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aArts et Métiers ParisTech, Institut de Mécanique et d’Ingénierie (I2M) de Bordeaux CNRS UMR 5295,
F-33400 Talence, France

bStructural Optimization for Lightweight Design, Hamburg University of Technology,
Hamburg, Germany

cArts et Métiers ParisTech, Laboratoire Angevin de Mécanique, Procédés et innovAtion (LAMPA),
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Abstract

The problem of the identification of the variability characterising the elastic properties of
the constitutive phases of a composite (at the microscopic scale) is addressed in this work.
To this purpose, the information contained into the probability distribution of the first
buckling load of a macroscopic composite specimen is considered, in order to develop a
multi-scale identification strategy (MSIS).

The goal of the proposed MSIS is achieved by solving an inverse problem: the minimi-
sation of the distance between the numerical and the reference buckling response of the
plate, at the macroscopic scale, in terms of statistical moments. Furthermore, thermody-
namic constraints are considered to ensure the positive definiteness of the stiffness tensor
of each constituent of the composite.

The proposed strategy relies on: (a) a semi-analytical homogenisation method, to
perform the microscopic / mesoscopic scale transition; (b) the Monte-Carlo technique
and an Artificial Neural Network to determine the material properties variability; (c) a
general hybrid optimisation algorithm able to deal with optimisation problems defined
over a domain of variable dimension to perform the solution search. The effectiveness of
the MSIS is proven through two meaningful benchmarks.

Keywords: Composite materials, Homogenisation, Buckling, Uncertainty quantification,
Surrogate model, Inverse problems, Optimisation

1. Introduction

Composite materials are nowadays widely used into mechanical components or engi-
neering systems and structures belonging to different fields: from automotive to aerospace,
from naval to biomedical. They are mainly employed due to their outstanding strength-
to-weight and stiffness-to-weight ratios: these features are of paramount importance for
lightweight applications, such as aircraft and space vehicles architectures [1]. Composites
can be used to build integrated structures because both stiffness and strength can be tai-
lored point-wise according to the requirements of the problem at hand. This feature allows
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for preserving structural continuity without introducing complex structural elements (and
the related manufacturing aspects) by opportunely meeting geometrical and mechanical
design requirements.

In the literature, research studies exploiting refined numerical and experimental tech-
niques are increasingly used to characterise the mechanical behaviour of composite materi-
als [2–4]. Nevertheless, especially in large-scale production, a large amount of uncertainty
arises from unavoidable manufacturing imperfections for both geometrical and material
properties. Intralaminar and/or matrix voids, excess of resin between adjacent laminae
and incomplete cure of resin are only some examples: environmental factors and uncertain
operational aggravate this issue.

As outlined in [5], the uncertainties are classified in three main categories: aleatory
(variability of structural parameters), epistemic (lack of adequate information about the
system) and prejudicial (absence of stochastic characterisation of the structural system).
Composite structures are affected by all three forms of uncertainty and the characteri-
sation of parameters tuning the variability law becomes of prime importance. However,
experimental methods commonly used to characterise the material properties require a
huge number of standard ASTM tests, if used for uncertainty characterisation, which are
destructive and expensive [6]. Moreover, these tests are only suited to evaluate mesoscopic
uncertainties, in terms of material and geometrical properties of the lamina without provid-
ing any information about the variability characterising the properties of the constitutive
phases at the microscopic scale.

Standard tests that can be carried out at the mesoscopic scale include the tension test
for flat specimens (ASTM D3039 [7]), the three/four points bending test (ASTM D790 [8]),
the compression tests (shear loading methods ASTM D3410 [9]) and the shear tests (in-
plane shear tests ASTM D5379 [10]-D7078 [11]-D3518 [12], out-of-plane - interlaminar
shear tests ASTMD2344 [13]-D5379). As far as the microscopic scale is concerned, only few
standard experimental tests can be found in the literature: single fibre tensile test (ASTM
D3379 [14]) and matrix tensile test (ASTM D638 [15]) to characterise the Young’s elastic
modulus of the fibre in the longitudinal direction and that of the matrix, respectively. In
order to characterise the rest of the constitutive phases elastic properties only non-standard
tests are available in the literature: pull-out [16], micro-indentation [17], fragmentation
tests [18], etc. These tests are not able to evaluate the full 3D set of the material properties
of the constituents and they are very difficult to be carried out, due to the fibres diameter
size.

In order to get statistically representative results, the aforementioned tests must be
performed a huge number of times. Of course, this implies significant costs (and time)
and the variability results (e.g. mean and standard deviation of material properties) are
strongly affected by the errors introduced to carry out the experimental campaign, espe-
cially for those tests conducted at the microscopic scale. To this purpose, Sepahvand et al.
developed the inverse stochastic method based on the general polynomial chaos (gPC) [19–
25] to identify uncertain lamina elastic parameters from experimental modal data. Further
examples of probabilistic methods are the parametric probabilistic approach [26] and the
Bayesian inference techniques wherein all information are included into a prior distribu-
tion model [27–30]. However, in the case of composite structures, the uncertainty affecting
the ply elastic behaviour is strictly related to the variability of the elastic properties of
the constitutive phases. To the best of the authors’ knowledge, only few works on the
identification of the variability parameters characterising the material properties of the
microscopic constituents of the composite are available in the literature [31]. The major-
ity of researches in this field are devoted to the characterisation of the material properties
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uncertainty parameters at the ply-level [32–35].
The research activity here presented focuses on the development of a multi-scale iden-

tification strategy (MSIS) which smartly exploits the data resulting from macroscopic
buckling tests to characterise the uncertainty of the constitutive phases elastic properties
at the microscopic scale. The proposed MSIS has been initially proposed in [36] to identify
the elastic properties of the composite (at each relevant scale), starting from the harmonic
response of the multilayer composite plate at the macroscopic scale. Here, the MSIS is ex-
tended to the multi-scale characterisation of the variability related to the elastic properties
at the microscopic scale of the composite.

