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Abstract

The present paper investigates the water absorption by polymeric matrix composites at both microscopic

(i.e. reinforcements are explicitly depicted) and macroscopic (i.e. homogeneous media) scales through a

numerical homogenization method. In this work, the two linear diffusion Fick’s and Langmuir’s laws are

considered. The effective transverse diffusivities of Uni-Directional laminates are computed with the help of

the Finite Element Method and compared to both analytical models and experimental data. The impact of

the distribution of the hydrophobic reinforcements within the matrix is also pointed out.

Keywords: composite materials, water diffusion models, transverse diffusivity, numerical homogenization,

multiscale modeling.

1. Introduction

The use of glass or carbon fiber reinforced polymers (G/C FRP) spreads into many industrial sectors

such as marine transports [1] and renewable marine energies [2]. The humid aging of such materials result-

ing from the immersion in the harsh marine environment may lead the structure to perform no longer its

function. Among other benefits, from an engineering point of view, these heterogeneous materials are attrac-

tive because they can be tailored for each specific application. Nowadays, in order to perform fast design,

the numerical studies are often performed considering the laminates as homogeneous materials. However,

many macroscopic observations originate from micro-scale phenomena. One thus needs to take into account

microscopic informations in order to properly reproduce the actual macroscopic behaviour through a Repre-

sentative Volume Element (RVE) of the studied material. The water absorption by composite materials is a

good example because reinforcements are often considered hydrophobic [3, 4, 5]. As a consequence, diffusion

process only occurs inside the matrix phase. Unfortunately, limited computational means prevent designers
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from depicting each phase in macro-scale simulations. Therefore, the compromise between accuracy of the

predictions and fast design makes the scale transition framework [6] a great candidate to obtain accurate

physical properties without representing the microscopic geometrical details. Among all the available meth-

ods, the numerical homogenization is the one selected in this work. Numerical homogenization has been

widely used to solve linear and non-linear mechanical [7, 8, 9] as well as thermal conduction [10, 11, 12]

problems. However, the computation of diffusion effective properties, such as the transverse diffusivity of

U.D. laminates, based on this approach has not been investigated. Analytical models have been yet proposed

[3, 13, 14, 15] but only for fickian diffusion models.

The paper is organized as follows. Section 2 deals with the proposed modeling including the descrip-

tion of the studied domain, assumptions and diffusion constitutive equations. Then, Section 3 gives details

concerning analytical and numerical computations of the transverse effective diffusivity. Section 4 presents

the generator of realistic reinforcement distributions used in this work. Sections 5 and 6 are dedicated to the

numerical investigations using the Finite Element Method. Two distinct studies are performed. The first

application is dedicated to estimate the transverse diffusivity of U.D. laminate with respect to the volume

fraction of reinforcements, in cases the polymer matrix satisfies the traditional Fick’s law. All analytical,

numerical and experimental results are confronted to each other. The second study deals with a non-Fickian

matrix based composite. We compare the results between heterogeneous (on a single irregularly reinforced

microstructure) and homogeneous representations according to local and global quantities of interest. Some

concluding remarks are finally drawn in Section 7.

2. Modeling

2.1. Description of the studied domain

In this paper, both Equivalent Homogeneous Media (E.H.M) and heterogeneous materials are considered.

They occupy the spatial domain Ω ∈ Rd with d ∈ {1, 2, 3} bounded by ∂Ω. In the heterogeneous case

Ω = Ωr ∪Ωm, where Ωm and Ωr respectively represent the matrix and the reinforcements phases, as shown

on figure 1.

[Figure 1 about here.]

For the homogeneous case, we simply write Ω = ΩE.H.M.. The boundary ∂Ω is made up of two parts

∂Ω = Γc ∪ Γj . On Γc the moisture content corresponding to the environmental condition is set and on Γj
the flux of water molecules is prescribed if needed. In the present work, all the material parameters are

assumed constant at both spatial and time levels and independent of the results fields. On the other hand,

the fibers are assumed hydrophobic and the diffusion problem will be therefore solely written on Ωm for
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the heterogeneous case. Polymeric resin constitutive of the matrix is considered as a homogeneous isotropic

material. The resin is assumed perfectly healthy (i.e. without defects) and, particularly, porosity is not

taken into account. From now on, the spatial average ·, is defined by,

· = 1
mes(Ω)

∫
Ω
· dΩ, (1)

where mes(Ω) stands for the measure of the domain (i.e. length in 1.D., area in 2.D. and volume in 3.D.).

