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Abstract

There is rising interest in applying Software Defined Networking (SDN) principles to wireless multi-hop networks, as this
paves the way towards bringing the programmability and flexibility that is lacking in today’s distributed wireless networks (ad-hoc,
mesh or sensor networks) with the promising perspectives of better mitigating issues such as scalability, mobility and interference
management and supporting improved controlled QoS services.
This paper investigates this latter aspect and proposes an Integer Linear Programming (ILP) based wireless resource allocation
scheme for the provision of point-to-point and point-to-multipoint end-to-end virtual links with bandwidth requirements in software-
defined multi-radio multi-channel wireless multi-hop networks. The proposed algorithm considers the peculiarities of wireless
communications: the broadcast nature of wireless links which can be leveraged for point-to-multipoint links resource allocations,
and, the interference between surrounding wireless links. It also considers switching resource consumption of wireless nodes since,
for the time being, the size of SDN forwarding tables remains quite limited. We also consider the case where the requirements
of already embedded virtual links evolve over time and propose a re-embedding strategy that meets the new requirements while
minimizing service disruption. Genetic Algorithms derived from the ILP formulations are also proposed to address the case of
large wireless networks. Our simulation results show that our proposed methods work effectively compared to shortest path based
heuristics.

Keywords: virtual link embedding, software-defined networks, wireless multi-hop networks, virtual link re-embedding,
point-to-multipoint communication, quality of service

1. Introduction

Applying Software Defined Networking (SDN) design prin-
ciples to wireless networks can pave the way to the emergence
of novel and effective wireless network control applications (rout-
ing, network resource allocation, mobility management, energy5

management, etc.) with diverse expected benefits [1], notably,
an improved global network performance, end-to-end network
services with enhanced Quality of Service (QoS), etc.

Indeed, under the assumption of an effective topology dis-
covery service [2] that allows SDN controllers to build an up-10

dated global and comprehensive view of the network, network
control algorithms can leverage on this global and detailed view
to derive informed and wise control decisions that are able to
accommodate with the dynamicity of the network and flows’
QoS requirements. Moreover, the flow level forwarding capa-15

bility of SDN allows unprecedented fine-grained control on the
traffic that is flowing in the network. Some of the prominent
works from the literature that attempt to apply SDN to wireless
networks in order to dynamically control the traffic for an im-
proved provided QoS are: [3], [4] and [5] respectively in the20

context of wireless ad-hoc, wireless sensor and wireless mesh
networks.

∗Corresponding author

The focus of this work is on the design of resource allo-
cation methods that enable the on-demand provision of net-
work services with QoS requirements in an SDN enabled multi-25

radio multi-channel multi-hop wireless network. A network
service captures the communication needs of an application,
and is expressed as a set of end-to-end point-to-point and point-
to-multipoint unidirectional virtual (or logical) links (VLs), each
with its own bandwidth requirement (the service can be seen30

as an overlay network required by the application). One im-
portant aspect and novelty of this work is that the virtual links
can be point-to-multipoint (P2M) and we believe that the most
promising use cases are related to the support of P2M virtual
links. One possible use case is the support of communications35

between the decision/command center and a group of firefight-
ers that can be reached via a wireless multi-hop network. Other
use cases proposed for 5G hold also [6]. For instance, the dis-
tribution of firmware updates to a group of IoT devices, the
distribution of traffic and route information to autonomous ve-40

hicles located at the same area, and the broadcast of multimedia
alerts to population, with some reached via a wireless multihop
network.

We first address the embedding of network services, on re-
quest arrivals. Then, once embedded, we address the re-embedding45

of VLs that evolved over time by, either, increasing or decreas-
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ing their bandwidth requirements, or by having destination nodes
joining or leaving point-to-multipoint VLs. In this case, ser-
vice disruption matters and should be accounted for by the re-
embedding algorithm.50

Two methods are proposed in this paper for VLs embed-
ding. Both aim at mapping the requested virtual links on the
substrate wireless network by computing the data paths that
minimize and balance link and switching resource consump-
tion as well as interference between wireless links while satis-55

fying the QoS requirements. They also consider and account
for some of the specificity of wireless communications, namely
the broadcast nature of wireless links, and the mutual interfer-
ence caused by transmissions on neighboring links. An Integer
Linear Programming (ILP) based formulation method is pro-60

posed to compute the optimal allocations for small and moder-
ate size networks as well as an accompanying genetic algorithm
for large networks. Two other methods are also proposed for
the resource re-embedding of dynamic VLs with service dis-
ruption reduction as a key objective. As for embedding, an ILP65

based algorithm and a genetic algorithm are proposed. A Per-
formance evaluation study is conducted for all methods. The
paper is organized as follows. Section 2 reviews previous work
from the literature on virtual network resource allocation for
wireless networks. Section 3 presents the specifcities of virtual70

link embedding in wireless multi-hop networks. Then, Section
4 introduces the system model used in our formulations. Sec-
tion 5 and Section 6 describe the ILP formulations for virtual
link embedding and re-embedding, respectively. Section 7 and
Section 8 describe the genetic algorithms for virtual link em-75

bedding and re-embedding, respectively. Section 9 and Section
10 present the performance analysis of the proposed methods.
Finally, Section 11 concludes the paper.

2. Related work

Virtual network embedding has attracted lots of attention in80

recent years. While most embedding schemes are conceived
for wired substrate networks, existing works also considered
the case where the substrate network is a wireless one. Ta-
ble 1 summarizes existing works in the field of virtual link re-
source allocation, classified according to a set of criteria, among85

which: the virtual link types (Point-to-Point (P2P) or Point-to-
MultiPoint (P2M)), the QoS to meet (bandwidth, delay, packet
loss), the network resources considered by the embedding method,
the type of methods used for the embedding (ILP based, Ge-
netic algorithm (GA), MILP (mixed integer linear program-90

ming), MIQCP (mixed integer quadratic constraint program-
ming)) etc.

As shown in Table 1, it is the combination of the choices
made for each feature that makes our proposal unique with re-
spect to existing work. We believe that the effective provision of95

end-to-end P2MP virtual links with bandwidth requirements in
a wireless multihop network is the salient feature of our work.
Also, the fact of considering of an SDN based wireless multi-
hop substrate network is new; Besides, it brings its specifici-
ties, amongst the importance of accounting for switching re-100

sources. Finally, the way we formulate the multicast advantage

Figure 1: Illustration of the multicast advantage

and interference between wireless links to reduce wireless link
resource consumption and to favor spatial reuse frequency is
original. Concerning the re-embedding, our work stands out as
the only one that take into consideration the dynamicity of re-105

quests when applied to wireless substrate networks. For wired
substrate networks, there exist some research work as listed in
Table 2. Our work stands out, again, in that a wireless SDN sub-
strate network is targeted, with an emphasis on point-to-multi-
point communications, as well as switch resources.110

3. Some of the specificities of virtual link embedding in wire-
less multi-hop networks

There has been a lot of work on virtual network embedding
for wired network infrastructures. So, one may ask, what makes
the problem different in wireless multi-hop networks. In fact,115

the shared nature of the wireless medium opens some opportu-
nities to save radio resources but also poses some constraints
related to interference. For instance, if we consider the case of
the P2M VL of Figure 1 crossing Node k and going to Nodes n
and m, in a wired context, each transmission related to a virtual120

link needs to be duplicated. In an equivalent wireless context
with nodes equipped with two interfaces, Nodes n and m can
be reached with a single transmission on the red channel. An
efficient embedding algorithm should whenever possible lever-
age on the broadcast nature of wireless transmissions to save125

radio resources. This is what we call from now: the multicast
advantage.