The MSIS is characterised by some original features. Firstly, it relies on a particu-
lar hybrid optimisation tool used to perform the solution search, which is an in-house
code made by the union of a special genetic algorithm (GA), i.e. ERASMUS (Evolution-
aRy Algorithm for optimiSation of ModU- lar Systems) developed by Montemurro [37]
(which is able to deal with problems characterised by a number of design variables that
can change during the optimisation process [38]) and of a gradient-based one, belonging
to the MATLABR©fmincon family [39]. Secondly, the MSIS makes use of the Chamis’s
micro-mechanical model [40, 41] to perform the microscopic / mesoscopic scale transition.
Finally, the MSIS makes use of the Monte Carlo framework that allows describing the
statistical nature of the elastic response. To improve the efficiency of the Monte Carlo
technique (i.e. to minimise the computational effort related to such a method), an Ar-
tificial Neural Network (ANN) [41] is developed as a surrogate model: the probability
distribution of the first buckling load is predicted starting from the probability density
functions of the elastic properties of the constituent phases. The effectiveness of the MSIS
is proven by means of two meaningful benchmarks.

Concerning the state-of-the-art of the approaches combining optimisation and uncer-
tainty, three specific research areas can be identified in the literature, as outlined in [42]:
reliability-based optimisation (RBO), robust design optimisation (RDO) and model up-
dating. The RBO technique concerns the solution of an optimisation problem in which
the main goal is to design for safety by considering extreme events: common objective
functions are defined by the structural weight and the constraints are both deterministic
and probabilistic (e.g. probability of failure of the structure) [43–46]. The RDO method
is usually implemented in order to minimize the influence of stochastic variations on the
mean design [47]. Finally, the typical goal of the model updating technique is to reduce
the differences between model prediction and data from tests [48, 49]. In this context, the
MSIS can be considered as a model updating technique that allows identifying the elastic
properties of the composite (and the related uncertainty) at each scale. This information
can be later used in the framework of both RBO and RDO approaches.

The paper is organised as follows. The problem description and the MSIS are presented
in Section 2. The analytical and the finite element (FE) models developed at each pertinent
scale are shown in Section 3. The uncertainty microscopic quantification with the Monte-
Carlo technique and the implemented ANN are described in Section 4. The sensitivity
analyses concerning the meta-model of the considered benchmarks are presented in Section
5, while the mathematical formulation of the inverse problem is discussed in Section 6.
The numerical results provided by the MSIS are given in Section 7. Finally, Section 8 ends
the paper with conclusions and perspectives.
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2. Multi-scale identification of the variability of composite elastic properties

2.1. The multi-scale identification strategy

The goal of the MSIS is the characterisation of the variability related to the elastic
properties of the microscopic constituents of the composite, by using only the information
contained into the statistical sample of the first buckling load of the multilayer plate at
the macroscopic scale. In this way, only cheap, standard tests have to be realised at the
macroscopic scale, with the main advantage of reducing the characterisation time, the
associated costs and the necessity of specialised skills.

The reference macroscopic response can be evaluated either by means of an extensive
experimental campaign of buckling tests or through a wide numerical campaign of tests on
a reference configuration of the multilayer plate. To prove the effectiveness of the MSIS,
this latter case has been considered in this work.

To this purpose, the problem of characterising the variability related to the elastic
properties of the fibre and the matrix is stated as a multi-scale constrained inverse prob-
lem. Of course, the numerical models involved in the MSIS are characterised by some
fundamental hypotheses. As far as the microscopic scale is concerned, the main hypothe-
ses are: (a) linear elastic isotropic behaviour for the matrix; (b) linear elastic transversely
isotropic behaviour for the fibre; (c) the matrix / fibre interface is perfect; (d) the damp-
ing capability of both phases is neglected; (e) the uncertainty of the elastic properties is
described by means of a Gaussian probability distribution.

At the laminate macroscopic scale the following hypotheses hold: (a) the constitutive
lamina has a linear elastic transversely isotropic behaviour; (b) the interface between
two adjacent plies is perfect; (c) the damping capability of the lamina is neglected; (d)
the kinematics of the laminate is described by the first-order shear deformation theory
(FSDT).

The general flow chart of the MSIS is illustrated in Figure 1. The details of the
optimisation algorithms employed within the MSIS are given in [36, 37].

2.2. Problem description

The proposed multi-scale inverse approach for uncertainty characterisation is here ap-
plied to a reference multilayer composite plate made of unidirectional laminae: the relevant
geometrical parameters are shown in Figure 2. Two different benchmarks are investigated
to evaluate the identification capability of the proposed MSIS. In particular the geom-
etry of the reference laminate is the same for both cases, the only difference being the
considered stacking sequence, i.e.

• benchmark 1 (BK1) [0◦/− 45◦/45◦/90◦]S;

• benchmark 2 (BK2) [45]8.

For both laminates, the thickness of the elementary lamina is tply = 0.282 mm. The
orientation angle of the generic ply is positive according to counter-clockwise rotation
around the z-axis: the x-axis indicates the 0◦ orientation, as illustrated in Figure 2.

The constitutive ply is made of carbon-epoxy fibre-reinforced Hexcel T650/F584 pre-
impregnated tapes: its elastic properties are listed in Table 1. The mean values are taken
from [50, 51], while the standard deviation and the relative shapes of the probability density
functions are not available experimentally for both the microscopic and the mesoscopic
material properties. To this purpose, a Gaussian probability density function χi = χi (xi)
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Figure 1: Flow chart of the MSIS.

is selected as a reference distribution for describing the uncertainty of the generic property
xi at the scale of the constituent phases. The analytical formula of such a distribution is

χi (xi) =
1

σ (xi)
√
2π

e

(xi − µ (xi))
2

2σ2 (xi) , with xi ∈ ℜ. (1)

In particular, the Gaussian distribution involves two parameters, i.e. the mean value
µ (xi) and the variance σ2 (xi) of the i-th material property xi. If xij is the j-th value of xi
occurring with a probability pij , the relative mean value and the variance can be expressed
as:

µ (xi) =

Ni
∑

j=1

xijpij ,

σ2 (xi) = µ (βi (xi)) ,

βi (xi) = (xi − µ (xi))
2 .

