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ABSTRACT—Demand-side management (DSM) represents a potential way to improve the profitability of renewable energy systems. In this 

paper, power management including a new DSM strategy in a stand-alone hybrid Photovoltaic (PV)/ Diesel/ Battery system with multiple 
customers has been studied. A new probabilistic model of the consumer behavior based on Bayesian network and Monte Carlo simulation has 
been carried out so as to capture the real-time and stochastic aspect of the demand. The analysis has been made by means of a one-year period 
simulation of the whole system. Statistical data on consumers and meteorological observation data have been used to set the simulation’s 
parameters. Numerical results showed that with the implementation of DSM, energy costs are reduced by 11.3% for equal total consumption, and 
the use of solar energy resources rose to 54%. This provides insight on the significant performance enhancement offered by a DSM scheme in 
such a system. 

KEYWORDS— Stand-Alone Hybrid PV/ Diesel/ Battery System, Power Management, Demand-Side Management (DSM), Energy Cost, 
Photovoltaic (PV) Penetration, Electricity Consumption Behavior. 

1. Nomenclature & Abbreviations 

BA TC  Rated capacity of the batteries Ah 

( )C s  Transfer function of the corrector inside the Optimizer -- 

e  Error between the total consumption and its set point W 
*
BA Tl  Elementary cost of the lead-acid battery ageing €/Wh 
*
Diesell  Basic cost of diesel  €/liter 

_kW h Opl  Operating cost per kWh (energy cost) € 

Opl  Total operating cost during the simulation time € 

N Number of CMAs (or subscribers) -- 
*

DelP  Maximum power subscribed for controllable loads W 

DieselP  Production of the diesel generator W 
*

loadP  Total maximum power subscribed W 

1

N

loadPå  Total consumption of all N subscribers W 

PVP  PV production W 
·

PVP          PV productivity W 

_Conv BA TS  Rated power of the batteries’ converter  kVA 

_Conv PVS  Rated power of the MPPT DC/AC converter  kVA 

DieselS  Rated power of the diesel generator kVA 

 _ maxPVS  Peak photovoltaic generation kW 

simt  Simulation duration hour 

tD  Time step min 

iUseT  Period of use of the ith home appliance hour 

_BA T initV  Batteries’ voltage’s initial value V 

_ maxBA TV  Maximum value of the batteries’ voltage V 

_ minBA TV  Minimum value of the batteries’ voltage V 

_Diesel onV  Batteries’ voltage at which the diesel generator starts V 

_Diesel offV  Batteries’ voltage at which the diesel generator stops V 

max
*W  Maximum daily energy consumption subscribed Wh 

CMA Communication Measurement and Activation Device  

DLC Direct Load Control  

DSM Demand-Side Management  

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0306261919312048
Manuscript_82bbf095c878f128211274b7bfc76ce1

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0306261919312048
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0306261919312048


 

         2 
      

EMS Energy Management System  

LC Local Controller  

MPPT Maximum Power Point Tracking  

PV Photovoltaic  

 

2. Introduction 

NOWADAYS, hybrid photovoltaic (PV) stand-alone systems have become an efficient and reliable way to provide electricity 
for rural regions where the main grid is nonexistent or too distant. However, the problem in designing such a system remains 
primarily economic in nature. In order for stand-alone hybrid renewable energy systems to offer satisfactory performance and 
reasonable energy cost, efficient energy management strategies have to be studied right from the design phase [1-5]. In a multi-
source configuration, the energy management system (EMS), whose role can be compared to an orchestra conductor, may include 
or not a demand response program in order to help to reinforce: 

− the stability of the system’s operations by ensuring a better balance between intermittent renewable energy production and 
consumption;  
− the economic efficiency of the operations by reducing the batteries’ ageing and/ or fossil fuel consumption, knowing that 
usually these operating cost components make up the biggest share of energy costs.  

In [6], the authors advise that a combination of forecasting, efficient EMS, and demand response program should take part in 
future renewable energy systems in order to achieve greater robustness.  

Practically-speaking, in most stand-alone hybrid PV systems that are currently studied and/ or operating all around the world, 
demand response programs are not included [7-14]. For the design and optimization of such systems, the work carried out in the 
references [7-14] has a very similar approach where, demand is considered to be deterministic (average load profile). The goal of 
the optimization algorithm then consists of finding the system’s parameters that optimize criteria while entirely ensuring the 
predetermined load.      

However, in recent literature, DSM has been attracting interest among researchers working in the field of stand-alone hybrid 
renewable energy systems. B. Sivaneasan et al. [15] presented a new demand response algorithm for dynamically managing the 
building’s air conditioning and mechanical ventilation so as to ensure the best balance between PV production intermittency and 
demand. Y. Zheng et al. [16] developed a load shifting algorithm based on renewable energy generation and time-of-use tariff, 
using economic linear programming to minimize the operating cost of a biomass combined heat and power-based microgrid. R. In 
[17], a priority load control algorithm has been developed in order to gain optimal energy management and guarantee the energy 
supply for critical loads. X. Wang et al. [18] used the receding horizon optimization strategy implemented with demand response 
with the aim of minimizing the overall operating and environmental costs of a stand-alone PV/ wind system for single-family 
residential homes. M. Marzband et al. [19] proposed a stochastic optimization method considering variation in the load 
consumption model to achieve the best performance in isolated systems.  

Some of those DSM strategies aimed at utilizing specific loads having a significant impact on supply-demand balance [15, 16]; 
others focused on the management of domestic demand which is of interest to our works. To our knowledge, in literature, there are 
two main approaches of managing domestic loads that are:  

− direct load control (DLC) aimed at ensuring priority loads and shedding non-priority load if necessary in order to meet 
supply [17];  
− day-ahead scheduling which is a dynamic pricing mechanism-based method [18, 19].  