On another side, if we consider the wireless network of Fig-
ure 2 with multi-radio nodes and different operating channels,
there are many alternatives to support the P2M VL: a one-hop130

data path via the red channel or green channel, or alternatively, a
two-hops via the yellow channel then the red one. The impact of
these alternatives are different on surrounding links. Clearly, a
transmission on the red channel may conflict and prevent much
more transmissions from other nodes than a transmission on the135

green channel. When possible, the transmission on the green
channel should be preferred to favor spatial reuse of radio chan-
nels. An efficient embedding algorithm should whenever possi-
ble mitigate interference on surrounding links to optimize radio
resource usage.140

4. System model

4.1. Prerequisites on SDN/OpenFlow nodes
We consider an SDN/OplenFlow enabled network. Each

node is a wireless OplenFlow switch, which consists of one
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Table 1: Classification of virtual link resource allocation schemes for wireless multi-hop networks
VL
type VL QoS

multi-
radio

multi-
channel

Network model
specificity Method

Node
resources

Support
path-split

[7] P2P
packet loss

delay no no
link metrics

(EATT and EATX)
Incremental virtual
network embedding None No

[8] P2P bandwidth no no mobility
backtracking

based heuristic
CPU,

storage etc.
Not supported
but discussed

[9] P2P bandwidth no no
interference

matrix heuristic CPU No

[10] P2P bandwidth yes yes
distance based

interference model
greedy algorithm

and GA None No

[11] P2P bandwidth yes yes
SINR-based

interference model ILP and heuristic CPU yes

[12] P2MP packet loss yes yes Reliability map
opportunistic
rebroadcast None No

[13] P2P latency no no

time-varying link
quality and
dynamic node
workload

deap Q learning CPU No

[14] P2MP delay no no loops in overlays
ILP

and heuristic
Abstract

(memory or CPU) No

[15] P2MP delay no no
feedback loops
in overlay graphs

MILP and
MIQCP transmit power No

our
work

P2P
P2MP bandwidth yes yes

conflict graph based
interference model

ILP
and GA

Flow table entries
and group entries

Yes for ILP,
No for GA

Figure 2: Illustration of the impact of data-paths on the inferred interference

flow table, a meter table and a group table. Each flow table145

entry is associated to a flow. It combines a match rule that iden-
tifies the packets that belong to the flow, the instructions that
specify the forwarding actions that apply to the flow of packets.
And finally, the counters which maintain the statistics related
to the flow. In a meter table, each entry is a traffic rate-policer150

that can be attached to one or many flow table entries. Finally,
a group table entry implements specific methods of forwarding
related to broadcasting, load balancing, fail-over, etc. It con-
sists of one or many action buckets and depending on the group
type, one bucket is selected (load balancing or splitting), or a155

copy of the packet is delivered to each bucket (multicast), or a
bucket is set to work in back-up (fail-over).

4.2. Network model
Each node in a wireless multi-hop multi-radio multi-channel

network is equipped with one or multiple Network Interface160

Cards (NICs). Each NIC is tuned to a channel and, any two
NICs at the same node are tuned to different channels, in order

to efficiently and fully make use of radio resources.
We assume that the channel assignment is given and static. There
are in total |Λ| non-overlapping frequency channels in the sys-165

tem and each node is equipped with q NICs where q ≤ |Λ|. The
channel capacity of λ is noted as Bλ.

We model the multi-hop multi-radio multi-channel network
as a directed graph G = (V, E) where V is the set of SDN nodes
and E ⊆ V × V the set of bidirectional physical links which170

operate in half-duplex mode.
To each node v ∈ V , is associated a switching capacity Lv,

which is the maximum number of entries (i.e. size limit) of its
flow table. The current size of node v flow table is denoted by
L′v. An OpenFlow group table is also considered. A group table175

entry is either used to duplicate packets belonging to a point-
to-multipoint virtual link on different network interfaces or to
divide a flow of packets on many interfaces to implement path
splitting. Similarly, Mv and M′v denote respectively the maxi-
mum and current size of the group table of node v. We assume180

that we have already obtained a good channel assignment ζ. ζ
assigns to each node v ∈ V a set of ζ(v) of |Λ| different channels:
ζ(v) ⊆ Λ.

A pair of NICs can communicate with each other if they
are on the same channel and are within the transmission range185

of each other. In other words, the wireless link e = ((u, v), λ),
u, v ∈ V and λ ∈ |Λ| belongs to the substrate network, if chan-
nel λ ∈ ζ(u) ∩ ζ(v) and on this latter channel, nodes u and v are
within the transmission range of each other. The set of neigh-
bours of v (via any channel) is noted as N(v).190
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Table 2: Classification of virtual link re-embedding schemes in the literature
Existing Work VL type SDN substrate Evolving Resources Proactive or Reactive Solving Method

[16] P2P No
Nodes resource,
Link bandwidth Reactive Heuristic

[17] P2P No
Nodes resource (CPU),

Link bandwidth Reactive ILP

[18] P2P No
Node CPU,

Link bandwidth Proactive Heuristic

[19] P2P No
Node CPU,

Link bandwidth Reactive ILP, Heuristic

Our work
P2P

P2MP Yes
Node switch resources,

Link bandwidth Reactive
ILP,

Genetic Algorithm

4.3. Interference model

Our interference model is based on the concept of conflict
graphs [21]. A conflict graphs explicitly expresses, for a given
frequency band, the presence of pair-wise interference of wire-
less links (represented as vertices). In other words : simultane-195

ous transmissions on both links either lead to a destructive col-
lision or are prevented by the medium access protocol to avoid
the collision. For illustration purposes, Figure 3 shows an SDN-
based wireless network substrate composed of six nodes oper-
ating on four channels (in different colors) and the associated200

conflict graphs for the yellow and red channels.
Many options and methods can be adopted to build the con-

flict graphs, All differ on how they considers two wireless links
as interfering. Obviously, two wireless links operating on the
same frequency channel that have a node in common inter-205

fere (simultaneous transmissions or receptions is not possible).
Also, a transmission from a node s on a wireless links interferes
with receptions on nodes belonging to other wireless links that
sit in the interference range of s. But, depending on the ac-
cess technique, things can also be different. For example, with210

an CSMA/CA based technique for a unicast transmission, an
acknowledgement is sent back from the receiving nodes. As
a consequence, a unicast transmission on a wireless link form
s to d interferes with receptions at all the nodes sitting in the
interference range of node s and node d. This is not true for215

multicast transmissions which do not use any acknowledgment.
Another salient point of difference is how the interference range
of a node is determined by different methods. Some assume that
it equals the transmission range and use control packets (hello
packets exchange) to establish the list of nodes that sit in the220

interference range (e.g. [22]). Others consider that the nodes
sitting 2 or K hop away from a sending node are subject to in-
terference (e.g. [23]). Some others, such as [24], consider the
euclidean distance between wireless links mid-points, etc.