(2)

Usually, the coefficient of variation COV (xi) is introduced as a standard measure of
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Figure 2: Geometrical parameters of the reference multilayer composite plate (dimensions are in [mm]).

the dispersion of the probability distribution function:

COV (xi) =
σ (xi)

µ (xi)
. (3)

Fibre Matrix

Ef
1 [GPa] Ef

2 [GPa] νf12 νf23 Gf
12 [GPa] Em [GPa] νm VF

µ (xi) 276 17.3 0.25 0.428 11.24 4.14 0.35 0.555
σ (xi) 27.6 1.73 0.025 0.0428 1.124 0.414 0.035 0.0555

Table 1: Mean value and standard deviation of the elastic properties for the fibre T650/35 − 3K and the
matrix F584 (the mean values are taken from [50, 51]).

In this work, the reference distribution of the first buckling load of the structure is
determined by means of a multi-scale numerical analysis on the reference configuration
of the plate for both benchmarks. In particular, the reference material properties of the
constitutive phases, listed in Table 1, are implemented, firstly, to compute the reference
distribution of the ply elastic properties. Secondly, the resulting distribution of the lamina
elastic properties is used to compute the reference distribution of the first buckling load
of the composite plate, for each considered benchmark (as described in Section 7.1).

3. Analytical and numerical models at different scales

3.1. Microscopic / mesoscopic scale transition: the Chamis’ model

Multi-scale modelling strategies are widely used to assess the behaviour of the compos-
ite at each relevant scale [52, 53]. The transition from the scale of the constitutive phases
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(microscopic scale) to that of the elementary ply (mesoscopic scale) is performed by means
of a homogenisation calculation. This phase can be performed either numerically, e.g. by
implementing the well-known strain energy homogenisation technique of periodic media
(SEHTPM) [54], or analytically by using a suitable homogenisation scheme for composites,
as the Chamis’ model [40]. As discussed in [36], the SEHTPM has already been integrated
into the MSIS to determine the equivalent elastic behaviour of general periodic materials
with complex microstructures. Despite its general nature, the SEHTPM can be quite time
consuming (depending on the problem at hand) since the equivalent elastic properties at
the upper scale are the result of six static FE analyses (i.e. the equivalent stiffness tensor
of the homogenised material is evaluated column-wise). When dealing with uncertainty
quantification, the SEHTPM requires a strong computational effort to evaluate the prop-
agation of the uncertainty from the microscopic scale to the mesoscopic one. Therefore, to
reduce the computational cost an efficient analytical homogenisation scheme has been con-
sidered in this work, i.e. the aforementioned Chamis’ model. Moreover, this choice allows
avoiding the integration of further FE model-related parameters like the mesh size. In par-
ticular, according to the Chamis’ model, the ply engineering constants can be determined
as follows:

E1 = VFE
f
1 + (1− VF )E

m,

E2 = E3 =
Em

1−
√
VF

(

1− Em

Ef
2

) ,

G12 = G13 =

Em

2 (1 + νm)

1−
√
VF









1−

Em

2 (1 + νm)

Gf
12









,

G23 =

Em

2 (1 + νm)

1−
√
VF



1−
Em

(

1 + νf23

)

Ef
2 (1 + νm)





,

ν12 = ν13 = νm + VF

(

νf12 − νm
)

,

ν23 =
E2

2G23
− 1.

(4)

In Eq. (4), Ef
1 , E

f
2 , G

f
12, ν

f
12, ν

f
23 are the elastic constants of the transversely isotropic

fibre, while Em and νm are the Young’s modulus and the Poisson’s ratio of the isotropic
matrix. The volume fraction of the fibre is indicated as VF . Moreover, the homogenised
elastic properties of the ply are denoted as E1, E2, E3, G12, G13, G23, ν12, ν13, ν23.

3.2. Mesoscopic / macroscopic scale transition: the finite element model

The distribution of the first buckling load of the multilayer plate is the result of an
eigenvalue buckling analysis which is carried out by considering the distribution of the ply
elastic properties evaluated by means of the Chamis’ model. The FE model is developed
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into the AbaqusR© environment [55]: the AbaqusR© shell layered element S4R having four
nodes and six degrees of freedom (DOFs) per node has been used to build the FE model
of the multilayer plate. The kinematics of the element is described in the framework of
the first-order shear deformation theory (FSDT) [1]. Of course, this type of element is
well suited to describe the buckling strength of the laminate when its aspect ratio is in
the range [20, 100]. For the problem at hand the multilayer plate is characterised by an
aspect ratio AR = 44.29. Figure 3 illustrates the loads and boundary conditions (BCs)
for the proposed benchmarks.

Figure 3: Loads and boundary conditions (BCs) of the macroscopic FE model.

As far as the mesh size is concerned, a sensitivity study of the first buckling load of the
laminate to the number of elements (not reported here for the sake of brevity) has been
performed: a model with 3654 DOFs is sufficient, to evaluate the first buckling load of the
composite plate. The mesh of the FE model is illustrated in Figure 4.

Z

Y

X

Figure 4: Mesh of the macroscopic FE model.

8



4. Probabilistic modeling and uncertainty quantification

4.1. Monte Carlo analysis

The Monte Carlo (MC) method [41] is the most straightforward and robust one, among
the popular methods used for calculating the response variability in stochastic structural
mechanics. Based on the law of large numbers, MC approximates the statistical moments
(e.g. mean, variance, etc.) of the quantity of interest (QoI), by performing a sufficient
number of model evaluations, while sampling random, independent variables from the
input space. The generated finite sample of the QoI is then post-processed, to obtain
the unbiased statistics of the response estimates. In mathematical terms, the first and
second moment described in Eq. (2) for the discrete case, can be approximated after N
realizations as:

µ (r) =
1

N

N
∑

j=1

rj ,

σ2 (r) =
1

N − 1

N
∑

j=1

[rj − µ(r)]2 .