In our judgment, on the one hand, traditional DLC creates an efficient way to enhance load shaping, but it may compromise the 
domestic users’ comfort, since the utility remotely controls specific loads on the user side. On the other hand, the pricing 
mechanism-based method with its high complexity may experience difficulties achieving efficiency [20, 21], but particularly so 
when supply is highly uncertain in the case of stand-alone renewable energy systems. According to X. Wang et al. [18], and O. 
Elma et al. [18, 22], even though energy management at small-scale stand-alone systems can be far less complicated compared with 
the management of renewable energy generation applied to a large-scale network, stand-alone system may experience even more 
potential uncertainties related to electricity generation. 

In the context of DSM development in the smart grid, the French Government’s National Research Agency has invested in the 
SOLEDO project, seeking the design and implementation of ecological and economically efficient stand-alone hybrid PV systems 
for domestic usage. Complementary to the approach taken in the cited studies [7-14], the real-time management of loads is 
integrated into the design and optimization of the system. Indeed, the temporal demand profile is not considered deterministic, but 
stochastic with probabilistic and hazardous aspects. Hence, the EMS contains a real-time DSM strategy that helps customers to 
appropriately modulate their consumption in order to better achieve the critical requirement of supply and demand balance. To 
address the highly uncertain aspect of the supply, and independently from existing works, we have conceived a new DSM strategy, 
called “load shaping & authorization dispatching”, which can be grasped as an enhanced and adapted DLC for domestic loads in a 
multi-subscriber configuration within a stand-alone renewable energy system. The DSM strategy has been simulated and has 
proved its benefits with regard to the enhancement of system’s performance.  

This paper is organized as following: section 3 presents the new strategy for DSM in a stand-alone hybrid PV system. Section 4 
describes a new stochastic domestic consumption model, based on a Bayesian network and Monte-Carlo simulation, in order to 
capture the real-time and stochastic aspect of demand. Section 5 presents the simulation of the whole system during a one-year 
cycle. The key contributions of this paper are: firstly, the real-time simulation platform of stand-alone hybrid PV systems including 
the simulation of the new DSM strategy associated the real-time stochastic electricity consumption behavior model; secondly, the 
economic and ecological analysis enabling the evaluation of the benefits of DSM in the enhancement of the system’s performance. 
The financial benefits for customers offered by this DSM program will also be discussed. Finally, a parametric study is performed 
to determine the gain of DSM with varying diesel prices and installed battery capacity. The numeric results will be compared with  
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Figure 1: SOLEDO system in an off-grid configuration.  

 
other studies in literature. The last section (section 6) concludes the paper and provides directions for future work.  

3. Demand-Side Management Strategy in a Stand-ALone Photovoltaic System with Multiple Subscribers 

According to Figure 1, the implementation of the DSM strategy mainly relies on two physical devices:  
− CMAs (Communication Measurement and Activation) which are located at each consumer’s home. 
− A ‘Optimizer’, which is located at the control center.   

Like a smart-meter, CMA (developed by Landis & Gyr) enables the interactive communication between customers and the 
utility. It allows information about customers’ real-time consumption to be sent to the utility via a Local Area Network (LAN).  It 
receives the control signal from the control center and executes it. CMA contains not only a tool which measures the consumed 
power and energy, but also two switches. According to their importance, domestic loads are classified into two categories: priority 
loads and controllable loads. CMA’s switches can be used to shed only the controllable loads (Switch II), or both priority and 
controllable loads (Switch I) (cf. Figure 2).  Figure 2 also illustrates the composition of CMA. The three CMA’s parameters, 
corresponding to the subscribed thresholds by each user, are listed in Table 1. CMA has five different control modes:  
− Mode 0: normal operation mode where the requested power is equal to the supplied power. 
− Mode 1: if the total power needed by the user is greater than *

DelP , then Switch II is open for 30 minutes. 
− Mode 2: an external order (from the Optimizer) can force Switch II to be closed or opened. 
− Mode 3: if the total power needed by the user is greater than *

loadP , then Switch I is open for 10 minutes. 
− Mode 4: if the daily energy is greater than *

maxW , Switch I is open. It is programed to be reset at 6 AM the next day. 
Note that the CMA’s action following Mode 1, 3 and 4 provide the means to prevent excessive overconsumption and undesirable 

peak loads.   

*
loadP *

DelP *
maxW

 
Figure 2: CMA: Electrical load management device on the customer’s side 
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Figure 3: Graphic representation of the SOLEDO system in a closed-loop 

 
Among the control center’s components, the Optimizer is intended for the DSM, where the “load shaping & authorization 

dispatching” algorithm is implemented.  The critical role of the Optimizer is to authorize users to consume their controllable loads at 
different appropriate times. For this, the component acts on Switch II of every CMA. Real-time power and energy consumption data 
of all customers is centralized in the ‘Concentrator’ (Figure 2) which communicates with the Optimizer. The Optimizer also collects 
every system’s real-time data from the Local Controller, which is responsible for the supply-side management, also located at the 
control center (Figure 2).   

In the framework of stand-alone PV systems, the desired total load is ideally the profile of the PV productivity. PV productivity 
(i.e. the maximum electrical power that PV panels can produce by considering meteorological conditions) is to be differentiated 
from the PV production (i.e. the power that actually flows out of the MPPT (Maximum Power Point Tracking) DC/AC converter 
taking into account eventual shedding of the PV production). Indeed, consuming during the high PV productivity period requires 
neither the batteries nor the diesel generator, the associated operating costs would then be minimized. This step aims at defining the 
desired aggregate load profile, and constitutes the “load shaping” phase of the strategy.  