Therefore there are many ways to compute the conflict graphs.225

All do not lead to the same level of accuracy in capturing inter-
ference. But, each can be suitable to a particular network func-
tion, since, for example, the accuracy expectation of a channel
assignment network function is different from that of a resource
allocation network function. Moreover, accuracy comes with a230

cost in computation time and network control overhead. An
approximate near optimal network resource allocation can be

suitable in resource constrained wireless networks.
If accuracy is required, as desirable in this work, we believe
that this can be achieved by combining information from the235

knowledge of the network topology (or connectivity graph), in-
formation from nodes attributes (transmission power, antenna
sensitivity, location if available, etc.) and from wireless links
attributes (e.g. link quality assessed by the SINR (Signal to In-
terference and Noise Ratio), or any other related physical layer240

metrics or characteristics). The considered SDN based network
architecture can clearly help thanks to the centralized view of
the network complemented with various nodes and links at-
tributes that the SDN controller sets up by means of its network
topology discovery service. Effective techniques that combine245

different information from different surrounding nodes can be
devised to establish accurate conflict graphs. It is however true
that with conflict graphs, the cumulative interference of mul-
tiple transmissions on distant wireless links is not captured, in
contrast to other interference models, such as the SINR interfer-250

ence model which also faces challenges requiring simplifying
assumptions to be estimated.

In this paper, to enlarge the applicability of our embedding
algorithms, we consider that the conflict graphs are given and
provided as an input to our formulation by a dedicated network255

function at the controller. For the performance analysis of our
proposed algorithms, conflict graphs are built following the pro-
cedure presented in Section 9.2.

Following the logic of some previous works [25], from the
conflict graph, we derive maximal cliques [26]. All pairs of two260

wireless links in a maximal clique interfere, and hence simul-
taneous transmissions on these links should be prohibited. So
the cumulative bandwidth assignments of the wireless links that
compose the maximal clique should be lower than the channel
capacity. Also, a wireless link can belong to different maxi-265

mal cliques in such a situation, the question is how the channel
capacity is shared between all the links from the different max
cliques. One pessimistic approach is to constrain the cumula-
tive bandwidth assignments of all links to the channel capacity.
Such an approach limits the spatial reuse of frequency chan-270

nels. The optimistic approach assumes that simultaneous trans-
missions from links belonging to different max cliques are non-
interfering links. As a consequence, no additional constraints
are required. Other intermediate approaches can be envisioned.

4



Figure 3: Example of conflict graphs

In our work, we do not stick to any method on how to exploit275

the maximal cliques to derive interference related constraints.
Again, the centralized view of the SDN controller offers a lot of
freedom in choosing the level of severity/accuracy in capturing
interference between wireless links. For the formulation pre-
sented in the paper, without loss of generality, we have chosen280

the optimistic approach.
Concerning the channel capacity Bλ, the channel capacity

was set to a constant value obtained after removing the proto-
col overhead. Clearly, in a contention based wireless multi-hop
network where collisions take place, when increasing the chan-285

nel load, its effective capacity (goodput) decreases. Since we
are considering an online embedding algorithm, at each VLs re-
quest arrival, the effective channel capacity could be readjusted.

In the following, we denote the set of maximal cliques as C.290

We also denote the set of wireless links that form a clique c as
Ec, and the nodes of the substrate network in the clique as S c.

4.4. Virtual Links Request Model

A virtual links request consists of a set of |K| virtual links.
Each virtual link k ∈ K is characterized by:295

• a source node sk ∈ V , and a set of destination nodes Tk ∈

V\{sk} (when |Tk | = 1, the VL is point-to-point, otherwise
it is point-to-multipoint);

• a bandwidth requirement of bk;

The sequence of virtual links requests is noted as ~K = [K1,K2, ..., ].300

5. ILP formulation for resource embedding

Based on our previous work [28] whose focus was on wired
SDN networks, this section describes our ILP formulation of
the online virtual links resource allocation on an SDN based305

wireless multi-hop substrate network. In comparison to the
previous work, this formulation adds in many aspects by tak-
ing into consideration (1) the broadcast nature of wireless links,
which is used as a leverage to efficiently support point-to-multipoint
virtual links, as well as, (2) the interferences between surround-310

ing links which is minimized and distributed on different cliques
(regions) to improve the admissibility of forthcoming virtual
links requests. Below, the variables and problem constraints
are listed. Then, the considered objective function is defined.

5.1. Resource-related assignment variables315

The resource allocation algorithm provides as output the set
of routes with the needed resources to support each of the vir-
tual links (with its required QoS) that compose a request. As
mentioned above, two types of network resources are consid-
ered : the bandwidth of wireless links and the switching re-320

sources (flow table and group table entries). Since VLs may be
point-to-multipoint, flow assignment variables and other vari-
ables are related to a specific destination of each VL. Our model
considers the following variables:

• f t
k((v, u), λ) is an integer variable that represents the band-325

width allocated at link ((v, u), λ) to the packets of VL
k that are flowing from the origin node sk to a destina-
tion node t. More generally, fk((v, u), λ) refers to the
amount of bandwidth used on link ((v, u), λ) by the VL
k, whatever the destination. It is set to the maximum330

of f t
k((v, u), λ) for all t ∈ Tk. Specific to the broadcast

nature of wireless medium transmissions, in which one
node can deliver a paket to multiple neighbors from one
transmission, we also introduce an integer variable de-
noted as fk(v, λ) that refers to the amount of bandwidth335

used on channel λ ∈ ζ(v) by node v to support the VL k.
It is set to the maximum of fk((v, u), λ) for all u ∈ N(v)
such as ((v, u), λ) ∈ E, as is more specifically expressed
in Equation 1:

∀k ∈ K,∀v ∈ V,∀u ∈ N(v),∀λ ∈ ζ(v) ∩ ζ(u) :

fk((v, u), λ) ≤ fk(v, λ) (1)

340

In this way, multicast advantage is captured in a simple
and intuitive manner. This is different from the ILP for-
mulation in [14], in which multicast advantage is cap-
tured by loosening the flow conservation restriction by
allowing a node to forward at least as much traffic as345

it has received, which, however, ensures an unfortunate
consequence that loops could be created. Additional con-
straints are needed in order to get rid of such unwanted
loops.