(5)

where r = {ri, i = 1, ...N} is the sample of the response QoI (e.g. displacement, force,
bucking load etc.). Although MC can practically handle every problem, regardless of the
complexity of the response surface topology, the large number of required model evalua-
tions sets the method prohibitive for high-fidelity models (e.g. FE models), especially for
applications of reliability or uncertainty quantification.

4.2. Variance-based global sensitivity analysis

In order to understand the cause-and-effect relationship between the input variables
and the response, a classification of the random parameters in terms of output variability
can be achieved through a global sensitivity analysis (GSA). The total variance of the
QoI is decomposed into parts induced from single input parameters, but also potential
interactions of the latter. Thus, the uncertain parameters can be qualitatively quantified,
and the dominating ones can be later used into the models involved into the optimisation
process introduced in Section 6.

Let f(x1, x2, ... xk) be a square integrable scalar function over the k-dimensional unit
hypercube Ωk model. According to Sobol [56], f can be decomposed into sums of increasing
dimensions as follows:

f = f0 +
∑

i

fi +
∑

j>i

fij + ...+ f12...k, (6)

where fi = fi(xi), fij = fij(xi, xj) etc. After several algrebraic manipulations (the reader
is referred to [56] or [41] for details), the final expression for the variance decomposition
is reached:

Var(y) =

k
∑

i=1

Vi +

k
∑

j>i

Vij + ...+ V12...k, (7)

where Vi = Varxi
(Ex∼i

(y|xi)), (8)

Vij = Varxij
(Ex∼ij

(y|xi, xj))− Vi − Vj , etc. (9)
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The x∼i notation indicates the set of all variables except xi. By dividing the term of
interest by the unconditional variance Var(y), the first-order Sobol index is obtained as a
fractional contribution:

Si =
Vi

Var(y)
. (10)

In the case of non-analytical models, expressions such as Eq. (8) or (9) must be
approximated via a sampling (e.g. Monte Carlo) procedure. Firstly, two (N, k) matrices
with random samples from the input space are generated, namely A and B, with N being
the number of realizations and k the stochastic dimension of the problem. After that,
a third matrix Ai

B is formed, identical to A, except its ith column which is replaced by
the ith column of B (i = 1, ..., k). Finally, the model is evaluated with respect to the
aforementioned input matrices, according to the following estimator for the first-order
Sobol index, for every input parameter i:

Vi = Varxi
(Ex∼i

(y|xi)) ≈
1

N

N
∑

j=1

f(B)j(f(A
i
B)j − f(A)j). (11)

It is noteworthy that there are several other options available, regarding estimators
of this sort [56]. A drawback of GSA, is that formulae like Eq. (11) require excessive
realizations in order to converge (order of 104 or 105). In the context of computationally
expensive simulations, such as FE analyses, a possible remedy is the emulation of the
input-output relationship via a surrogate model, as it is described in the next section.

4.3. Surrogate modelling with Artificial Neural Networks

Surrogate models (or metamodels) are mathematical functions able to mimic the re-
sponse of a model, when trained with a relatively small training set of model evaluations.
Afterwards, the demanding model can be substituted from these inexpensive proxy models,
for applications requiring an excessive amount of simulations (e.g. optimization, reliabil-
ity, GSA etc.) Popular choices, among relevant research studies, are ANNs, Gaussian
processes (or Kriging), polynomial chaos expansions (PCE) and support vector machines
(SVM), as outlined in [57].

In this work, a surrogate is appropriately trained to emulate the multi-scale modelling
strategy described in Section 3. The material properties of the different phases at the
micro-scale, listed in Eq. (15), are used as input, while the output response is the plate
first buckling load. The aim of the surrogate is twofold. Firstly, it is used for the GSA and
the evaluations required by the estimator of Eq. (11). Secondly, as explained in Section
1, it is used into the multi-scale identification strategy to boost the optimisation process.
Concerning the surrogate type, ANNs are selected in this study, mostly because, despite
their versatility and their good generalization, they only have few parameters to be tuned
within their training procedure, which is beneficial for the optimisation algorithm.

In particular, an ANN is a parallel information-processing system, consisting of at least
three layers: the input, the output and one (or more) hidden layer. The nodes inside every
layer are called neurons and they are linked by the so-called synapses. When information
is circulated only in a single direction, the network is called feed-forward. An illustration of
a typical single-layer, feed-forward ANN configuration is shown in Fig. 5. It is noteworthy,
that the input neurons (squares) connect the network to the external environment, without
further processing information, while the hidden layer neurons (circles) process information
from a previous layer and feed it to the next one.
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The learning procedure of an ANN is based on a general function optimisation problem,
where the weight parameters wij assigned to every synapse are the design variables, and
the objective function is the sum squared error between the predicted output t(wij) and
the target output y0:

E(wij) =
1

2

∑

[t(wij)− y0]
2. (12)

During the process, the weights are updated through an iterative procedure, until the
desired error level is achieved or the maximum number of cycles is reached:

w
(t+1)
ij = w

(t)
ij +∆wij, (13)

where ∆wij is the correction of the weight at the tth learning step. In order to avoid
overfitting, a fraction of the sample data is used as a validation dataset and the error is
monitored over the iterations to stop the training early enough. Regarding the internal
process in every neuron, each input from the previous neuron is placed into a weighted
sum as the following:

zj =

k
∑

i=1

xiwij + b, (14)

which then goes through an activation function where the nonlinearity of the decision
boundary is introduced (usually of sigmoid type). The term b in the previous equation is
a bias term allowing the neuron to cover a broader range. For more details on ANNs, the
interested reader is addressed to [41].