This DSM approach can be regarded as a centralized control with a feedback loop which tries to minimize the real-time error 
between total consumption and its set point (Figure 3). The Optimizer records this dynamic error and uses it to decide if the 
system’s permission should be allowed. A corrector is implemented in order to generate an appropriate control signal from the 
dynamic error. At each time step, decision-making is based on a comparison performed between the value of the control signal and 
a fixed threshold, meaning: 

( )
( )

if Threshold No permission is granted

if Threshold System's permission is granted

C .

C .

s

s

e

e

ì < Þïïíï ³ Þïî
 

Where: ·
PV loadP Pe = - å                                                                                                                                                                   (1) 

In the case where the system’s permission is allowed, in order to designate the next user to whom the system grants 
authorization in the next time step (10 min), a random selection with equitable opportunities is performed among customers who do 
not currently have permission. This selection process is carried out at each time step until all customers have authorization. This 
step consists of the “authorization dispatching” phase of the strategy. 

In a multi-subscriber configuration, the authorization to use controllable loads is being granted only to one new user at each 
time step. From the moment when the system’s permission is given, the customer is authorized to consume for 3 hours (this 
duration is fixed in this case study, otherwise it should be an optimization parameter in future work). During these 3 hours, when 
the load is started, it’s up to the consumer; hence several controllable loads can be started at the same time. A timer associated with 
the CMA is provided to display to the user the remaining authorized time. At the end of this time frame, Switch II is open, and all 
controllable loads will be shed. The customer has to wait for another authorization from the Optimizer that they may use their 
controllable appliances again. Obviously, there are no constraints on the total number of users that are being authorized at each 
time step.  

Note that the system’s permission is granted only according to the difference between the PV productivity and the aggregate 
load. Indeed, even though real-time consumption data of every user is gathered to the control center, only the aggregate 
consumption data is necessary to dispatch the authorization to a specific user, i.e. a common meter for all subscribers should be 
sufficient for the operation of this DSM scheme. Nonetheless, the SOLEDO system is designed with two-way communication 
between customers and the utility so that we would be able in the future to extend the DSM strategy to a more sophisticated 
scheme. Besides, all loads that have been defined as priority will not be submitted to the Optimizer’s action. 

The proposed demand-side management in this stand-alone PV system can be identified as a rule-based method, rather like 
DLC. However, compared to traditional DLC strategy, the control center in this framework doesn’t directly control specific non-
priority home appliances in the domestic area, but only the total users' consumption. Hence, we expect that consumers in this DSM 
scenario should have a more important flexibility to schedule their loads compared to traditional DLC. Otherwise, the Optimizer’s 
control action, which does not exist in the dynamic pricing mechanism, should allow a more efficient “load shaping”.  

However, the following questions may arise: 1) how does this DSM scheme effectively help to enhance the economic and 
ecological features of the PV system? 2) does this strategy drastically deteriorate the customers’ accustomed behavior and comfort?   

 These questions will be answered, in the next sections. Before, we will present the simulation of the whole system. In the 
system approach, like other system’s components’ model (supplies, batteries, etc.), the consumption model must interact with the 
other components’ model (i.e. Optimizer, CMAs). This requirement leads us to focus on studying an original dynamical model of 
the domestic electricity consumption. 
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4. Real-Time Modeling of the Domestic Electricity Consumption Behavior 

Electricity consumption modeling is a familiar research area in power networks nowadays. At all hierarchical levels of the power 
grid, load modeling provides the means to forecast future consumption, therefore helping utility companies to make decisions on the 
grid’s operation, planning and infrastructure development [23].  

In our study, however, the purpose of the load modeling is not to forecast future consumption, but to simulate the action of the 
DSM strategy on consumption patterns so that its potential benefits may be evaluated. As mentioned before, we need to build an 
appropriate electricity consumption model according to the so-called system approach. Indeed, the load’s model must integrate the 
Optimizer’s control signal as an input in such a way that if an authorization is granted, electricity consumption obeys the consumer’s 
behavior, otherwise, all loads are shed, i.e. consumption is strictly zero. We assume along this study that consumer behavior and the 
system’s permission are two independent events. Besides, in our framework, the consumption of each user is separately altered by 
the Optimizer’s control order which has a binary characteristic (Section 3). Consequently, we need to build a load model with a 
bottom-up approach so that the consumption behavior at each single household’s level can be taken into account.   

To build our model, we selected a probabilistic method that relies on a Bayesian network [24]. This network is intended to 
determine the start time of a home appliance; this step involves a graphic representation of the causal links between different events 
leading to the electrical load’s starting. Moreover, a Bernoulli trial has allowed the random aspect of the consumer’s behavior to be 
taken into account. 

4.1. Probabilistic aspect 

This part of the paper focuses on assessing the probability of starting a home appliance. In reality, this event depends on a 
multitude of factors, such as the consumer’s presence at home, the consumer's need relative to a specific load, etc. This need also 
depends on several parameters (e.g. the current state of the load either running or switched off, the user’s habits, household size, 
weather conditions, the day of the week, seasons and so on). In order to facilitate the assessment of the electrical load’s starting 
probability, the number of causal parameters has been reduced; however, the Bayesian graphic representation facilitates increasing 
the model complexity. 