• lk(v) is a binary variable that indicates the number of flow350

table entries consumed by VL k at node v. An entry is
installed in node v flow table if at least one of its adjacent
physical links supports the VL. Formally:

∀k ∈ K,∀v ∈ V,∀u ∈ N(v),
∀λ ∈ ζ(v) ∩ ζ(u) : gk((v, u), λ) ≤ lk(v) (2)

∀k ∈ K,∀v ∈ V,∀u ∈ N(v) :

lk(v) ≤
∑

λ∈ζ(v)∩ζ(u)

(gk((v, u), λ) + gk((u, v), λ)) (3)

5



where gk((v, u), λ) is an intermediate binary variable that
equals 1 if some bandwidth is assigned to VL k at link355

((v, u), λ), 0 otherwise. It is derived from some other in-
termediate variables gt

k((v, u), λ) that, in turn, indicates
whether some bandwidth is assigned to the flow of pack-
ets of VL k destined to t ∈ Tk in link ((v, u), λ) (i.e.
gt

k((v, u), λ) = 0 if f t
k((v, u), λ) = 0 and 1 otherwise).360

• similarly, mk(v) is a binary variable indicating if a group
table entry is assigned to VL k at node v. A group table
entry is added when splitting a flow of packets belonging
to k at node v or when duplicating packets (for point-
to-multipoint VLs) on two or more links that operate on
distinct channels. This is expressed as:

∀k ∈ K,∀v ∈ V :

mk(v) =

0 i f
∑
λ∈ζ(v) gk(v, λ) ≤ 1

1 otherwise
(4)

where gk(v, λ) is an intermediate boolean variable that in-
dicates if node v relays packets from VL k on channel λ,
whatever its neighbors on this channel. It is derived from
the set of previous variables gk((v, u), λ) with u ∈ N(v)
and λ ∈ ζ(v) ∩ ζ(u), as is more specifically expressed in365

Equation 5:

∀k ∈ K,∀v ∈ V,∀u ∈ N(v),∀λ ∈ ζ(v) ∩ ζ(u) :

gk((v, u), λ) ≤ gk(v, λ) (5)

In this way, the embedding process can then be seen as
mapping resources onto the complete set of node-channel
pair (v, λ), instead of wireless link ((v, u), λ). Equation 4370

could be easily linearized as follows:

∀k ∈ K,∀v ∈ V :

2mk(v) ≤
∑
λ∈ζ(v)

gk(v, λ) ≤ 1 + |Λ|mk(v) (6)

• ξmax and ξmin which refer to the maximum and minimum
clique utilization after request acceptance (i.e. by taking
into account the bandwidth allocations consumed by the
virtual links that compose the request).375

• lmax and lmin which similarly refer to the maximum and
minimum flow table utilization (when considering all net-
work nodes) after request acceptance.

5.2. Problem constraints

The constraints on bandwidth allocations are described here-380

after in Equations 7 to 15. The constraints related to switching
resources allocation is given by Inequalities 7 and 8. They sim-
ply ensure that the total number of flow and group table entries

assigned to VLs composing the request, does not exceed avail-
able nodes’ flow and group tables entries. Equation 9 reflects385

the linearization of the Max and Min operator applied to the
variables lk(v) to get lmax and lmin.

∀v ∈ V :
∑
k∈K

lk(v) ≤ Lv − L′v (7)

∀v ∈ V :
∑
k∈K

mk(v) ≤ Mv − M′v (8)

∀v ∈ V : lmin ≤ Lv − L′v +
∑
k∈K

lk(v) ≤ lmax (9)

Constraint 10 reflects the linearization of the maximum band-
width f t

k(e) allocated to VL k at link e = ((v, u), λ), whatever the
destination. Equation 11 ensures that the total bandwidth as-390

signed to the substrate wireless nodes that belong to the clique
does not exceed the remaining bandwidth of the clique. In this
equation, each maximal clique with it’s associated channel λ is
noted as (c, λ) ∈ C, which is composed of Ec, and the residual
capacity is ξ(c) = Bλ − ξ′(c), with ξ′(c) denoting the bandwidth395

allocations related to already admitted virtual links on all the
physical links that compose the clique c. Equation 12 reflects
the linearization of the Max and Min operator applied to the
variables fk(v, λ) to get ξmax and ξmin. Equation 13 presents the
usual flow conservation constraints.400

∀k ∈ K,∀e = ((v, u), λ) ∈ E,∀t ∈ Tk : f t
k(e) ≤ fk(e) (10)

∀(c, λ) ∈ C :
∑
k∈K

∑
v∈S (c)

fk(v, λ) ≤ Bλ − ξ′(c) (11)

∀(c, λ) ∈ C : ξmin ≤ Bλ − ξ′(c) −
∑
k∈K

∑
v∈S (c)

fk(v, λ) ≤ ξmax (12)

∀k ∈ K,∀t ∈ Tk,∀v ∈ V :

∑
u∈N(v)

∑
λ∈ζ(u)∩ζ(v)
e1((v,u),λ)
e2((u,v),λ)

( f t
k(e1) − f t

k(e2)) =


bk i f v = sk

−bk i f v = t
0 else

(13)

Equation 14 is a channeling constraint between integer and
binary variables: fk((v, u), λ) and gk((v, u), λ). It also constrains
the VL k’s bandwidth assignment at a physical link to the re-
quested bandwidth bk. Equation 15 constrains the bandwidth
that is assigned to the flow of packets destined to a specific VL’s
end-point (or destination) within a range of values, in addition
to establishing a channeling constraints between binary and in-
teger variables. The inequality on the right side ensures that
the bandwidth requirement of the VL is never exceeded. The
inequality on the left side directs path-splitting and avoids the
multiplication of splits with low bandwidth allocations. Indeed,
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Figure 4: Initial Embedding, with node A as the source, and node G as destina-
tion. The evolving of the request requires that node B and E should be added as
destinations.

if active, path-splitting is feasible only if the bandwidth allo-
cated to the splits respects a minimum threshold bmin

k . In prac-
tice, bmin

k is a ratio of bk, bmin
k = PS ratio ∗ bk with PS ratio ∈ [0, 1]

(then, PS ratio ≤ 0.5 when the path-splitting is allowed, and
PS ratio = 1.0 when it is forbidden).