5. Sensitivity analysis of the meta-model

5.1. Global Sensitivity Analyses for the two benchmarks

The implementation of the Artificial Neural Network, described in Section 4.3, allows
to apply the variance-based GSA described in Section 4.2, since the computational effort
needed to perform the convergence of the Sobol index is negligible. All the material and

Figure 5: Architecture of a single layer feed-forward neural network.
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geometrical variables of the constitutive phases with the related uncertainty are consid-
ered here: through the total output variance decomposition, it is possible to identify the
dominant microscopic input parameters, from a statistical point of view.

According to the hypotheses given in Section 1, a total of eight variables can be iden-
tified for the microscopic constituents of the composite, i.e.

x =
{

Ef
1 , E

f
2 , G

f
12, ν

f
12, ν

f
23, E

m, νm, VF

}

. (15)

The related mean and standard deviation values are summarised in Table 1, in which,
a COV equal to 10% is set, for all the parameters concerning the microscopic scale. The
causes at the basis of this uncertainty are various and often very difficult to be identi-
fied. For example, the uncertainty of the fibre volume fraction is often related to the
manufacturing process parameters.

The results of the variance-based GSA for every benchmark are shown in Figures 6a
and 7a, in terms of the evolution of the Sobol index, defined in Eq. (11), over the number
of simulations. It is possible to observe that the Sobol index converges after around 15000
simulations, for both benchmarks.
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Figure 6: (a) Convergence of the Sobol index and (b) sensitivity analysis results, for the first benchmark
(BK1).

The pie diagrams shown in Figures 6b and 7b highlight a result of paramount impor-
tance: the sensitivity of the first buckling load to the material and geometrical properties
of the constitutive phases (and the related uncertainty as well) is strongly influenced by
the nature of the stacking sequence. In particular, for benchmark BK1, which is charac-
terised by a quasi-isotropic symmetric stack, the sensitivity of the first buckling load to
the elastic properties Ef

2 , G
f
12, ν

f
12, ν

f
23, E

m, νm is negligible. Accordingly, only Ef
1 and

VF affects the laminate behaviour in terms of first buckling load.
Conversely, since the multilayer plate of benchmark BK2 is characterised by an angle-

ply orthotropic symmetric stacking sequence, the first buckling load is influenced by the
following properties: Ef

1 , E
f
2 , E

m and VF . The sensitivity of the laminate buckling strength
to the other elastic properties remains negligible also for this configuration of the plate.

According to the aforementioned remarks, the number of parameters (characterising
the material and geometrical properties uncertainty) to be identified varies with the con-
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Figure 7: (a) Convergence of the Sobol index and (b) sensitivity analysis results, for the second benchmark
(BK2).

sidered benchmark. These aspects are discussed in detail in the following Section.

6. Mathematical formulation of the inverse problem

6.1. Optimisation variables, objective function and constraints

The multi-scale identification problem is stated as a classical constrained inverse prob-
lem: the identification of the elastic properties variability of the composite constitutive
phases can be achieved by minimising the Euclidean distance between the reference dis-
tribution of the buckling load at macroscopic scale and that resulting from the numerical
simulation.

As discussed in Section 5, the sensitivity of the buckling load distribution to the mate-
rial and geometrical parameters of the microscopic constituents is strongly affected by the
stacking sequence of the laminate. Therefore, the number of optimisation variables (i.e.
the parameters of the distribution law, for each property at the microscopic scale, to be
identified) depends upon the considered benchmark. As a result of the GSA discussed in
Section 5, the parameters tuning the distribution of the most relevant elastic and geomet-
rical properties of the constitutive phases can be arranged in the vector of design variables
ξα, (α = BK1,BK2) as follows:

ξBK1 =
{

µ
(

Ef
1

)

, σ
(

Ef
1

)

, µ (VF ) , σ (VF )
}

, (16)

ξBK2 =
{

µ
(

Ef
1

)

, σ
(

Ef
1

)

, µ
(

Ef
2

)

, σ
(

Ef
2

)

, µ (Em) , σ (Em) , µ (VF ) , σ (VF )
}

. (17)

Accordingly, benchmark BK1 is characterised by four design variables, whilst benchmark
BK2 has eight design variables. In both cases, the elastic properties excluded from the
vector of design variables (due to the negligible sensitivity of the first buckling load to
these quantities) have been set to the reference mean values listed in Table 1.

Each design variable can vary into a suitable definition domain which depends upon
the considered benchmark. Lower and upper bounds of design variables for benchmarks
BK1 and BK2 are given in Tables 2 and 3, respectively.
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Microscopic parameters Lower bounds Upper bounds

µ
(

Ef
1

)

[GPa] 220.8 331.2

σ
(

Ef
1

)

[GPa] 22.08 33.12

µ (VF ) 0.444 0.666
σ (VF ) 0.0444 0.0666

Table 2: Benchmark BK1: bounds of the design variables.

Microscopic parameters Lower bounds Upper bounds

µ
(

Ef
1

)

[GPa] 220.8 331.2

σ
(

Ef
1

)

[GPa] 22.08 33.12

µ
(

Ef
2

)

[GPa] 13.84 20.76

σ
(

Ef
2

)

[GPa] 1.384 2.076

µ (Em) [GPa] 3.312 4.968
σ (Em) [GPa] 0.3312 0.4968

µ (VF ) 0.444 0.666
σ (VF ) 0.0444 0.0666

Table 3: Benchmark BK2: bounds of the design variables.

Moreover, in order to ensure the positive definiteness of the stiffness tensors of both
the lamina (mesoscopic scale) and the constitutive phases (microscopic scale) [36], every
combination of elastic properties generated through the Monte-Carlo technique, must sat-
isfy a set of non-linear constraints g (ξα) ensuring the positive definiteness of the stiffness
tensors [36]. Of course these constraints must be imposed at the lamina-level and at the
constitutive phases-level. For the elementary lamina, these constraints read:

g1(ξ
α) = |ν12(ξα)| −

√

E1(ξ
α)

E2(ξα)
< 0,

g2(ξ
α) = |ν23(ξα)| −

√

E2(ξ
α)

E3(ξα)
< 0,

g3(ξ
α) = 2ν12(ξ

α)ν13(ξ
α)ν23(ξ

α)
E3(ξ

α)

E1(ξα)
+ ...

