoidal distribution.

e1

e2

π
4

3π
8

π
8

e3

Figure 9: Loads applied on the specimens between 0 and π
2

, in the sample reference (e1, e2, e3).

Five types of loading between 0 and π/2 (Fig. 9) are simulated on every sample and the main orientation331

θ of the anisotropy is chosen at π/8 from the sample basis (e1, e2, e3). The material parameters, C and N332

are arbitrarily fixed as: C = 5MPa and N = 5 (dimensionless), constant whatever the type of anisotropy333

and the direction ui. Stresses are assessed with the nominal stress tensor from the Eq. (9), (12), (18) and334

(25):335

τ = C
√
N

M=422∑
i=0

ωi
√
νi − 1 L−1

(
νi√
N

)
F (ui ⊗ ui)− pF−T (29)

3.1. Isotropic case336

The directional model is applied on numerical isotropic sample and five loading directions are simulated337

with a stretch of 1.5. Thank to the sample isotropy, fibers and therefore mechanical properties are evenly338

distributed over space, the integration is over a sphere with R = 1. The ellipsoid deforms the initial lengths339

of the fibers, so for a sphere the fibers are equivalent in every directions, with strictly equal mechanical and340

structural properties. The first Piola-Kirchhoff stress tensor τ and the transformation gradient tensor F are341

evaluated in the principal stresses reference (eσI , eσII , eσIII ), the loading reference (Eq. (14)). Stretch-stress342
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responses are shown on the Fig. 10. Nominal stresses τ11 for each loading are plotted with respect to343

the longitudinal strain (F11). As expected for an isotropic sample, all curves are superimposed. Strain344

responses are equal whatever the loading direction. To quantify the integration error, the relative error345

(RE) is calculated as the largest difference between curves for the last acquired stretch. Here, the RE is346

0.18%, considered as insignificant. The model applied to an isotropic sample returns a perfectly isotropic347

response, regardless the load.348

e1

e2

RE = 0.18 %

Figure 10: Nominal stress τ11 vs longitudinal stretch F11 responses for an isotropic sample along 5 directions of loadings.

3.2. Moderately anisotropic case349

The five loading directions are now simulated with the same stretch of 1.5 on a moderately anisotropic350

sample (Fig. 8-B). Because of the sample anisotropy, fibers and therefore structural properties are not equal351

with directions. The ellipsoid deforms, according to its geodesic, the initial lengths of the fibers, then352

modifying the mechanical responses according to the direction of loading. Anisotropy A is evaluated to353

0.5, minor axis R equals 1 − A = 0.5. The anisotropy main orientation is set to π/8. The model is then354

integrated on the surface of an ellipsoid with a minor axis R and oriented at π/8. Stress-stretch responses355

are shown in Fig. 11. Loadings at 0 and π/4 are therefore symmetrical, as illustrated on the figure: curves356

are superimposed, with a RE of 10−8%. This superposition of the responses is due to the symmetry of the357

load with respect to the main orientation of the anisotropy. The others loading directions are well ordered:358

the loading at π/8, corresponding to the main anisotropy direction, is the stiffest. The shape of the ellipsoid359

represents the spatial distribution of fibers. The direction at π/2 corresponds to the least dense loaded360

sample direction. At π/2, there are therefore fewer fibers than at π/8. Its response is consequently the least361

rigid. To characterize the anisotropy level, the anisotropy ratio (AR) between the last acquired stresses362

(corresponding to a stretch of 1.5) for a loading at (π/8 + π/2) and a loading at π/8 is evaluated:363

AR =
σ(θ + π/2)

σ(θ)

∣∣∣∣
λ=1.5
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A loading in the main direction of anisotropy has a response 16 times stiffer than a loading in a perpendicular364

direction, corresponding to AR = 0.063.365

π
40

e1

e2

RE =
10-8 %

Figure 11: Nominal stress τ11 vs longitudinal stretch F11 responses for an anisotropic sample with a moderate anisotropy along

5 directions of loadings.