∀k ∈ K,∀v ∈ V,∀u ∈ N(v),∀λ ∈ ζ(v) ∩ ζ(u) :

gk((v, u), λ) ≤ fk((v, u), λ) ≤ bk ∗ gk((v, u), λ) (14)

∀k ∈ K,∀t ∈ Tk,∀v ∈ V,∀u ∈ N(v),∀λ ∈ ζ(v) ∩ ζ(u) :

bmin
k ∗ gt

k((v, u), λ) ≤ f t
k((v, u), λ) ≤ bk ∗ gt

k((v, u), λ) (15)

5.3. Objective function
Minimize

ZK = α1

∑
k∈K

∑
v∈V

∑
λ∈ζ(v)

fk(v, λ) + α2

∑
k∈K

∑
v∈V

lk(v)

+ α3

∑
k∈K

∑
v∈V

mk(v) + β1

∑
(c,λ)∈C

∑
v∈S (c)

∑
k∈K

∣∣∣E(c)
∣∣∣ fk(v, λ)

+ β2(ξmax − ξmin) + β3(lmax − lmin) (16)

The objective function ZK of our problem is set to take into
account both the resource consumption and the interference in-
troduced by bandwidth allocations on surrounding links. For405

that, the main objective of our approach is to minimize the to-
tal resources required to map virtual links, which is represented
by the first three terms that cover respectively links bandwidth,
flow tables and group tables resources. In addition, the objec-
tive function mitigates the interference between links by avoid-410

ing overloading links belonging to cliques with a high number
of members. This favors radio resource spatial reuse, increas-
ing the overall available network resources. Finally, the last
two terms aim at reducing the disparities of cliques’ bandwidth
utilization and flow tables’ utilization. They also contribute im-415

proving flow admissibility. ZK is then expressed as the weighted
sum of those cost components, with α1, α2, α3, β1, β2 and β3
representing their relative significance.

6. ILP formulation for resource re-embedding

6.1. Introduction420

VLs request requirements may change over time. New des-
tinations may be added to or removed from a point-to-multipoint

Figure 5: One possible solution: recomputation of a new tree which minimizes
resource consumption, but this would introduce service disruptions

virtual link. Also, the bandwidth requirement of a virtual link
may change over time. For an already deployed virtual link, a
change in its characteristics may require changing a substantial425

part of its supporting data-paths in order to optimize network
resource usage. However, this comes at the cost of a service
disruption, the time the re-embedding of the virtual link is ac-
complished. Obviously, this may be painful, if not acceptable,
for some applications.430

Let’s consider the basic case of the VL depicted in Figure 4,
with node A as the source, and node G as the destination. Fig-
ure 4 also presents the initial embedding of the VL. If node B
and E join the VL as new destinations, one possible approach
is to recompute from scratch a new tree that minimizes network435

resource consumption, as is illustrated in Figure 5. However,
this involves six OpenFlow Modification messages to delete the
old data-path and install the new one, leading to service disrup-
tion that may last some time, especially in a wireless multi-hop
network context. Another alternative, illustrated in Figure 6,440

relies on the initial embedded data-path, and only adds extra
data-paths to reach the new destinations. This avoids service
disruption and reduces OpenFlow messages exchange but leads
to an non optimal network resource consumption. The proposed
ILP formulation of the re-embedding technique elaborates on445

this tradeoff.

6.2. Virtual links request model
The VLs request submitted to the re-embedding method

consists of a set of already embedded running VLs from the
same or different VLs requests, each with its new character-450

istics andor requirements. We use ko and ke to represent the
original and the evolved VLs sub-request respectively, and Ko

and Ke to represent the original and the evolved VLs request.
Each VL ko ∈ Ko has initially been embedded by the resource
allocation algorithm and eventually been re-embedded by the455

algorithm in charge of handling the evolved VLs request.
In our work, there are four basic different scenarios for an

evolving VL that can be combined: destination node arrival or
departure, bandwidth increase or decrease. Node departures
and bandwidth decrease are handled by releasing resources.460

Next, we focus on the two other scenarios, namely the case
of an increase of the VL’s bandwidth and the addition of new
destination nodes.
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Figure 6: Another possible solution: a solution that is based on the existing em-
bedding tree, which brings minimum reconfiguration overhead and minimizes
service disruptions, but consumes more network resources

6.3. Virtual links re-embedding objective465

We use the binary variables go
k(v, λ) and ge

k(v, λ) to repre-
sent original and evolved mapping of a VL k respectively, at
each node-channel pair (v, λ). More precisely, go

k(v, λ) = 1
if k is originally embedded onto the node-channel pair (v, λ),
otherwise go

k(v, λ) = 0. Likewise, ge
k(v, λ) = 1, if VL k is re-470

embedded onto the node-channel pair (v, λ), otherwise ge
k(v, λ) =

0.
The re-embedding cost denoted as Zre

Ko,Ke
consists of two

parts:
• the embedding cost ZKe which takes into consideration475

the amount of bandwidth and flow table entries that are
consumed, the interference as well as clique load balanc-
ing and switch resources balancing, as is defined in Equa-
tion 16;

• the reconfiguration overhead (service disruption) which480

captures service disruption experienced by evolving VLs.

Formally Zre
Ko,Ke

(that is to minimize) is expressed as fol-
lows:

Zre
Ko,Ke

= ZKe + ρ ∗
∑
k∈Ko

∑
v∈V

∑
λ∈ζ(v)

zXOR
go

k ,g
e
k

(17)

where

zXOR
go

k ,g
e
k

= go
k(v, λ) ⊕ ge

k(v, λ)

= go
k(v, λ) ∗ (1 − ge

k(v, λ)) + (1 − go
k(v, λ)) ∗ ge

k(v, λ)

485

Here zXOR
go

k ,g
e
k

is the XOR of the original and evolving node
channel tuple, which, in fact, corresponds to the presence or
absence of service disruption at the scale of one particular node
channel tuple. Zre

Ko,Ke
is hence the linear sum of the consumed

resources and the total number of service disruptions. ρ is a490

constant aimed at scaling the two terms’ importance magni-
tudes. Note that the objective function (that should be mini-
mized in an optimal solution) is linear, as go

k(v, λ) is not a vari-
able, but a binary constant that is known already when we com-
pute the original embedding results. Hence we are always in an495

ILP formulation.

src src src

src
src

dst1 dst1 dst1

dst1
dst1

dst2 dst2
dst2

dst2
dst2

dst3 dst3 dst3

dst3
dst3

(a) Parent 1 (b) Parent 2 (c) Keeping common
traits from parents

(d) Connect different components 
into one with k-shortest paths

(e) After processing: remove unused links

Figure 7: Crossover of two parent trees to get an offspring

Algorithm 1: GA-based Resource Allocation
Input : G(V, E); K; W = [we1 ,we2 , ...,we|E| ];

α1;α2;α3; β1; β2; β3; Np; Ng; cxPB; mutPB;
Output: χ = [τ1, τ2, ..., τ|K|] (i.e. the best individual)

1 begin
2 P0 ←− InitialPop(G,K,Np,W)
3 P ←− P0
4 for ( jg = 0; jg < Ng; jg + + ) {
5 for ( jp = 0; jp < Np; jp + + ) {
6 (χa, χb)←− TournamentSelection(P)
7 χc ←− Crossover(G,K, (χa, χb), cxPB,W)
8 P ←− P ∪ Mutation(χc,mutPB)

9 P ←−
PopulationSelection(P,Np, α1, α2, α3, β1, β2, β3)

10 χ←− SelectBestIndividual(P)

7. Genetic Algorithm for Embedding

Exact solutions to the considered problem can be obtained
by solving our previously presented ILP-based algorithm. How-
ever, the complexity of computation, which increases exponen-500

tially with the number of parameters (number of nodes, links,
radios and channels etc.), might make it practically infeasible
for large networks. Therefore, a practically feasible approach
is to find a proficient near-optimal solution while sustaining re-
alistic performance. In this section, we present a genetic algo-505

rithm based solution to address this aspect. The overall work
flow of our GA scheme is described in Algorithm 1. Hereafter
we present the detailed algorithm.