+ν12(ξ
α)2

E2(ξ
α)

E1(ξα)
+ ν23(ξ

α)2
E3(ξ

α)

E2(ξα)
+ ν13(ξ

α)2
E3(ξ

α)

E1(ξα)
− 1 < 0,

(18)

whilst for the constitutive phases they can be written as

g4(ξ
α) = |νf12| −

√

√

√

√

Ef
1 (ξ

α)

Ef
2 (ξ

α)f
< 0,

g5(ξ
α) = |νf23| − 1 < 0,

g6(ξ
α) =

Ef
1 (ξ

α)

Ef
2 (ξ

α)

[

2νf23

(

νf12

)2
+ 2

(

νf12

)2
]

− 1 < 0.

(19)
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The objective function Φ(ξα) is defined as the Euclidean distance between the reference
and the numerical mechanical response, in terms of the probabilistic parameters µbuckling

and σbuckling of the first buckling load. In particular, this objective function is a least-
square error estimator defined as:

Φ(ξα) =

(

µbuckling (ξ
α)− µref

buckling

µref
buckling

)2

+

(

σbuckling (ξ
α)− σref

buckling

σref
buckling

)2

. (20)

Finally, the multi-scale inverse problem is stated as a classical CNLPP as:

min
ξα

Φ (ξα) ,

subject to:

gj (ξ
α) ≤ 0, j = 1, ..., 6.

(21)

6.2. The numerical strategy

Problem (21) is a non-convex CNLPP, in terms of constraints and objective function.
The number of parameters, describing the variability of material and geometrical proper-
ties of the constitutive phases, depends on the considered benchmark: the first benchmark
(BK1) allows to characterise four parameters, while the second benchmark (BK2) allows to
characterise up to eight parameters. Of course, the non-convexity of problem (21) implies
the lack of uniqueness of its solution [36].

Taking into account all these aspects, the CNLPP of Eq. (21) is solved by means
of a hybrid optimisation tool based on the GA ERASMUS (EvolutionaRy Algorithm for
optimiSation of ModUlar Systems), which is interfaced with the MATLABR© fmincon al-
gorithm [39], as shown in Figure 8. The GA ERASMUS has already been used successfully
to solve different classes of real-world engineering problems [58–66].

Figure 8: Optimisation strategy for the resolution of problem (21).
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The procedure illustrated in Figure 8 is articulated in two phases. The first one repre-
sents the global solution search and it is carried out through the GA ERASMUS: the goal
is to find potential suboptimal solution which will constitute the starting point for the
gradient-based optimisation algorithm. The genotype of the individual is characterised by
one chromosome and four genes for the first benchmark (BK1) and eight genes for the
second benchmark (BK2).

The second step is the local optimisation phase and it is performed by by means of the
MATLABR© fmincon tool. The selected optimisation solver is the active-set algorithm,
i.e. a Quasi-Newton method, in which an approximation of the Hessian matrix is used to
compute the descent direction [39].

Each optimisation algorithm has been interfaced to the ANN, presented in Section 4,
which emulate both the homogenisation phase and the eigenvalue buckling analysis. The
ANN has been employed in order to reduce significantly the computational effort.

In particular, the output of the ANN is the current value of both the objective and
the constraint functions which are passed to the optimisation tool in order to execute the
optimisation operations: the new microscopic variability parameters and these operations
are repeated until the user-defined convergence criteria are met.

7. Numerical results

7.1. Buckling response for the reference configuration

The multi-scale inverse problem defined in Eq. (21) requires the computation of the
objective function Φ(ξα) of Eq. (20): this function depends upon the buckling reference
response, thus this quantity must be evaluated before starting the optimisation process.
Due to the difficulty to get experimental data in terms of variability of the microscopic
material properties and the related buckling probability distribution at the macroscopic
scale, a numerical test is performed in order to obtain the reference data.

To deal with this task the reference variability parameters of the material and geomet-
rical properties of the microscopic constituent, listed in Table 1 are considered for each
benchmark.

Firstly, a Monte-Carlo simulation is performed to generate randomly a statistically
representative number of samples. Secondly, for each sample, the homogenisation step is
performed by using the Chamis’ model, described in Section 3, to get the lamina elastic
properties that are used into the macroscopic FE model, to compute the first buckling load
of the plate. After carrying out these operations for the whole set of samples, it is possible
to determine the mean value and the relative COV of the first buckling load, according to
Eqs. (2) and (3), respectively. The variability parameters of the reference first buckling
load distribution are then summarised in Table 4: these quantities have been obtained by
performing 1000 realisations.

Benchmark µ
(

σI
buckling

)

[MPa] COV
(

σI
buckling

)

BK1 83.41 0.12
BK2 59.3 0.098

Table 4: Variability parameters of the reference first buckling load.

Furthermore, a small sub-set of 20 realisations have been used to train the ANN,
for each benchmark. In order to check the accuracy of the ANN, 50 samples generated
with the Monte-Carlo technique have been selected as a validation set and a comparison
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between them and the results provided by the ANN is carried out, as shown in Figure 9
(only the results related to the first benchmark have been reported for the sake of brevity).
As a matter of fact, the results provided by the ANN are in very good agreement with the
samples constituting the validation set.
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��
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Figure 9: Comparison between the validation set of samples and the results provided by the ANN.

7.2. Numerical results of the MSIS for benchmarks BK1 and BK2

As discussed in Section 2, two benchmarks are investigated in order to show the effec-
tiveness of the proposed MSIS, by varying the stacking sequence of the multilayer plate.

The parameters tuning the GA and the deterministic algorithms are summarised in
Tables 5 and 6, respectively, according to the main guidelines described in [67].

Parameters BK1 BK2

N. of individuals 40 80
N. of populations 2 2
N. of iterations 100 100
Crossover probability. 0.85 0.85
Mutation probability. 0.025 0.0125
Isolation time 20 20

Table 5: Optimisation parameters for the genetic algorithm, for benchmarks BK1 and BK2.