In addition, macroscale quantities are also represented by over symbols or letters.

2.2. Diffusion problem

Usually, water diffusion problems involve the moisture content c(x, t), which, is defined at a material

point of position x at time t by

c(x, t) = mw(x, t)
m0(x) , (2)

where mw(x, t) is the local water uptake, whereas m0(x) is the initial mass. However, for convenience

and similarity with the heat conduction problem [13], we prefer to use the relative moisture content r(x, t)

written as

r(x, t) = c(x, t)
c∞(x) , (3)

where c∞(x) is the maximum moisture absorption capacity of the considered phase. This property is

determined experimentally and is given by the weight of a sample immersed in an environment of interest

for a long period (weeks, months or even years depending on the material) divided by its initial weight. The

spatial average relative moisture content r(t) on the domain Ω is computed from

r(t) = 1
M0

∫
Ω
ρ(x) r(x, t) dΩ, (4)

where ρ(x) is the local density and M0 denotes the initial sample mass. Afterwards, r(t) could also refer to

the global relative moisture content.

2.2.1. The Fick’s law

The Fick law [16, 17] is a common model to represent a diffusion process where each water molecule is

free to move in the polymer network associated with domain Ωm. Since the diffusivity D and the maximum

moisture absorption capacity c∞ are assumed constant (i.e. independent of moisture content or mechanical

states), the Fick local diffusion problem writes: find the solution field r(x, t) such that

∂r
∂t = D∆r on Ωm × T,

r = rimp on Γc × T,
(5)

where rimp is the relative moisture content prescribed on Γc. From now, it will be set to 1.0. The latter

comes from the fact that one would prescribed the maximum moisture capacity on Γc and, by definition,
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rimp = cimp
c∞ which leads to a value of 1.0. For the Fick model, the water molecule flux φF (x, t) is defined in

this case by

φF (x, t) = −c∞D∇r(x, t). (6)

2.2.2. The Langmuir’s law

Sometimes, experimental results exhibit water diffusion behaviors which do not follow the Fick’s law as

shown in [18, 19]: this might be called an anomaly of diffusion. For instance, in [20], the authors divided the

water molecules diffusing through a single solid phase in two populations. The first, denoted n(x, t) is free

to move while the molecules of the second phase, denoted N(x, t), are bonded to the polymer network due

to reversible chemical reactions such as those occurring when moisture induced plasticization. A free water

molecule could become a bonded one with a frequency α and, reciprocally, a bonded molecule could be freed

with a frequency β. The total moisture content naturally verifies c(x, t) = n(x, t) + N(x, t). For a similar

reason described in the Fick’s law section, the relative fields rn(x, t) and rN (x, t) are being used from now

on. Then, the Langmuir local diffusion problem writes: find the solution fields rn(x, t) and rN (x, t) such

that they verify
∂rn
∂t + ∂rN

∂t = D∆rn on Ωm × T,

∂rN
∂t = α rn − β rN on Ωm × T,

rn = rnimp on Γc × T,

rN = rNimp on Γc × T,

(7)

where rnimp and rNimp are respectively the imposed free and bounded relative moisture content on Γc which

naturally verify: rnimp + rNimp = 1.0. For this model, the water molecule flux φL(x, t) is defined by

φL(x, t) = −c∞D∇rn(x, t). (8)

Considering those two different populations, the Langmuir model is able to represent a wider class of diffusion

phenomena the the Fick model. It is worth saying the latter is included in the former range.

3. Transverse diffusivity homogenization

Usually, the composite parts are often thin which, leads to neglect the in-plane water diffusion and only

take into account the perpendicular or transverse diffusion. In this work, only the transverse diffusivity D⊥
of U.D. laminates is investigated. However, a little remark about the diffusivity under fibers’ direction could

be stated. Assuming reinforcements are straight shaped, the water molecules’ diffusion paths are parallel to

the fibers, therefore the diffusion coefficient under the reinforcements direction must be equal to the resin’s

diffusivity [3]. As a result, the prediction of the longitudinal coefficient of diffusion in U.D. fiber-reinforced

composites is not a critical issue, contrary to the case of the transverse coefficient of diffusion, which strongly

depend on the volume fraction of matrix, for instance.
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3.1. Analytical approach

The prediction of the transverse diffusivity of composite materials has been studied for a long time,

since the pioneering works published by Shen and Springer in 1976 [3]. Most of the analytical models,

developed in order to adress this issue, are based on either thermal conduction analogy [21] or on an

electrical one [22]. A great synthesis work about those modelizations can be found in [23, 24]. The authors

often assume a periodic distribution of the reinforcements within the matrix. In addition, in [13], thanks

to the correspondence between the temperature and the relative moisture content and not the moisture

content, the authors said the relations should be corrected by the following factor:

κ = 1
1− vr

, (9)

where vr is the volume fraction of reinforcements. Moreover, in [3], the authors assume the water molecules

can only diffuse in a straight path squeezed between two columns of fibers. This latter leads to fictionally

rise the volume fraction of reinforcements as shown on figure 2.