 

 
Figure 4: Bayesian network representing the causal links between events leading to the starting of a specific home appliance 

The Bayesian network lays out the causal links between events. The nodes represent random variables symbolizing events, while 
the links reflect causal relationships between events. In Figure 4, the event “M” is the effective start of the load. According to Figure 
4, this event depends directly on two other events, namely: 
− Event “D”: the consumer’s decision to switch on the load. 
− Event “S”: authorization granted by the system to switch on the load. 

Hence, within the SOLEDO system, the start of a load is subjected not only to the consumer’s decision but also to the ability of 
the system to supply this load. The system may refuse to switch on a load for three following reasons: 
− Refusal from the Local Controller when there is a lack of energy (batteries and diesel generator set tanks are both empty), 
− Refusal from CMA when the user’s consumption has exceeded one or more parameters’ threshold, 
− Refusal from the Optimizer, in order to minimize the system’s operating costs. 

As assumed above, the independence between the consumers’ behavior and the system’s permission is thus translated by the 
decoupling between the probability of event “D” and event “S”. The probability of event “M” can be calculated by using the 
following equation: 

( ) ( ) ( ) ( ), , , . .p M D S p M D S p S p D=                                                                                                                                               (2) 

where ( ),p M D S symbolizes the probability that event “M” happens knowing that event ”D” and event ”S” take place.  
Furthermore, the event “D” also depends on two other independent events, namely: 

− Event “Co”: consumer’s presence at home, 
− Event “Ne”: consumer’s need with respect to the load. 

The lack of home automation in our system does become a major assumption in this model: the consumer’s presence is essential 
to start an electrical load. Consequently, the probability of the event “M” can be assessed as in (3). Each part of this equation will be 
determined so as to establish the probability of starting a load. 

( ) ( ) ( ) ( ) ( ) ( ), , , , . . , . .p M Co Ne S p M S D p S p D Co Ne p Co p Ne=                                                                                                 (3) 
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4.1.1. Probability of the consumer’s presence ( )p Co  

A survey was conducted permitting the collection of statistical data on the consumer’s presence at home in the considered 
location. The campaign consisted of different consumer profiles. In a survey form, 24 columns represent 24 hours of a day and each 
line represents a day where ordinary days, weekend days and holidays are distinguished. For each day category, several sample-days 
were registered during a year. In case of missing days, existing data was adequately replicated so as to obtain 365 days. Participants 
in our campaign were encouraged to take a minute every day in order to fill in each line with 1 if they were at home; and with 0 if 
not at home at each hour of the day. From this data, we defined an average day where the probability of the consumer’s presence at 
home t H= with { }0, ..., 23H Î as the mean value of every value in the thH  column.  

According to different obtained average days, we can distinguish three types of occupancy behavior depending on the observable 
peaks: 1) high day and evening, 2) double peak, and 3) day focus. In general, consumers are most likely present at home during meal 
times: 1) in the morning (everybody gets up, this is breakfast time before going to work or to school); 2) in the evening (family 
members gather after work for dinners and other family activities), 3) at noon (time for a break and for lunch). Given these 
observations, we propose the following model for the consumer’s presence probability during an average day as a sum of three 
Gaussian functions:  

( )
23

1

1
. exp

2
k

k
k k

t t
p Co A

s=

é ùæ ö-ê ú÷ç ÷= - çê ú÷ç ÷çê úè ø
ë û

å                                                                                                                                                     (4) 

− kA : amplitude of the kth Gaussian function,  
− kt :  time at the maximum of the kth Gaussian function, 
− ks : standard deviation of the kth Gaussian function. 

This model has the advantage of being easily fitted to different occupancy behaviors by adjusting kA , kt , ks .  
Figure 5 shows the model for the “high day & evening” behavior presenting three peaks. Various parameters linked to the 

different occupancy behaviors are given in Table 1.  
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Figure 5: Probability of the consumer presence according to the “high day & evening” occupancy behavior during the average day over the observed year 

4.1.2. Probability of the consumer's need ( )p Ne  
This probability represents the consumer's need to start a specific home appliance. This event is supposed to be independent from 

the consumer’s presence. Even though consumer's need may vary depending on many factors, our model will only take into account 
its usual and repetitive aspect.                                            

Let’s consider hereafter the different load states. The probability of the consumer's need to start a load should depend on its 
current state. Four states have been defined:  

1. State 0 - Wait before starting: The consumer’s need relative to this load will linearly increase during this time until the 
effective load’s start. The evolution of this probability is depicted in Figure 6, where: 
−  

iinit : the initial point in time when State 0 occurs 
− 

iUseT : the period of use of the ith home appliance. This period is equal to the average time between the two successive starts of 
the load. This is also a statistical data, given in Table 1. 

The probability linked to the consumer’s need increases from its initial value 0 to 1 during the period of use of the load.  
2. State 1 - The load is operating: While the load is running, the probability of need equals zero. 
3. State 2 - The load has been shed: When the load has been shed, the need to restart this load is at its maximum, in which case 

the probability is equal to 1.  
4. State 3 - The load cycle is complete: When the period of use is over, the probability is again equal to zero until reaching State 

0. 
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Figure 6: Probability of the consumer's need relatively to different states of a load 

 

4.1.3. Conditional probability of ( ),p D Co Ne  
This term means the conditional probability of the consumer’s decision to start a specific home appliance knowing that he is 

present at home and he needs to use this load. For simplicity’s sake, we suppose that there is a monotonically increasing function 
between the users’ decision and their need: the more important the need, the more probability that the decision takes place. The same 
reasoning is adopted for the relationship between customers’ decisions and their presence. We adopted a multivariate normal 
distribution which is tractable for the simulation purpose (Figure 7).  