7.1. Encoding scheme

To use a GA, it is necessary to choose a representation that510

defines the genotype of an individual which is conceptually des-
ignated as a chromosome. In our case, an individual is a pos-
sible solution to a request for resource allocation. Recall that
each request K consists of a set of point-to-point and/or point-
to-multipoint virtual links. We naturally represent an individual515

i denoted by χi as a vector of genes where each gene τk maps
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Algorithm 2: Initial Population Computation
Input : G(V, E); K; Np; W = [we1 ,we2 , ...,we|E| ]
Output: P0

= {χi,∀i ∈ {1, ...,Np} with χi = [τi
1, τ

i
2, ..., τ

i
|K|]}

1 begin
2 P0 ←− ∅

3 G′(V ′, E′)←− Clone(G(V, E))
4 W ′ ←− Clone(W)
5 for ( i = 0; i < Np; i + + ) {
6 foreach e ∈ E′ do
7 W ′[e]←− W ′[e] × Random(1, 1.5)

8 foreach k ∈ K do
9 τi

k ←−

ComputeSteinerTree(G′,W ′[e], sk,Tk)
10 χi[k]←− τi

k

11 P0 ←− P0∪ χ
i

resources assigned to a virtual link k ∈ K. In other words,
χi[k] = τi

k refers to gene k of individual i. As our GA doesn’t
take into consideration the case of path splitting, a tree connect-
ing the source sk to the destination nodes t ∈ Tk, is sufficient to520

represent a gene. This tree is in fact a subgraph of the substrate
network graph G. Each tree is associated with switching re-
sources and links bandwidth respectively allocated at each sub-
strate node and link belonging to this tree.

7.2. Initial population525

The first step in the functioning of a GA is the generation of
an initial population (Algorithm 1 - Line 2). It is computed by
generating a given population size (Np) with each member of
this population encoding an individual representing a possible
solution. One important objective is to have a reasonable diver-530

sity among the initial population, in order to avoid premature
local convergence. In our case, as detailed in Algorithm 2, to
generate an individual i (Algorithm 2 - Line 4), we compute the
minimum Steiner tree as a routine to build the tree representa-
tion of each genes k (Algorithm 2 - Line 9). As constructing535

Steiner tree is NP-hard, a shortest path heuristic is employed,
as is presented in [20]. Note that in the case of multiple links
between two nodes, the link with the minimum link cost is sus-
tained for Steiner tree construction. To bring diversity, at each
Steiner tree construction, the cost of each link in the substrate540

network is multiplied by a random factor in the range of
[
1, 1.5

]
.

7.3. Fitness function
After creating the initial population, each individual is eval-

uated and assigned a fitness value according to a fitness func-
tion. The optimality of a solution is defined by its correspond-545

ing fitness value. Equation 18 defines our fitness function.

F(χ) =(Fbw(χ) + Fopen f low(χ) + Fgroup(χ) + Finter f (χ)
+ Fbw_balance(χ) + Fsw_balance(χ))

∗ F̂cliques(χ) ∗ F̂sw(χ) (18)

where

Fbw(χ) = α1

∑
τ∈χ

∑
e∈τ

φ(τ, e)bτ

Fopen f low(χ) = α2

∑
τ∈χ

∑
v∈V

σ(τ, v)

Fgroup(χ) = α3

∑
τ∈χ

∑
v∈V

η(τ, v)

Finter f (χ) = β1

∑
τ∈χ

∑
(c,λ)∈C

∑
v∈S (c)∩S (τ)

∣∣∣S (c)
∣∣∣ bτ

Fbw_balance(χ) = β2 ∗ (max_bw(C, χ) − min_bw(C, χ))
Fsw_balance(χ) = β3 ∗ (max_sw(V, χ) − min_sw(V, χ))

F̂cliques(χ) = 1 + 100
∑

(c,λ)∈C

δ(χ, c)

F̂sw(χ) = 1 + 100
∑
v∈V

θ(χ, v)

In the fitness function, φ(τ, e), σ(τ, v), η(τ, v), δ(χ, c) and
θ(χ, v) are all indicator functions that take value 0 or 1. Further-
more, the parameters α1, α2, α3, β1, β2 and β3 here are the same
as in the objective function of the ILP. φ(τ, e) indicates if an550

edge e in a tree τ supporting a virtual link is transmitting or not.
It takes value 1 for all edges in the tree τ except those who use
the multicast advantage: in the latter case, φ(τ, e) takes value 0.
bτ is the requested bandwidth of a virtual link, and corresponds
to the bk in the ILP formulation. Hence we have Fbw(χ) which555

is the sum of bandwidth consumed by transmitting links. In the
same manner, σ(τ, v) indicates if a node v is included in the tree
τ or not, hence consuming one OpenFlow table entry. η(τ, v)
indicates if a node v serves as a multicast node or not, hence
consuming one group table entry. Finter f (χ) reflects the total in-560

terference brought by the instantiated virtual links. For space
and clarity reasons, detailed explanations of Fbw_balance(χ) and
Fsw_balance(χ) are not given here. They correspond to the max-
imum minus minimum clique bandwidth consumption among
all cliques and maximum minus minimum flow table entries565

consumption among all nodes and can also easily be calculated
with φ(τ, e) and σ(τ, v).

Those six fitness terms correspond to the objective function
in the ILP formulation, i.e. they give the same results when the
virtual link embeddings are the same.570

Unlike the ILP formulation, the constraints on cliques and
switching resources are also included in the fitness function of
GA, i.e. the Fcliques(χ) and Fsw(χ) multiplier. In a feasible so-
lution, those two terms should be of value 1. However, in some
cases due to the sparsity of feasible solutions, those infeasi-575

ble solutions should not be removed from the population. In
fact, some solutions are more infeasible than others, and should
be reflected in our fitness function. To reflect to which extent
a solution χ is far from a feasible solution, we penalize those
infeasible solutions according to how seriously they violate the580

clique bandwidth and the switching resource constraints. δ(χ, c)
indicates if the bandwidth allocations chosen in χ respect clique
c bandwidth constraint, i.e. the total bandwidth of transmitting
links in c which come from χ, doesn’t violate the constraint
delimited by the minimum remaining capacity of all links in585
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c. The 100 here is a large number (compared to 1 as a multi-
plier) that penalizes violations of constraints. The more we have
clique constraint violations for χ, the larger the fitness function
F̂cliques(χ). In the same manner, θ(χ, v) indicates if a node re-
spects its switching resource constraint or not, and F̂sw(χ) re-590

flects to which extent the violation is serious, i.e. the number
of nodes that doesn’t respect its switching resource constraint.
Those two fitness terms correspond to the constraints of switch-
ing resources and of cliques in the ILP formulation.