[Figure 2 about here.]

In order to make up this unrealistic hydrophobic part, it is necessary to modify the relation originally pro-

posed in [3]. The table 1 presents the corrected analytical relations which provide the transverse diffusivity

of U.D. composites D⊥ divided by the matrix diffusivity Dm. All the curves of those ratios D⊥/Dm with

respect to the volume fraction of reinforcements vr are depicted on figure 3.

[Table 1 about here.]

As one may have expected, due to equivalent assumptions (regular distribution of the reinforcements, simi-

larities between thermal and electrical conduction phenomena), the analytical models gave rather identical

results unless for the very high values of vr > 65 % which are seldom reached in practice.

[Figure 3 about here.]

3.2. Numerical homogenization procedure

3.2.1. Maximum moisture absorption capacity

The water diffusion phenomenon is a peculiar case because of the definition of the relative moisture

content r(x, t) = c(x,t)
c∞ , the maximummoisture absorption capacity is involved in the homogenization process

and one needs to compute the macroscale maximum absorption capacity c∞. In the case of hydrophobic

reinforcements, the average moisture content c(t) is defined by

c(t) = 1
ρm Vm + ρr Vr

∫
Ωm

ρm c(x, t) dΩm, (10)
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where Vm, ρm, Vr and ρr respectively represent the volume or the density of the matrix and the reinforce-

ments. When the permanent regime is reached, c(t) becomes c∞ with

c∞ = ρm Vm
ρm Vm + ρr Vr

c∞m = τm c
∞
m , (11)

where τm is the mass ratio of matrix within the laminate.

3.2.2. Fick diffusion model

The water diffusion problem according to the Fick’s law is close to the thermal conduction with the

Fourier’s law. The latter has been strongly studied for a decade [8, 10, 12]. The sought effective property is

the diffusivity tensor and more specifically coefficient D⊥ which must verify the equality between the spatial

average of the microscale water molecule flux φF (x) and the macro water molecule flux ΦF where those

quantities are defined by

φF (x) = 1
mes(Ω)

∫
Ω
φF dΩ, (12)

and

ΦF = −c∞D⊥∇r. (13)

∇r is the gradient of relative moisture content at the macroscale. Therefore, to determine D, only a steady-

state computation with specific boundary conditions imposed on ∂Ω is required. Using the more convenient

periodic boundary conditions, the problem writes: find r(x) such as

0 = D∆rn on Ω,

r = ∇r0 · x+ r̃ on ∂Ω
(14)

where ∇r0 is a macroscopic uniform gradient of relative moisture content and r̃ is a periodic function

over Ω. Periodic boundary conditions can be achieved through linear relationships between degrees of

freedom. Many industrial finite element codes are provided with such feature. In this work, homogenization

simulations were performed using code Aster [28].

3.2.3. Langmuir diffusion model

According to the water flux definition of the Langmuir’s modelization 8, methodology used to compute

the Fickian transverse diffusivity is efficient. However, one may also have a look at the two coefficients α

and β involved in the exchange phase process modeled by

∂rN
∂t

= α rn − β rN . (15)

At the macroscopic scale, the above relation becomes,

∂rN
∂t

= α rn − β rN . (16)
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Furthermore,
∂rN
∂t

= ∂rN
∂t

= α rn − β rN , (17)

and by definition of the spatial average,

∂rN
∂t

= 1
mes(Ω)

∫
Ω
α(x) rn(x, t) dΩ− 1

mes(Ω)

∫
Ω
β(x) rN (x, t) dΩ. (18)

In glass or carbon reinforced polymer, it is common to consider reinforcements hydrophobic and this work

and especially this section is no exception. In addition, assuming constant properties thus leads to

1
mes(Ω)

∫
Ω
α(x) rn(x, t) dΩ = αm rn(x, t), (19)

and
1

mes(Ω)

∫
Ω
β(x) rn(x, t) dΩ = βm rN (x, t). (20)

As a consequence,

α = αm and β = βm. (21)

In conclusion of this section, in this specific investigation of hydrophobic reinforcements laminates assuming

constant properties, no additional developments are needed to perform homogenization in the case of the

Langmuir’s law. In this work, simulations involving Langmuir’s law were performed using Abaqus [29] and

a specific element developed under the UEL subroutine form as in [30]. The next section is devoted to the

microstructure generator.