( )
( ) ( )11

exp
2

,
2

T
P P

p D Co Ne

m m

p

-é ù
ê ú- - å -
ê úë û=

å
                                                                                                                            (5) 

− ( ) ( )
T

P p Co p Neé ù= ê úë û  

− m : mean vector 
− å : covariance matrix 

The mean vector and the variance matrix are defined so as to have: 

( ) ( ) ( )
( ) ( ) ( )

, 1 while 1

, 0 while 0

p D Co Ne p Co p Ne

p D Co Ne p Co p Ne

ì = = =ïïíï = =ïî ;
                                                                                                                               (6) 

0

1

0.2

0.4

1

0.6

0.8

p(Ne)

0.8

0.5 0.6

p(Co)

1

0.4
0.2

0 0

 
Figure 7: Probability of the consumer’s decision to start a specific home appliance 

 

4.1.4. Probability of ( ) ( ), .p M S D p S  
The term ( ),p M S D  represents the conditional probability that a specific home appliance will be triggered knowing that the 

user has decided to use it and the system permission has been given, while ( )p S  means the probability that the system gives 
permission at each time step. Since the variable representing the system’s permission can only have binary values 0 or 1. At each 
time step, this probability can be determined as following: 

( ) ( ) ( )
( )

if 0 0 , . 0

if 1 ( ) 1 , . ( ) 1   

S p S p M D S p S

S p S p M D S p S

ì = Þ = Þ =ïïíï = Þ = Þ =ïî
                                                                                                                           (7) 

In (7), in the case where the system’s permission is given, we supposed that ( ) ( )( ), 1p M D S p D= " , meaning that a home 
appliance will certainly be started, knowing that the user has decided to use it while the system’s authorization has been given. This 
assumption is made for the sake of the model’s simplicity: it ignores for example the condition of the apparatus (whether healthy or 
broken). 
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4.2. Hazardous aspect 

The effective start of each home appliance depends on a Bernoulli trial conducted on the probability ( ), , ,p M Co Ne S . At each 
time step and for each load, a random variable c  generated by following a uniform distribution will determine the starting of the 
load: 

1. ( ), , ,p M Co Ne Sc £ Þ The load starts 
2. ( ), , ,p M Co Ne Sc > Þ The load does not start 

Ultimately, the higher the probability, the greater the chance that the load will be started. In this way, the unusual and hazardous 
aspect of the consumer’s behavior is henceforth simulated. This implementation constitutes the Monte-Carlo simulation using the 
acceptance-rejection method.  

Based on pre-defined simplifying assumptions and experimental data of consumer behavior, we obtained the stochastic electricity 
consumption model compatible with the DSM approach. We are now ready to carry out the simulation of the whole stand-alone PV 
system.   

5. Analysis of the Benefits of Demand-Side Management In a Stand-Alone Hybrid Photovoltaic System 

5.1. Simulation platform of the SOLEDO system 

The main assumptions adopted for the simulation are: 
− Only the active power flux is considered. 
− The ohmic losses in transmission lines are neglected.  
− Consumers are not equipped with distributed generators and storage. 
− Consumers are supplied with an AC 230V 50 Hz grid. 

However, power electronic converters losses, battery efficiency and ageing, and diesel generator efficiency are all taken into 
account [25, 26]. In this study, the two main performance criteria are targeted: the system operating cost per kWh (also called energy 
cost) and the PV penetration, respectively corresponding to the economic and ecological criteria. 

Firstly, the energy cost is a major indicator of the economic effectiveness of a hybrid PV system. It is defined as the ratio 
between total operating cost and total consumption. In this study, the operating cost has two main components: diesel consumption 
and battery ageing. For the sake of brevity, the detailed computation of the total operating cost is already specified in our earlier 
work [26]. 
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Secondly, the PV penetration is defined as the ratio between PV production and total productivity. This indicator represents the 
effectiveness in which solar resources can be exploited by the system:  
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Unlike most existing work where the day-by-day energy cost is computed based on the system’s daily operating cost, herein, 
we study the SOLEDO system’s long-term operation by means of a one-year period simulation. In our case, the solar energy 
resource cyclically varies for a period of one year. Otherwise, in this simulation the time granularity is 10 minutes. 

The simulation includes the model of PV panels, MPPT DC/AC converters, lead-acid batteries, AC/DC reversible converter 
associated with the batteries and diesel generator. These models have already been developed and described in our earlier work 
[25-27]. Every system’s true scale parameters are given in Table 1. For the calculation of the PV production, real data on 
temperature and sunlight recorded every 10 min for one year at the considered location are provided by Météo France [28]. Then, 
the total PV panel’s surface area is calculated so as to provide on average 18 kWh/ user/ day, which reflects a standard comfort 
level. The rated capacity of the batteries is sized so as to be able to supply all users for 48hr in case of total generation loss, 
equivalent to 1800Ah (Table 1). The rated power of the diesel generator is dimensioned to be able to supply the highest peak load 
while there is no PV production and all battery banks are empty.  

The simulation also includes the control system whose key component is the Local Controller (LC). This component helps to 
dispatch available energy sources in order to meet demand, i.e. the supply-side management. It monitors every real-time 
measurement of the system and makes decisions based on the current batteries’ voltage. The LC’s operation can be described as 
follows. In case of PV underproduction, the power coming from the batteries will be dispatched in priority until their voltage drops  
below _Diesel onV  (Table 1). Then the LC sends a control signal to start the diesel generator. In the extreme case where there isn’t any 
PV production, the battery bank and diesel generator set tanks are both empty, all loads would be shed. Otherwise, in case of PV 
overproduction, the LC manages the batteries’ charging until their voltage reaches _Diesel offV  (Table 1), then eventual operating 
diesel generators will be stopped. And if their voltage continues to increase until it exceeds _ maxBA TV , then the LC will control 
gradually shedding of the PV production. The LC directly controls the PV production (via the MPPT DC/AC converter), the 
charge/ discharge cycle of the batteries (via the AC/DC reversible converter), and the start/ stop sequence of the diesel generator 
(Figure 8) [26].  
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Figure 8: Hysteresis cycle describing the operations of the diesel generator by the Local Controller. 