7.4. Selection of parents and crossover scheme595

In this stage (Algorithm 1 - Line 6), chromosomes from a
population are selected for reproduction (crossover), detailed in
Algorithm 3. The operation of selection aims at favoring repro-
duction and survival of the fittest individuals. We use tourna-
ment selection of size 3 to select a pair of chromosomes as the600

parents to produce an offspring by applying crossover operator
between them, with the crossover probability cxPB. Its strategy
is summarized in Algorithm 3. The idea is simple and consists
to pass common traits from parents to offspring according to a
specific logic called Similitude (Algorithm 3 - Line 4). In order605

to explain how this primitive works, let χa = [τa
1, τ

a
2, ..., τ

a
K] and

χb = [τb
1, τ

b
2, ..., τ

b
K] be the selected parents. The crossover op-

erator generates a child χc = [τc
1, τ

c
2, ..., τ

c
K] by identifying the

same links between τa
k and τb

k for each k ∈ K, and retaining
these common links in τc

k (as in [29] ). According to the defi-610

nition of the fitness function, the “better" individual has higher
probability of being selected as a parent and survive. Thus, the
common links between two parents are more likely to represent
the “good" traits. However, retaining these common links in τc

k
may generate some separate sub-trees. Therefore, some other615

links need to be selected to connect these disconnected sub-
trees into a tree. The process is illustrated in Figure 7. First,
the same links of τa

k and τb
k are retained in τc

k, in the same way
as in [29]. At this moment, τc

k could be disconnected and di-
vided into several components. Moreover, to maintain diversity620

among solutions, instead of connecting separated components
each time with the shortest path, we adopt a random k-shortest
path (with k ≤ 3). Note that in the case of multiple links be-
tween two nodes, the link with the minimum link cost is used
for k-shortest path construction. This process is repeated un-625

til τc
k becomes connected (Algorithm 3 - Line 5 to 6). Finally,

a post-processing can be required to remove isolated branches
of the tree that contain neither the source node nor destination
nodes, as shown in Figure 7 (d) and (e).

As the cross-over is carried out for VLs in a one-by-one630

manner, the function updateProhibitiveLinkCost (Algorithm 3
- Line 10) assigns an infinity link cost to links that belong to
cliques with no bandwidth left for future VLs, and to links with
one end node that has no flow table entries left. In this way, in-
feasible solutions are excluded for search when possible, boost-635

ing the efficiency of exploration in the solution space.

7.5. Mutation schemes
When a new offspring is produced, the mutation operation

is performed according to the mutation probability mutPB (Al-
gorithm 1 - Line 8). We identify two types of mutations that640

src src src src

dst dst dst dst

(a) An individual in the
offspring to mutate

(b) A random link in the 
Individual gets removed

(c) The broken tree gets
connected by a k-shortest path

(d) Removal of unused 
links and nodes

Figure 8: Mutation scheme I: break-down and re-connection

src

dst1dst1

dst2

src

dst2

Figure 9: Mutation scheme II: channel mutation

could be very helpful, i.e. (1) mutation based on link break-
ing and reconnection, (2) mutation based on channel transition.
The action of mutation gives more chances of getting rid of
local sub-optimal solutions. For the first type of mutation (as
shown in Figure 8), the procedure randomly selects a link in645

the tree and remove it to create two separate sub-trees; then, it
re-connects these separate sub-trees using a random k-shortest
path. An after-processing could always be needed to cut off

unused branches. The second type of mutation come from the
importance of channels in our problem. That is, when a se-650

lected link to mutate in the tree corresponds to a multi-link in
the substrate network, it’s possible to directly change the chan-
nel of this link, as shown in Figure 9. This could lead us to
finding more opportunities of multicast advantage, or a better
load balancing among cliques.655

7.6. Balanced resource allocation with dynamic link cost

We set the normal link cost of e = ((v, u), λ) as we = α1 +

α2 + β1
∣∣∣E(c)

∣∣∣. If this static manner of defining the link cost
is used across all requests in ~K = [K1,K2, ...], cliques with660

low link costs are always favored in comparison to cliques with
high link costs, regardless of their current load, leading to un-
balanced cliques utilizations. Although in our fitness function
the clique utilization balancing is taken into consideration, it’s
inefficient if most candidate solutions in GA lead to an unbal-665

anced situation. To mitigate this, we give a dynamic version of
link cost, as shown in Algorithm 4. The idea of the algorithm
is that if the clique utilization of a clique c is among the top
Ntop most loaded, the link cost of links that form c should be
multiplied by a factor of 1.1. If the clique c is yet being used670

in the current embedding of K (i.e. χK ∩ c , ∅, as shown in
Line-11 of Algorithm 4), then an even higher multiplying fac-
tor (i.e. 1.5) should be given to links in c, before calculating
the embedding solution of Knext. In this way, those most used
cliques will be unfavored in the embedding of forthcoming re-675

quests, due to their high link costs. Note that the increase of
link cost can be accumulated over time, i.e. if a clique stays al-
ways among the top most loaded from Ki to Ki+∆, its links costs
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Algorithm 3: Crossover Scheme

Input : G(V, E); K; χa; χb; cxPB;
W = [we1 ,we2 , ...,we|E| ];

Output: χc = [τc
1, τ

c
2, ..., τ

c
|K|]

1 begin
2 G′(V ′, E′)←− Clone(G(V, E))
3 W ′ ←− Clone(W)
4 if (Random(0, 1) < cxPB) then
5 foreach k ∈ K do
6 τc

k ←− Similitude(τa
k , τ

b
k)

7 while isNotConnected(τc
k) do

8 τc
k ←−

randomKShortestPath(G′,W ′, τc
k)

9 χc[k]←− τc
k

10 updateProhibitiveLinkCost(G′,W ′, τc
k)

will be increased ∆ + 1 times, until the clique is removed from
the top most loaded list, at which point the normal link cost is680

given to the links in the clique. Inverse actions are carried out
on the Ntop least used cliques. At each iteration, links in other
cliques are given normal link cost.
8. Genetic Algorithm for Re-embedding

GA for re-embedding takes the same steps as GA for em-685

bedding, with some differences. Hereafter we present what is
different in GA for re-embedding.