4. Generation of realistic microstructures

4.1. Experimental observations

In the previous section, the analytical relationships are based on a regular distribution of the reinforce-

ments though it is an idealized representation. Indeed, figure 4 presents two images, taken with a Scanning

Electron Microscope, one of a glass/polyester (left) and carbon/Epoxy (right) laminates. Add to the irreg-

ular reinforcements distributions, some highly and lowly densified areas are respectively emphasized by red

and blue contours. Contrast had been emphasized by applying a filter to the photographies which allowed

us to compute the volume fraction of reinforcements in the aforementioned areas : from 30 up to 40% in

lowly densified areas and 65 up to 70% in highly densified ones.

[Figure 4 about here.]

Furthermore, one may notice that fibers are relatively circular; besides their diameter is almost constant.

To enhance the numerical results, the reinforcement distributions accounted for achieving the computations

should be as realistic as possible. These observations underline the interest of investigating both regular

and irregular fiber distributions in numerical computations.
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4.2. Numerical microstructure generator

In this section, the generator of microstructure geometries [37] is described. Based on the samples

depicted on figure 4, the fibers are assumed perfectly circular with a unique diameter. Firstly, reinforcements

are set regularly within the matrix. Secondly, fibers are provided with fictive speed vectors. Thirdly, as in a

pool game, the distribution is progressively computed considering perfect elastic collisions. Finally, after a

certain time or number of chocks, the microstructure is frozen. All those steps are synthesized on figure 5.

[Figure 5 about here.]

Thanks to this simple algorithm, dense (i.e. high volume fraction of reinforcements) quasi-realistic mi-

crostructures are quickly and easily produced.

5. Results

In this section, assuming a Fickian water diffusion behavior, the effective transverse diffusivities of

U.D. laminates are computed. The F.E. software code Aster has been used to perform the simulations.

The domain Ω is spatially discretized using bi-linear triangular elements. Due to the similarity between

thermal conduction and Fick diffusion problems, we used linear thermal conduction elements available in

the software’s elements library. Furthermore, the number of elements has been scaled to ensure accurate

numerical results. In the largest case, the mesh was composed of 250,000 elements.

5.1. Effective transverse diffusion coefficient

In order to compute the numerical curves of the ratio D⊥/Dm, one must determine the size of the

Representative Elementary Volume (R.E.V.) of the studied heterogeneous media. Commonly, to achieve

this first step, effective properties are determined on increasingly larger Elementary Volume (E.V.) until

convergence is reached. In this study, the size of the E.V. is represented by δ = √nr, where nr is the

number of fibers depicted in the E.V. The figure 6 presents the evolution of δ on regular microstructures.

In the regular case, by using periodic boundary conditions the convergence is reached right away at δ = 1.

[Figure 6 about here.]

Nevertheless, in irregular cases, the convergence may be so slow that it may not appear owing to machine

limits. In [8, 31], the authors proposed to perform statistical studies on E.V. and to freeze the size when

mean convergence is reached. In this work, statistical analyzes have been done through 100 computations

and the volume fraction of reinforcements is set at vr = 60 %. The figure 7 depicts the transverse diffusivity

in the regular caseDR
⊥ in addition to both mean diffusivities along the two directions DX

⊥ and DY
⊥ in irregular

cases. No significant evolution is observed for E.V. of size greater than δ = 7. In addition, DX
⊥ and DY

⊥ are

rather identical from that size which is kept as R.E.V. size in the following studies.

8



[Figure 7 about here.]

The higher dispersion in diffusivities observed on small E.V. is explained by the presence (or lack) of clusters

of reinforcements within the domain. Besides, the lower the number of fibers, the more intense the effect

of a cluster. In order to picture this phenomenon, an extreme case of a small E.V. (δ = 3) is presented

on figure 8. The reinforcement distribution clearly leads to a small diffusivity in the X direction whereas

the diffusivity along the Y axis should be close to the matrix diffusivity. It is worth mentioning that the

likelihood to produce such unbalanced reinforcements distribution decreases with the E.V. size.

[Figure 8 about here.]