 
The “load shaping & authorization dispatching” algorithm is implemented inside the Optimizer of the control system as 

mentioned in Section 3. For the time being, this DSM study is exploratory. And due to the high complexity of the hybrid PV 
system, concerning the synthesis of the corrector inside this component (Figure 3), a proportional corrector has been chosen: 

( ) PC s K=                                                                                                                                                                                           (10) 

Table 1 
SOLEDO System Parameters 

SIMULATION PARAMETERS PARAMETERS OF THE GAUSSIAN FUNCTIONS DESCRIBING p(Co) 

simt  365 days Mode 
k

t  
k

A  
k

s  

tD  10 min High day & evening (9 subscribers) 
  1 07:00 AM 0.6 2h 

CMA’S PARAMETERS IN EACH CONSUMER’S HOME 2 12:00 AM 0.2 1h 
*

loadP  20000 W 3 08:00 PM 0.8 4h 
*

DelP  15000 W Double Peak (9 subscribers) 
*

maxW  30000 Wh 1 07:00 AM 0.6 2h 

  2 08:00 PM 0.8 4h 

SOLEDO SYSTEM’S COMPONENTS PARAMETERS Day focus (2 subscribers)    
N 20 1 07:00 AM 0.6 2h 

_ maxPVS  80 kW 2 12:00 AM 0.6 2h 

PV panels’ surface 650 m² 3 08:00 PM 0.8 2h 

_Conv PVS  80 kVA  CONTROLLABLE LOADS 

BA TC  1800 Ah Type Power During 
U se

T  

_Conv BA TS  80 kVA  Washing machine 1200 W 2h Random [ ]48; 96Î h 

_ maxBA TV  460 V  Dishwasher 1050 W 2h Random [ ]24; 48Î h 

_ minBA TV  340 V  Iron 2000 W 30min Random [ ]48; 96Î h 

_Diesel onV  390 V  Vacuum cleaner 1000 W 30min Random [ ]24; 48Î h 

_Diesel offV  430 V  Water pump 1000 W 2h Random [ ]48; 96Î h 

_BA T initV  400 V Tumble dryer 1800 W 2h Random [ ]48; 96Î h 

DieselS  80 kVA Kettle 2000 W 10min Random [ ]24; 48Î h 

  Toaster 850 W 10min Random [ ]24; 48Î h 

ECONOMIC PARAMETERS Kitchen hood  250 W 1h Random [ ]24; 48Î h 
*
BA Tl  0.4 €/Wh Additional heating 2000 W 30min Random [ ]12; 24Î h 
*
Diesell  1.5 €/liter Hair dryer 1000 W 10min Random [ ]12; 24Î h 

  Electric plates 10000 W 30min Random [ ]12; 24Î h 

  Oven 2500 W 30min Random [ ]24; 48Î h 

  Microwave 1500 W 10min Random [ ]12; 24Î h 

  Coffee maker 1000 W 10min Random [ ]24; 48Î h 

  Food mixer 150 W 10min Random [ ]24; 48Î h 
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Figure 9: Daily priority load profile (essential and uncontrollable) of each subscriber. 

Finally, this case study relies on 20 subscribers. Each subscriber has a part of priority loads and 16 typical controllable loads. 
Priority loads are uncontrollable loads such as refrigerators, electronic devices on standby mode and lights, while controllable loads 
are listed in Table 1. The priority load profile is defined as a deterministic curve in Figure 9, while the use of controllable loads is 
determined by using the probabilistic model described in Section 4. According to this definition, the priority electrical consumption 
equals 7.7 kWh/ user/ day. The usage patterns of typical home appliances are provided by measurements, given also in Table 1. 

 
5.2. Results & discussions 

5.2.1. Effects of DSM on the stand-alone hybrid PV system’s performance  

To illustrate the operation of the proposed DSM on the consumption and on the system’s operation (PV production, batteries, 
diesel generators), a comparison between two scenarios, with and without the Optimizer, has been made. The key condition for this 
comparison is that the total consumption in two scenarios must be equal (Table 2), which approximately represents the same service 
rendered to consumers. Figure 10 (a) and (b) shows the system’s variables depending on time, while Table 2 sums up the principal 
performance features for both cases. Without loss of generality, in the case of the Optimizer, the proportional corrector has been set 
to 0.1PK = .  

According to Figure 10 and Table 2, some remarks can be made: 
− The efficiency of “load shifting”: much of the load during PV production’s off-peak hours was moved to high PV production 
hours. Indeed, in Figure 10 (b) and compared to Figure 10 (a), we observe a creation of consumption peaks at midday. High 
consumption periods are more in correlation with the PV production time; and there are fewer loads at night.  
− The enhancement of the solar resource usage: as the consumption is more coincident with the PV generation, the shedding 
conducted on the PV production is reduced in Figure 10 (b), compared to Figure 10 (a). Hence, we can make more use of the 
available solar energy and less waste with DSM. In a stand-alone hybrid system, PV penetration of 50% is considered to be very 
high [29]. 
− The enhancement of the system’s economic and ecological performance: the total operating cost for one year has been reduced by 
11.1% which offers consumers a reduced energy cost of 11.3%. PV penetration is enhanced by +17.4%, for the same service 
rendered to consumers (18.5 kWh/ user/ day). CO2 emissions are reduced by 14,4% (from 27,6 tons/ year to 23,6 tons/ year). 