Parameters BK1 BK2

Solver active-set active-set
Max n. of function evaluation 10000 10000
Tol. on the objective function 10−15 10−15

Tol. on the gradient norm 10−15 10−15

Table 6: Optimisation parameters for the gradient-based algorithm, for benchmarks BK1 and BK2.
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The GA calculation is performed with two populations, in which, the number of in-
dividuals, evolving along the selected maximum number of generations, depends on the
considered benchmark. Indeed, the best practice is to set the number of individuals greater
than or equal to ten times the number of optimisation variables. Accordingly, benchmarks
BK1 and BK2 are characterised by two populations composed of 40 and 80 individuals,
respectively. The two populations exchange the best individual every ten iterations, by
using a ring-type operator, whose probability is automatically computed by the considered
GA. Moreover, as far as the constraint-handling technique is concerned, the Automatic
Dynamic Penalisation (ADP) method is used [68].

It is noteworthy that, the choice of multiple populations, with a small number of indi-
viduals, allows finding the global minimum without increasing too much the computational
effort. In this way, the GA has the possibility to explore the design domain in the most
effective way, by exchanging information between the best individuals belonging to each
population: the reader is addressed to [37] for more details about these aspects.

Since, the proposed strategy makes use of a metaheuristic algorithm, the GA is run
three times for each benchmark. The best individual obtained at the end of the genetic
calculation is used as a starting guess for the gradient-based algorithm, in order to execute
the subsequent local optimisation.

In terms of computational effort, the training phase of the ANN needs several seconds
to be performed. Then, the hybrid optimisation strategy needs 37.8 and 68.2 hours for
the benchmarks BK1 and BK2, respectively, on an Intel R© Xeon R© 2.70 GHz CPU with
two processors and with a RAM of 128 GB.

The results provided by the ERASMUS GA for benchmarks BK1 and BK2 are sum-
marised in Tables 7and 9, respectively, whilst those provided by the gradient-based algo-
rithm are reported in Tables 8 and 10, respectively. In order to compare the obtained
results with the reference ones, the average of the gradient-based algorithm solutions is
performed for each identified parameter, as it can be seen in Tables 8 and 10, for each
benchmark.

As it can be easily inferred from the analysis of these results, the mean value and
the standard deviation of the microscopic material properties are in good agreement with
the reference data: the absolute percentage error ranges from 2.8% to 13.4% for the first
benchmark and from 0.2% to 3.2% for the second benchmark.
The discrepancy between the values of µ

(

Ef
1

)

and µ (VF ) provided by the MSIS and the

reference ones, for benchmark BK1, is related to the nature of the laminate stack. Indeed,
for this benchmark, the considered sequence has an isotropic membrane stiffness matrix
but a completely anisotropic bending stiffness matrix. This aspect has a strong influence
on the solution search for the multi-scale inverse problem because the first buckling load is
dominated by the bending stiffness of the laminate. In particular, if the bending stiffness
matrix is not orthotropic, problem (21) becomes strongly non-convex and several equiva-
lent optimal solutions exist. Therefore, finding the global minimum is anything but trivial
in such a case.
These results prove that a particular care should be put in the choice of the stacking se-
quence, which strongly affect both the number of parameters that is possible to identify
and the quality of the final result.

8. Conclusions

In this work the multi-scale identification strategy (MSIS), initially presented in [36],
has been extended to the characterisation of the uncertainty of the geometrical and elastic
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Analysis name µ
(

Ef
1

)

[GPa] σ
(

Ef
1

)

[GPa] µ (VF ) σ (VF )

REF 276 27.6 0.555 0.0555
GE1A 238 27.1 0.628 0.0562
GE1B 237 27.1 0.630 0.0562
GE1C 237 27.1 0.630 0.0564
GE2A 257 25.5 0.589 0.0595
GE2B 257 25.5 0.589 0.0595
GE2C 257 25.4 0.589 0.0597
GE3A 221 25.3 0.665 0.0597
GE3B 223 25.5 0.662 0.0593
GE3C 223 25.5 0.661 0.0593

Table 7: Optimum solution of the multi-scale inverse problem provided by the GA, for benchmark BK1.

Analysis name µ
(

Ef
1

)

[GPa] σ
(

Ef
1

)

[GPa] µ (VF ) σ (VF ) Φ (x)

REF 276 27.6 0.555 0.0555 0
GR1A 238 27.1 0.625 0.0564 3.01E-05
GR1B 244 27.6 0.616 0.0567 5.58E-07
GR1C 235 27.1 0.632 0.0526 1.62E-05
GR2A 257 25.6 0.588 0.0594 7.33E-06
GR2B 257 25.5 0.589 0.0596 3.00E-07
GR2C 255 25.2 0.594 0.0586 2.88E-07
GR3A 221 25.3 0.665 0.0597 2.48E-07
GR3B 223 27.1 0.663 0.0512 2.11E-06
GR3C 223 25.5 0.661 0.0593 7.37E-08

AVERAGE 239 (-13.4) 26.2 (-5) 0.626 (12.8) 0.0571 (2.8)

Table 8: Optimum solution of the multi-scale inverse problem provided by the gradient-based algorithm,
for benchmark BK1; the percentage difference between the solution and the microscopic reference data are
given in parentheses.
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Analysis name µ
(

E
f
1

)

[GPa] σ
(

E
f
1

)

[GPa] µ
(

E
f
2

)

[GPa] σ
(

E
f
2

)

[GPa] µ (Em) [GPa] σ (Em) [GPa] µ (VF ) σ (VF )

REF 276 27.6 17.3 1.73 4.14 0.414 0.555 0.0555
GE1A 255 31.2 15.7 1.50 3.64 0.412 0.620 0.0540
GE1B 311 30.3 20.1 2.02 4.49 0.366 0.482 0.0547
GE1C 313 30.2 20.0 1.59 4.47 0.363 0.482 0.0554
GE2A 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523
GE2B 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523
GE2C 258 24.5 16.0 1.93 4.23 0.467 0.581 0.0593
GE3A 233 24.8 16.0 1.59 4.16 0.404 0.615 0.0633
GE3B 233 24.8 16.0 1.59 4.16 0.409 0.615 0.0632
GE3C 233 24.8 16.0 1.60 4.16 0.404 0.615 0.0633

Table 9: Optimum solution of the multi-scale inverse problem provided by the GA, for benchmark BK2.