5.2. Comparison with analytical and experimental results

The analytical and numerical results are plotted on figure 8. For the sake of clarity, legend symbols for

analytical relations are identical to those used in figure 3 and numerical results are drawn in black. Naturally,

regular distribution gives similar results than analytical modelizations. On the other hand, though irregular

distributions curve shape is similar to the others, it is distinctly below. More precisely, the relative distance

between regular (taken as reference) and irregular microstructures is ε = 15%.

[Figure 9 about here.]

Now, the impact of the type of microstructure on the computed effective transverse diffusivity has been

highlighted but one might be interested to compare with experimental data. Since regular distribution

and analytical models give close results, in order to keep plots as clear as possible, curves corresponding to

analytical models have been removed. In [13], the authors synthesized pure resin and carbon/epoxy laminate

experimental data. These experimental points and the computed diffusivity are presented on figure 10.

[Figure 10 about here.]

Actually, those experiments are tough for several reasons: pure resin could not be available, fabrication

process for polymers and laminates are completely different, the volume fraction of reinforcements is not

perfectly homogeneous, and side effects may appear. This is why, strong disparities in the experimental

results for a given material may be observed. However, despite the significant variability of experimental

data, one may carefully conclude that numerical computations over-estimate the transverse diffusivity, even

in irregular cases. One could notice that the numerical diffusivity is 10 up to 40% higher than the experi-

mental data at a volume fraction of reinforcement of vr = 60%. This gap rises even further as vr increases.

As vr gets closer to 70% the numerical predictions become strongly erroneous (above 100%). Nevertheless,

more experimental studies at high volume of reinforcements should be carried out in order to complete these

results. Moreover, from a numerical point of view, models which take into account mechanical states in the

diffusion phenomena, such as the one proposed in [32, 33, 34], are ought to be investigated.
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6. Study of non-Fickian composites

Most studies about water diffusion in polymer based materials involved the Fick diffusion model. A

practical explanation is due to its similarity with the thermal conduction problem. As a result, one can use

thermal formulation of industrial F.E. codes, which is convenient [4, 5]. However, some materials exhibit

non-Fickian water absorption behavior [19, 35] which is the subject of this section.

6.1. Presentation

The polymeric resin investigated in this section belongs to the epoxy family. The experimental results

and the optimal fit (according to the least square criterion) are depicted on figure 11. The good correlation

may be noticed. The diffusion phenomena in composites is often studied on specific coupons.

[Figure 11 about here.]

Those square specimen have small thickness over side length ratio e/l << 1. According to this geometry,

water absorption by the edges can be neglected [3, 32]. Therefore, the diffusion problem becomes 2.D.

so only the half top of the specimen is represented. The reinforcements are 7µm diameter carbon fibers

and the volume fraction is set to 60 %. In order to reach this high volume fraction, 950 fibers have been

distributed using the generator described in section 4. Figure 12 shows the geometry of microstructure and

the boundary condition used in simulations.

[Figure 12 about here.]

The environmental condition (in blue) is imposed on the top edge. The domain Omega is spatially dis-

cretized using bi-linear triangular elements. The number of elements, 240, 000 and 30, 000 respectively in

heterogeneous and homogeneous cases, is large enough to ensure accurate results. On a 4 processors laptop,

the computational time is approximately 2h for the heterogeneous case whereas it is a matter of minutes

for the homogeneous domain. The table 2 presents all the properties used in the simulations at either

microscopic or macroscopic scale.

[Table 2 about here.]

6.2. Local results

The local fields, for the relative content of free and bounded water molecules, for both heterogeneous

and homogeneous cases, at two time steps (one transient t = 17 h and one close to steady-state t = 1055

h), are described on figure 13. Although the heterogeneous case iso-contours are not straight unlike in the

homogeneous case, the local fields are consistent with each other but slight discrepancies might be noticed

in the free water fields (figure 13 (a)) on the right part of the geometry where the moisture content is still

very low.
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[Figure 13 about here.]

Furthermore, it may be observed on figure 13, that both the matrix and the homogeneous media are saturated

after an aging time of 1055h. From fields depicted on figure 13, we propose the following diffusion scheme.

First, free water molecules spread quickly within the resin, and then, chemical reactions with the polymer

network chains occur. This behaviour may be related to the high diffusivity D compared to α and β.

6.3. Global results

The two absorption curves (average moisture content c over Ω at time t with respect to
√
t) are depicted

on figure 14. At this scale the two simulations gave identical results, indicating that thanks to the homog-

enization method, heterogeneous and homogeneous diffusion computations using the Langmuir model are

equivalent.