5.2.2. Discussions on the consumer comfort 

By participating in the DSM program, it could provide economic interest for customers: they may benefit from reduced energy 
costs of 11.3 % for an unchanged total daily consumption (18.5 kWh/day). 

But in return it is clear that they will have to progressively change their consumption habits. Nevertheless, we think that there still 
should be a necessary flexibility for customers to consume while participating in this DSM program. Let’s look deeply into the 
consumption of one subscriber among 20 others. Simulation results in Figure 10 (c) give us an illustration of the system’s 
authorization sequence distributed to a specific user and his load patterns. Without loss of generality, user N°1 is highlighted. There 
is an average of 3 permissions per day. Hence, users can freely schedule and consume their different controllable loads up to 9 hours 
each day. Therefore, this DSM strategy may probably provide some flexibility for consumers. 

Another aspect of the flexibility offered by this DSM scheme is that its use does not consist of totally upsetting customers’ habits. 
According to simulation results in Figure 10 (a), a part of the consumption is naturally beneficial for the system, i.e. the consumption 
under the PV production curve. Therefore, the proposed DSM strategy does not consist of completely changing consumer behavior, 
but instead, encourages people to move some, though not all, of their loads from low PV production hours to high PV production 
hours. And according to the statistical information on the actual consumer’s behavior presented in Section 4, the probability of the 
user’s decision to consume during authorization time intervals has non-zero values, meaning that people may have the ability to 
consume during “appropriate time”. Remember that this DSM algorithm only concerns the use of controllable loads, and that priority 
loads defined by users (which constitutes 41.6% of the total load in this case study) are not subjected to the DSM action. Therefore, 
consumers will not have to sharply change their habits in order to consume ‘better’.  

Due to all the above advantages, we can conclude that “load shaping & authorization dispatching” DSM strategy could be 
beneficial for both utility and consumers of the stand-alone hybrid PV system.  
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(a) 

 
  (b) 

 
(c) 

Figure 10: Load profile and system's operation without DSM (a) and with DSM (b); Consumption and authorization signal linked to the user N°1 (c). 
 

Table 2 
 Comparison Of Some Principal Performance Features Between Two Scenario: With & Without DSM 

Variables Without the Optimizer With Optimizer’s action 
Total consumed energy by all subscribers per year [kWh] 134951 134701 

Consumption per user per day [kWh] 18.5 18.5   

Operating cost per kWh (energy cost) [€ cents/kWh] 17.7 15.7 

Total operating cost [€], where: 23899 21256 

− Operating cost due to the battery ageing [€] 5857 5814 

− Operating cost due to the diesel consumption [€] 18041 15441 

CO2 emissions per year [kg] 27663 23676 

PV penetration 45% 54% 
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5.2.3. Parametric study on the effects of DSM on a stand-alone hybrid PV system’s performance and comparison with published 
data  

In section 5.2.1, the simulation results of the whole system show that the DSM strategy may reinforce the system’s economic and 
ecological performance. In this section, a parametric study will complete this result. Energy cost and PV penetration are criteria that 
depend highly on diesel costs, battery storage capacity, insolation and demand. In this part of the paper, we suppose that the PV’s 
peak power and the number of subscribers at the demand-side are fixed. We will proceed with the variation of diesel costs and with 
total installed battery capacity so as to analyze how those factors can influence the system’s performance in two cases: with and 
without the demand-side management strategy. 

 Although the diesel cost is very different from one country to another, the general trend is that the price of fossil fuel will keep 
rising. First of all, we propose to vary diesel costs from €0.1/liter to €2.9/liter. Since the consumption behavior model is stochastic, 
the simulation was run 3 times for each parameter set. In Figure 11 (a), the dependence of energy cost on diesel prices is plotted. 
Energy cost increases proportionally with diesel costs, however, the rate of increase is reduced by the application of the DSM 
strategy (€0.08/kWh per €/liter) compared to “without DSM scenario” (€0.11/kWh per €/liter). Therefore, the DSM strategy in stand-
alone hybrid PV systems can help lower the rate of energy cost increase as the diesel prices increase. Besides, Figure 11 (b) shows 
that PV penetration is rather independent from the price of diesel. With DSM, PV penetration is enhanced from 45% to 54%. 

Second of all, we propose to vary the installed battery capacity from 225 Ah to 1800 Ah (equivalent to an autonomy of 6hr to 
48hr with regard to the average consumption of 18 kWh/ user/ day). Let us note that in this study, energy cost is computed by taking 
into account only the operating cost (diesel consumption and battery ageing). Hence, the investment cost linked to the installation of 
PV panels, batteries, converters, diesel generators, and other system components is not taken into account in the energy cost. Figure 
11 (c) shows that energy cost (€/kWh) decreases as the battery storage capacity increases; indeed, the rate of energy cost decrease is 
slightly higher with DSM (-€0.0034/kWh for additional 100Ah) than without DSM scenarios (-€0.0026/kWh for additional 100Ah). 
In Figure 11 (d), the PV penetration can be strongly enhanced with greater battery storage capacity. Nevertheless, the rate of PV 
penetration increase is higher (+1.48 % for additional 100Ah) with DSM than without DSM (+1.24 % for additional 100Ah).  

In any case (except in case of very low diesel costs), the application of DSM strategy significantly helps to reduce the energy cost 
and increase the PV penetration of a stand-alone hybrid PV system. 
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Figure 11: Results of the parametric study. (a) and (b): Evolution of energy price and PV penetration with the varying diesel prices; (c) (d): Evolution of these two 
criteria with the varying installed battery storage capacity. 