3.3. Highly anisotropic case366

The simulation is performed on the highly anisotropic sample, in five loading directions and a stretch367

of 1.5. The anisotropy is set to 0.9 (an anisotropy set to 1 is ideal but unable to be simulated), which368

corresponds to an ellipsoid with a minor axis at 0.1. The model is then integrated on the surface of an369

ellipsoid with a minor axis equals to 0.1 and oriented at π/8. Stress-stretch responses are shown in Fig. 12.370

The predominant direction, at π/8, is very far from the others, because of the very strong anisotropy of the371

sample. A very thin ellipsoid implies a near absence of fibers in the other directions, which gives near zero372

stress responses. Loadings at 0 and π
4 responses are superimposed, with a RE of 10−9% . Here, the AR is373

close to 0.000125, which would never corresponds to our biologic tissue behavior. The model can therefore374

be use in its operational range.375

4. Application to human abdominal rectus sheath376

The anisotropic constitutive model presented in this article is consistent and reflective of the anisotropic377

behaviour of the numerical tissues tested. However, it is interesting to evaluate this model against experimental378

results in order to test its validity.379

This microstructure-based model is developed with the main assumptions that structural parameters380

and material parameters can be decoupled and that structural parameters play a significant role for classical381

range of material characteristics. To verify the validity of this hypothesis, model is applied to human382

abdominal wall connective tissue. Connective tissues are composites with an interweaving of collagen and383

elastin fibers, leading to highly anisotropic behavior due to their oriented microstructure (Korenkov et al.,384
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Figure 12: Nominal stress τ11 vs longitudinal stretch F11 responses for an anisotropic sample with a huge anisotropy along 5

directions of loadings

2001; Gasser et al., 2006). The model is parameterized using a set of micro-structural parameters derived385

from fibers distribution (A,θ) and a set of mechanical parameters related to macromolecules (C,N). First,386

structural parameters are imposed in order to identify the material parameters on one experimental data set.387

In a second step, the structural parameters are identified using the precedent identified material parameters388

and compared to real parameters. The quality of the fittings are evaluated by computing the coefficient of389

determination R2.390

In the present paper, from two different individuals, epigastric anterior rectus sheath were sampled (Astruc391

et al., 2018). From each sample, three specimens were retrieved very close to each others to asssume the392

fibers orientations are equivalent. Then each sample was tested under uni-axial tension along three directions393

of loading. Tests were performed under a multi-photon confocal microscope (Levillain et al., 2016). The394

three-dimensional collagen images acquired with the microscope were then processed by texture analysis395

(Rao and Schunck, 1991; Westin et al., 2002) to obtain a distribution of fibers orientations, represented396

as an ellipsoid (Fig. 1). The anisotropy of the collagen fibers were therefore included through an ellipsoid397

oriented in the main direction and whose minor axis corresponds to the dispersion of the fibers.398

4.1. Identification of material parameters399

The first individual is used to obtain material parameters (C,N). A classical multi-photon confocal400

image is given in Fig. 13-A where collagen fibers are clearly visible in red. Texture image analysis provides401

micro-structural information about the anisotropy with a main orientation of the fibers, θ close to 31◦, and402

the minor axis of the anisotropy ellipsoid, R close to 0.20. Experimental stress-stretch curves obtained in403

the three loading directions (0◦, 45◦ and 90◦) are given in Fig. 13-B in dashed lines. The optimization404

of the material parameters is obtained through the minimization of the error between the experimental405

and modeled curves along the three directions, using a Truncated-Newton algorithm (Dembo and Steihaug,406

1983), available in Python library Scipy (Jones et al., 2001). The material parameters, C and N , for collagen407
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fibers are given in Table 2:

Identified material parameters

C (MPa) 23.1

N 11.3

Table 2: Identified material parameters (intrinsic) for the first individual rectus sheath samples based on comparison between

nominal stress-stretch curves in the three loading directions.

408

The optimization of the directional model is close to the experimental data. With a single pair of identified409

parameters, the three stress-stretch responses are modeled, showing a good agreement of the numerical410

results (solid line) with the experimental data (Fig. 13-B), with R2 close to 1. Moreover, the identified411

parameters are consistent with the results of Brieu et al. (2016) for collagen fibers, namely CC = 4.7MPa412

and NC = 21.1, with similar orders of magnitude. The chain density n, derived from the rigidity C = nκBT ,413

as n = 5.6e21m−3, is also consistent with the density used in Kuhl et al. (2006) study for tendon collagen414

soft tissues, γch = 7e21m−3. Elastic moduli of biological tissues are generally lower: in a previous study415

on connective tissues of the abdominal wall (Astruc et al., 2018), the moduli ranged from 0.39 MPa in416

small deformations to 15 MPa in large deformations. However, in this constitutive model, the C parameter417

does not correspond to the stiffness of the entire tissue, but to the stiffness of the unit element, the fiber.418