[Figure 14 about here.]

7. Conclusion

In this work, assuming constant properties, the effective transverse diffusivities of Uni-Directional lam-

inates are determined within a numerical homogenization framework achieved owing to full-field approach.

Furthermore, Fick and Langmuir laws are both studied. In addition, the impact of the reinforcements dis-

tribution on the macroscopic diffusivity has been highlighted. For this purpose, a microstructure generator,

based on elastic chocks, has been used to create realistic fibers distribution according to S.E.M. photogra-

phies of glass/polyester and carbon/epoxy microstructures. Simulations were performed using the Finite

Element Method. For the Langmuir model, a specific element (UEL) has been implemented in Abaqus.

Two numerical studies were then achieved. In the first example we pointed out the effect of the fibers

distribution within the matrix on the effective transverse diffusivity of U.D. laminates. This study puts

the accent on the interest of using the irregular distributions which provide more representative results

(according to the available experimental data) than the modeling based on regular microstructures. Sec-

ondly, heterogeneous and equivalent homogeneous simulation results have been compared. Both local and

global quantities of a Langmuir based matrix composites were investigated. Very good agreements were

obtained on fields of interests: moisture content, concentration of free and bound molecules between the

two configurations. Although small differences appear at the microscale where the moisture content is very

little, the sorption curves (i.e. macroscale) tell that the two media are equivalent. In order to pursue the

present investigation, one should consider the possibility of modeling a coupling between the water diffusion

physic and the mechanical state. In fact, in this work, the computed effective transverse diffusivities appear

to be higher than literature experimental data and the latter leads to find a modeling which emphasizes

the barrier effect of the hydrophobic reinforcements. Previous work on such couplings between mechanical
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states and diffusion phenomena. For instance, works on the free volume theory have already been achieved

but not in scale transition problems. Further works will be devoted to solve a micro-macro scale uncoupled

hygro-mechanical problem by means of classical tools existing on linear elasticity and then investigate such

diffusion-mechanical couplings in scale transition methods in order to take into account microscopic details

at a higher scale like in multi-level (FE2) computations.
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D⊥/Dm

A1 [3] 4
κ (4−v2

r π)

A2 [22, 25] κ
1−vr−0.3058 v4

r

1+vr−0.3058 v4
r

A3 [26] κ 1−vr
1+vr

A4 [14, 27] κ

(
2√

1− 4 vr
π

tan−1
√

1+2
√
vr/π

1−2
√
vr/π

− π

2+1−2
√
vr/π

)
Table 1: Analytical relations, extracted from literature, predicting the transverse diffusivity of U.D. com-
posites scaled by matrix diffusivity.
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Epoxy Carbon Homogeneous
ρ (kg/m3) 1310 1780 1592
D (µm2/s) 2.04 − 0.992
c∞ (%) 1.71 − 0.5564

α (108 s−1) 7.17 − 7.17
β (108 s−1) 7.45 − 7.45

Table 2: Properties for the microscopic constituents and the homogeneous media.
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Figure 1: Heterogeneous and Equivalent Homogeneous Domains.
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Figure 2: Representation of the water diffusion path according to [3].
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Figure 3: Curves of D⊥/Dm with respect to vr for the analytical relations: A1 [3], A2 [22, 25], A3 [26], A4
[14, 27].
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Figure 4: S.E.M. images of glass/polyester (left) and carbon/epoxy (right) microstructures.
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Figure 5: Steps of the microstructure generator [37].
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Figure 6: Evolution of the E.V. size according to parameter δ.
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Figure 7: Convergence of the transverse diffusivity D⊥ with respect to the E.V. size represented by δ.
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Figure 8: Example of the impact of clustering in a small E.V. δ = 3.
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Figure 9: D⊥/Dm with respect to the volume fraction of reinforcements vr. Comparison between analytical
models and numerical results.
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Figure 10: Comparison of experimental transverse diffusivities of carbon/epoxy laminates and numerical
results (left). Zoom in on the interesting zone 50 % < vr < 70 % (right).
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Figure 11: Anomalous water absorption behavior of an epoxy resin [36].
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Figure 12: Geometries with the boundary condition used in computations.
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Figure 13: Free (a) and bounded (b) water molecules fields at two transient times t = 17h and t = 1055h
for both heterogeneous and homogeneous cases.
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Figure 14: Macroscopic diffusion kinetics predicted owing to either the heterogeneous or homogeneous
Langmuir models.
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