 
The performances of SOLEDO system versus systems all around the world are summed up in the following table, showing the 

realistic aspect of the simulation results, noting that most systems in literature don’t include any DSM strategies. However, this table 
is not made for the purpose of comparing systems (a real comparison is difficult to obtain because of the difference in adopted 
assumptions and criteria computational methods), but of situating the obtained results. 
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Table 3 
 Stand-alone hybrid PV systems’ performance: some examples from the literature 

System PV peak power 
Diesel 
generator rated 
power 

Batteries’ 
capacity 

Annual 
demand Diesel price Energy cost PV penetration Computational 

software tool 

PV/ diesel/ 
batteries 
(SOLEDO), 
France  

80 kW 80 kVA 1800 Ah (48 h 
of autonomy) 

≈ 13500 kWh 1.5 €/liter 

0.177 €/kWh 
(without DSM) 
0.157 €/kWh 
(with DSM) 

45%  
(without DSM) 
54%  
(with DSM) 

SOLEDO 
simulation 
platform 
(described in 
this paper) 

Wind/ PV/ 
batteries 
United States 
[18] 

230W -- 1200Wh 
single-family 
residential 
home 

-- 

0.181 $/kWh 
(without DSM) 
0.172 $/kWh 
(with DSM) 

Not specified Not specified 

PV/ diesel/ 
batteries 
Saudi Arabia 
[7] 

2.5MW 4.5MW 1 h of 
autonomy 

15943 MWh 0.1 $/liter 0.170 $/kWh 27% HOMER1 

PV/ diesel/ 
batteries 
Turkey [11] 

3 kW 1 kW 6 × 245 Ah 2353 kWh Not specified ≈0.16 €/kWh 79% HOMER 

PV/ diesel/ 
batteries 
Malaysia [12] 

1200 kW 2 × 400 kW 2160 kWh Not specified 0.8 $/liter 0.302 $/kWh 42% HOMER 

PV/ diesel/ 
batteries 
Greece [9] 

4 kW Not specified 600 Ah 4730 kWh 1.1 €/liter 0.657 €/kWh Not specified 
‘‘PHOTOV-
DIESEL III’’ 
algorithm 

 
6. Conclusions and Future Works 

The exploitation of demand-side management (DSM) within a stand-alone hybrid PV system still constitutes a challenging 
problem in order to enhance the profitability of renewable energy. Recently, DSM has been attracting a large interest among 
researchers working in the field of stand-alone hybrid renewable energy systems. 

This paper presented the analysis of stand-alone hybrid PV/ Diesel/ Batteries systems including a new DSM strategy, called “load 
shaping & authorization dispatching”, which can be identified as an enhanced and adapted direct-load control for domestic loads in 
a multi-subscriber configuration. The simulation results showed that the proposed DSM may offer a noteworthy enhancement of 
economic and ecological performance to the hybrid PV system. The key contributions of this study are: 1) the proposal of the new 
DSM algorithm and presentation of the innovative infrastructure for the implementation of this strategy; 2) a new and original model 
for consumer behavior based on a Bayesian network and Monte-Carlo simulation, which permits us to simulate the real-time and 
stochastic aspect of the demand; 3) utilization of real data on meteorological conditions and consumers’ statistical data; 4) analysis of 
the benefits that the DSM may give to both the system and its users. 

The simulation relies on 20 users, each one has a part of the priority load and controllable loads. The numerical results showed 
that the application of DSM may offer a notable enhancement of economic and ecological performance to the hybrid PV system. 
Indeed, customers may experience the benefits of a reduced energy cost of 11.3 % for an unchanged daily consumption (18.5 
kWh/day). Meanwhile, the solar resource is better exploited with photovoltaic penetration rising to 54% in this case study. We have 
also discussed the consumer comfort, and the flexibility for them to consume according to their usual habits by subscribing to this 
DSM program. Moreover, a parametric study on the benefits of DSM to stand-alone hybrid PV system has been carried out. 
Parametric results showed that the benefits from DSM can be better emphasized when the diesel prices rise and/ or the total installed 
battery capacity increases.  

To take a broader view, the idea of setting a desirable set point for aggregate load during critical situations, as developed in this 
article, may constitute an interesting way of improving the efficiency of DSM deployment in smart grids nowadays. In addition, this 
new DSM strategy would also be of interest for off-grid micro-grids managers and consumers to share the available limited energy 
resource.  

As we are in the design phase of the high efficiency stand-alone hybrid PV systems, this paper aims mainly at developing the 
novel DSM strategy for this context, and to analyze, through simulation, its benefits with respect to the system’s performance and the 
user’s comfort. Our work continues to progress toward the full development of the system. At the SATIE-CNRS laboratory, 
experimental conditions are being developed with the goal of validating the effectiveness of the proposed DSM strategy (Figure 12). 
Besides and interestingly, “load shaping & authorization dispatching” is a compatible approach with the pricing mechanism 
approach as well: energy price fluctuations can be introduced at different moments of the day so as to motivate people to even more 
effectively adapt their consumption behavior. In this case, the complexity of the Bayesian network may increase to take into account 
the consumer behavior in response to energy prices.  

 

                                                           
1 HOMER is software for the simulation and optimization of distributed power generation systems developed by the National Renewable Energy Laboratory 

(NREL) 
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Figure 12: Construction of the SOLEDO system’s test bench: from left to right, 2kWp PV systems, MPPT inverters, 10 kWh Lithium-Ion battery storage at the 
SATIE-CNRS laboratory. 
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