Sherman et al. (2015) conducted a literature review on collagen tissues at different scales. The rigidity of419

the collagen molecule is in the GPa range while the whole tissue has a modulus in the MPa range, or even420

kPa. Sasaki and Odajima (1996) explains this phenomenon by the organization of collagen fibers that are421

not directly recruited in traction. The apparent rigidity of the entire tissue therefore appears to be reduced.422

The parameter determined by the optimization is therefore consistent.423

4.2. Identification of structural parameters424

For the second individual, the microscopic observations of collagen fibers using confocal microscopy are425

given in Fig. 14-A. Texture image analysis provides micro-structural information about the anisotropy with426

a main orientation of the fibres, θ, close to 12◦, and the minor axis of the anisotropy ellipsoid, R close427

to 0.13. As in the study by (Brieu et al., 2016), the mechanical parameters of the collagen fibers of the428

rectus sheath are considered similar for each non-pathological individual. The only varying information429

is the microstructure, described thorough the spatial arrangement of the fibers. The identified material430

parameters, C = 23.1MPa and N = 11.3, obtained from the first individual are then used as inputs for the431

second individual. Fig. 14-B gives the experimental (dashed line) of the stress-stretch curves for the second432

individuals rectus sheath samples and the results of numerical simulation (continuous line) with θ = 12◦,433

R = 0.13, C = 23.1MPA and N = 11.3 for the three loading directions. Numerical and experimental434
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Figure 13: (A)-Microscopic observations of collagen fibers with the related anisotropy ellipsoid and (B)-comparison of

experimental (dashed line) and modeled (continuous line) stress-stretch responses for three directions of loading for the first

individual rectus sheath samples using the identified material parameters C = 23.1MPa and N = 11.3. The quality of each

fitting is evaluated with: R2
45◦ = 0.99, R2

0◦ = 0.96, R2
90◦ = 0.94.

responses are close, validating the hypothesis that the properties of materials are not specific to individuals.435

Material properties are constant and independent of the individuals.436
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100µm

R=0.13

θ=12°

A B

Figure 14: (A)-Microscopic observations of collagen fibers with the related anisotropy ellipsoid and (B)-comparison of

experimental (dashed line) and modeled (continuous line) stress-stretch responses for three directions of loading for the second

individual rectus sheath samples using the fixed material parameters, C = 23.1MPa and N = 11.3. The quality of each fitting

is evaluated with: R2
45◦ = 0.76, R2

0◦ = 0.60, R2
90◦ = 0.92.

Conversely, a reverse procedure can be performed to identify the structural parameters related to the437

microstructure, based on the experimental stress-stretch curves of the second individual with the fixed438

material parameters C = 23.1MPa and N = 11.3, with no mention about anisotropy. Then, the identified439

parameters obtained using the Truncated-Newton algorithm are the main orientation of fibers, θ, and the440

ellipsoid minor axis, R given in Table 3:441
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Identified structural parameters

θ (◦) 10

R 0.14

Table 3: Identified structural parameters (extrinsic) for the second individual rectus sheath samples based on comparison

between nominal stress-strech curves in the three loading directions samples using the fixed material parameters C = 23.1 MPa

and N = 11.3.

The numerical responses (solid lines) are close to the experimental data (dashed lines), as observed in442

Fig. 15. With the fixed material parameters and the identified pair of structural parameters, the three443

stress stretch responses are modeled, showing a good agreement between the numerical results and the444

experimental data. Identified structural parameters are then successfully compared to the microscopic445

observations (Fig. 14-A). The experimental main orientation is 12◦, close to the identified value, just as446

for the experimental ellipsoid minor axis, set at 0.13. These parameters are completely consistent with447

the identified values, validating the similarity hypothesis of macromolecular properties. With material448

parameters C and N set, the only needed information to predict behavior is structural.449

e1

e2

45°

e3 0°

90°

Figure 15: Comparison of experimental (dashed line) and modeled (continuous line) stress-stretch responses for three directions

of loading for the second individual rectus sheath samples using the fixed material parameters C = 23.1MPa and N = 11.3

and the identified structural parameters θ = 10◦ and R = 0.14. The quality of each fitting is evaluated with: R2
45◦ = 0.91,

R2
0◦ = 0.76, R2

90◦ = 0.94.