Analysis name µ
(

E
f
1

)

[GPa] σ
(

E
f
1

)

[GPa] µ
(

E
f
2

)

[GPa] σ
(

E
f
2

)

[GPa] µ (Em) [GPa] σ (Em) [GPa] µ (VF ) σ (VF ) Φ (x)

REF 276 27.6 17.3 1.73 4.14 0.414 0.555 0.0555 0
GR1A 288 31.3 17.7 1.74 4.24 0.433 0.520 0.0514 4.50E-04
GR1B 280 28.8 18.8 1.75 4.33 0.401 0.529 0.0539 1.77E-06
GR1C 306 29.4 19.5 1.58 4.38 0.377 0.497 0.0548 4.27E-07
GR2A 288 31.3 17.7 1.74 4.24 0.433 0.520 0.0514 1.71E-09
GR2B 304 22.4 18.3 1.51 3.43 0.484 0.568 0.0523 3.59E-08
GR2C 258 26.1 16.4 1.96 4.14 0.450 0.569 0.0579 2.76E-04
GR3A 236 24.7 16.0 1.61 4.14 0.402 0.610 0.0634 2.05E-05
GR3B 233 24.8 16.0 1.59 4.16 0.409 0.615 0.0632 1.45E-07
GR3C 233 24.7 16.2 1.59 4.14 0.407 0.617 0.0634 1.98E-07

AVERAGE 270 (-2.3) 27 (-2) 17.4 (0.5) 1.67 (-3.2) 4.13 (-0.2) 0.422 (1.9) 0.561 (1) 0.0569 (2.5)

Table 10: Optimum solution of the multi-scale inverse problem provided by the gradient-based algorithm, for benchmark BK2; the percentage difference between the
solution and the microscopic reference data are given in parentheses.
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properties of the fibre and the matrix at the microscopic scale, by using information
restrained in the macroscopic response of the laminate, i.e. the first buckling load of the
multilayer plate.

In this context, the multi-scale characterisation problem, is stated as a constrained
inverse problem. The goal is the minimisation of the distance between the numerical and
the reference variability parameters that describe the probability distribution of the first
buckling load. In this case, the solution search is performed by a hybrid optimisation tool,
in which, a metaheuristic algorithm and a gradient-based one have been interfaced to solve
the related non-convex CNLPP.

The MSIS makes use of an analytical homogenisation scheme, i.e. the Chamis’ model,
to perform the microscopic / mesoscopic scale transition. The elastic properties of the
elementary lamina evaluated by means of the Chamis’ model are then used into the FE
model of multilayer plate to evaluate its first buckling load.

Moreover, a Monte-Carlo simulation campaign has been performed to compute the
probability distribution of the first buckling load, starting from a Gaussian probability
distribution of the material properties of the constituent phases. The obtained samples
have been used to train an ANN which emulates the multi-scale mechanical response
of the plate: the inputs are the geometrical and elastic properties of the microscopic
constituents of the composite and the output is the first-buckling load of the laminate.
Then, the obtained surrogate model has been used into the optimisation process to reduce
the computational effort.

Before executing the hybrid optimisation process, a sensitivity study has been per-
formed to determine the most relevant microscopic parameters influencing the first buck-
ling load at the macroscopic scale. In particular, numerical results show that this sensi-
tivity is strongly affected by the nature of the stacking sequence. Therefore to prove the
effectiveness of the proposed MSIS two different stacking sequences have been considered:
the first benchmark is characterised by a symmetric quasi-isotropic stack, while the second
one is characterised by a symmetric orthotropic one.

As a consequence, also the obtained results, in terms of the identifiction of the param-
eters tuning the variability of the elastic and geometrical properties of the constitutive
phases of the composite, are strongly influenced by the nature of the laminate lay-up.
In particular, for the first benchmark the absolute percentage error ranges from 2.8% to
13.4% for the standard deviation of the fibre volume fraction σ (VF ) and the mean value

of the fibre longitudinal elastic modulus µ
(

Ef
1

)

, respectively. Conversely, for the second

benchmark the absolute percentage error ranges from 0.2% to 3.2% for the mean value
of the matrix elastic modulus µ (Em) and the standard deviation of the fibre transverse

elastic modulus σ
(

Ef
2

)

.

Nevertheless, thanks to the proposed MSIS, it is possible to retrieve the variability of
both longitudinal and transversal effective properties of the constitutive phases and this
task cannot be easily performed by means of standard ASTM tests.

As far as perspectives of this work are concerned, research is ongoing, in order to
include into the MSIS the following aspects:

• the validation of the MSIS by means of experimental data. In this case, the influence
of noise on the results provided by the MSIS should be properly taken into account.
To this purpose, suitable regularisation techniques, as the Tikhonov-Morozov one,
which is widely used in different engineering fields [69, 70], must be efficiently inte-
grated into the multi-scale identification process to handle noise;
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• the formulation of a suitable optimisation problem to find a suitable stack which
maximise the sensitivity of the first buckling load to each parameter defined at the
microscopic scale of the composite;

• the extension of the MSIS to the characterisation of the variability of the viscoelastic
properties of the microscopic constituent and the evaluation of the variability effects
related to further geometrical parameters, e.g. fibre misalignment, macroscopic ge-
ometrical defects, etc.

Finally, thanks to the versatility of the proposed MSIS, it is possible to increase the
accuracy in terms of variability parameters by introducing more general probability density
functions for both the buckling load and the microscopic parameters. In this way, it will
be possible to go beyond the limit of the Gaussian model, in which the shape of the
distribution is imposed a priori.
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