5. Conclusion450

In this paper, based on the microstructural description of the tissues, we have proposed a constitutive451

model accounting the anisotropic and non-linear behavior of fibrous biological tissues, without prior knowledge452

of the nature of anisotropy. The originality of this model lies in its consideration of anisotropy. Instead453

of penalizing rigidities as in conventional models, anisotropy is taken into account on the initial lengths454
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of the fibers, thus impacting only the structural (or extrinsic) parameters of the fibers. The material (or455

intrinsic) parameters are then considered similar for any individual. The only variables are the structural456

parameters, related to the architecture of the tissue. Moreover modeling the impact of anisotropy by457

penalizing deformations rather than stresses prevents prevents the solution obtained by our numerical458

integration scheme from being degraded when the amplitude of anisotropy is increased.459

The model was tested on three numerical examples. Its consistency and invariance have been proved.460

The model was then applied to several biological tissue tests. The intrinsic parameters could be determined461

based on the histological description of the first set of tests and applied to the second set of tests. The462

extrinsic parameters, corresponding to the anisotropy of the tissue could then be predicted, showing a good463

adequacy with the experimental tests.464

Non-linear anisotropic behavior can therefore be predicted with a microscopic description of tissues,465

considering that the parameters of the constitutive fibers are similar for every individuals. Extrinsic466

parameters, relative to the structure, and intrinsic parameters, relative to the material, are fully decoupled.467

Knowing the material parameters of the fibers, it is then sufficient to feed the model with microscopic468

observations to predict the behaviour of anisotropic fibrous tissues.469

This model will be implemented in further studies a in finite element code to describe more complex470

structures such as the abdominal wall. In the long term, the mechanical behaviour of tissues could then471

be fully understood and would lead to patient-specific simulations, to guide the improvement of medical472

treatments.473
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Sáez, P., Garćıa, A., Peña, E., Gasser, T. C., Mart́ınez, M. A., 2016. Microstructural quantification of collagen fiber orientations587

and its integration in constitutive modeling of the porcine carotid artery. Acta Biomaterialia 33, 183–193.588

Sasaki, N., Odajima, S., 1996. Elongation mechanism of collagen fibrils and force-strain relations of tendon at each level of589

structural hierarchy. Journal of Biomechanics 29 (9), 1131–1136.590

Sherman, V. R., Yang, W., Meyers, M. A., 2015. The materials science of collagen. Journal of the Mechanical Behavior of591

Biomedical Materials 52, 22–50.592

Silva, M. E. T., Brandão, S., Parente, M. P. L., Mascarenhas, T., Jorge, R. M. N., Brandão, S., Parente, M. P. L., Mascarenhas,593

T., Natal, R. M., 2017. Computer Methods in Biomechanics and Biomedical Engineering Biomechanical properties of the594

pelvic floor muscles of continent and incontinent women using an inverse finite element analysis. Computer Methods in595

Biomechanics and Biomedical Engineering 5842 (March), 0.596

Spronck, B., Megens, R. T., Reesink, K. D., Delhaas, T., 2016. A method for three-dimensional quantification of vascular597

smooth muscle orientation: application in viable murine carotid arteries. Biomechanics and Modeling in Mechanobiology598

15 (2), 419–432.599

Treloar, L. R. G., Riding, G., 1979. A Non-Gaussian Theory for Rubber in Biaxial Strain. I. Mechanical Properties. Proceedings600

of the Royal Society A: Mathematical, Physical and Engineering Sciences 369 (1737), 261–280.601

Verron, E., 2015. Questioning numerical integration methods for microsphere (and microplane) constitutive equations.602

Mechanics of Materials 89, 216–228.603

Wang, M. C., Guth, E., 1952. Statistical theory of networks of non-gaussian flexible chains. The Journal of Chemical Physics604

20 (7), 1144–1157.605

Weisstein, E. W., 1999. First Fundamental Form. From MathWorld–A Wolfram Web Resource.606

URL http://mathworld.wolfram.com/FirstFundamentalForm.html607

Westin, C.-F., Maier, S. E., Mamata, H., Nabavi, A., Jolesz, F. A., Kikinis, R., 2002. Processing and visualization for diffusion608

tensor MRI. Medical Image Analysis 6 (2), 93–108.609

Wex, C., Arndt, S., Stoll, A., Bruns, C., Kupriyanova, Y., 2015. Isotropic incompressible hyperelastic models for modelling the610

mechanical behaviour of biological tissues: A review. Biomedizinische Technik 60 (6), 577–592.611

Witz, J.-F., Roux, S., Hild, F., Rieunier, J.-B., 2008. Mechanical properties of crimped mineral wools: Identication from digital612

image correlation. Journal of Engineering Materials and Technology 130 (2).613

Yeoh, O. H., 1993. Some Forms of the Strain Energy Function for Rubber. Rubber Chemistry and Technology 66 (5), 754–771.614

26