8.1. Fitness function for re-embedding
The fitness function for re-embedding is defined as:

Fre(χ) = Zre
Ko,Ke

(χ) ∗ F̂bw(χ) ∗ F̂sw(χ) (19)

Following the same logic as in Section 7.3, Zre
Ko,Ke

(χ) is cal-690

culated by computing the objective function defined in Equa-
tion 17 for a chromosome χ. F̂bw(χ) and F̂sw(χ) are defined in
the same manner as in Equation 18.

8.2. Population initialization for re-embedding
The population initialization for re-embedding is shown in695

Algorithm 5. Two objectives should be achieved for this task:
(1) Diversity among populations, in order to avoid premature
local convergence. (2) Similarity to original links χo, so that
the evolved mapping results keep as many similar traits to the
original embedding results as possible in order to minimize ser-700

vice disruptions.
To achieve the first objective, the cost of each link in the

substrate network is multiplied by a random factor in the range
of

[
1, 1.5

]
, in the same manner as in GA for embedding. To

achieve the second objective, for those links constituting the705

original VL χo, the cost of each of them is multiplied by a small
random factor in the range of

[
γmin

o , γmax
o

]
(for example, in the

range of [0.01, 0.1]). Afterwards, we compute the minimum
Steiner tree as a routine to build the tree representation of each
gene k of an individual χ.710

Algorithm 4: Balanced Resource Allocation With Dy-
namic Link Cost
1 Input : G(V, E); ~K; C; Ntop;α1, α2, α3, β1, β2, β3,

Np,Ng, cxPB,mutPB
2 begin
3 foreach e ∈ E do
4 W[e]←− α1 + α2 + β1

∣∣∣E(c)
∣∣∣

5 foreach K ∈ ~K do
6 χK ←− geneticAlgorithm(G,K,W, α1,

α2, α3, β1, β2, β3,Np,Ng, cxPB,mutPB)
7 Cmost ←− mostUsedCliques(C,Ntop)
8 Cleast ←− leastUsedCliques(C,Ntop)
9 Cnormal ←− C −Cmost −Cleast

10 foreach c ∈ Cmost do
11 if c ∩ χK , ∅ then
12 foreach e ∈ c do
13 W[e]←− W[e] × 1.5

14 else
15 foreach e ∈ c do
16 W[e]←− W[e] × 1.1

17 foreach c ∈ Cleast do
18 if c ∩ χK = ∅ then
19 foreach e ∈ c do
20 W[e]←− W[e] ÷ 1.5

21 else
22 foreach e ∈ c do
23 W[e]←− W[e] ÷ 1.1

24 foreach c ∈ Cnormal do
25 foreach e ∈ c do
26 W[e]←− α1 + α2 + β1

∣∣∣E(c)
∣∣∣

8.3. Crossover for re-embedding
The crossover for re-embedding is shown in Algorithm 6.

The performed actions include:

• Retaining these common links in the two parents with a
high probability. To this end, in the substrate network,715

the link costs of those common links are multiplied by a
random near-to-zero factor in the range of

[
γmin

comm, γ
max
comm

]
(e.g. around 0.05).

• At the same time, it is always important to guarantee the
similarity to original links as well as the diversity of solu-720

tions. To this end, the link cost of original links are multi-
plied by a small random factor in the range of

[
γmin

o , γmax
o

]
(for example, in the range of [0.01, 0.1]).

• Other links are multiplied by a random factor in the range
of

[
1, 1.5

]
.725

Afterwards, we compute the minimum Steiner tree on the
substrate network with adjusted link costs. Note that here we
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Algorithm 5: Initial Population Computation for Re-
embedding

Input : G(V, E); χo; Ke; Np; γmin
o ; γmax

o ;
W = [we1 ,we2 , ...,we|E| ];

Output: P0 = {χi,∀i ∈ {1, ...,Np}},
with χi = [τi

1, τ
i
2, ..., τ

i
|K|]}

1 begin
2 P0 ←− ∅

3 G′(V ′, E′)←− Clone(G(V, E))
4 W ′ ←− Clone(W)
5 for ( i = 0; i < Np; i + + ) {
6 foreach k ∈ Ke do
7 W ′ ←− Clone(W)
8 foreach e ∈ χo[k] do
9 W ′[e]←− W ′[e] × Random(γmin

o , γmax
o )

10 foreach e ∈ E′ − χo[k] do
11 W ′[e]←− W ′[e] × Random(1, 1.5)

12 τi
k ←−

ComputeSteinerTree(G′,W ′[e], sk,Tk)
13 χi[k]←− τi

k

14 P0 ←− P0∪ χ
i

don’t remove links as in GA for embedding, hence there is
no need for "breaking down the graph into components, re-
connection and removal of unused branches" as in GA for em-730

bedding. Nor is the k-shortest path algorithm needed here, be-
cause the randomized link cost multipliers substitute the neces-
sity for a k-shortest path algorithm.

9. Performance evaluations for embedding

The objectives of this performance analysis is to show that735

our methods for virtual link embedding clearly succeed in cap-
turing three essential aspects of wireless links : (1) their broad-
cast nature which should be exploited whenever possible when
embedding point-to-multipoint virtual links; and (2) interfer-
ence between neighboring links which should be avoided when-740

ever possible; and (3) to achieve a decent load-balancing of
clique and flow table utilization to improve admissibility. It also
compares both proposed methods and investigates the trade-off

raised by these latter: accuracy versus computation time. Be-
low, we describe our simulation model, the main performance745

metrics and some of the obtained results.

9.1. Heuristic algorithms for comparison
The considered heuristic algorithm for comparison is pre-

sented in Algorithm 7. It is a simple Steiner tree construction
for each VL in a request sequentially, with the two complemen-750

tary specificities: (1) For each VL k in a request K, a func-
tion called updateProhibitiveLinkCost (Algorithm 7 - Line 8)
is called which gives infinity link cost to links with one node
that has no OpenFlow table entry left, or those links that has
not enough bandwidth for the forthcoming VL knext; (2) Three755

Algorithm 6: Crossover Scheme for Re-embedding

Input : G(V, E); χo; Ke; χa; χb; cxPB;
γmin

comm; γmax
comm; γmin

o ; γmax
o ; γmax

normal;
W = [we1 ,we2 , ...,we|E| ];

Output: χc = [τc
1, τ

c
2, ..., τ

c
|K|]

1 begin
2 G′(V ′, E′)←− Clone(G(V, E))
3 if (Random(0, 1) < cxPB) then
4 foreach k ∈ K do
5 W ′ ←− Clone(W)
6 τc

k ←− Similitude(τa
k , τ

b
k)

7 foreach e ∈ τc
k do

8 W ′[e]←− W ′[e] × Random(γmin
comm, γ

max
comm)

9 foreach e ∈ χo[k] do
10 W ′[e]←− W ′[e] × Random(γmin

o , γmax
o )

11 foreach e ∈ E′ − χo[k] − τc
k do

12 W ′[e]←− W ′[e] × Random(1, 1.5)

13 χc[k]←−
ComputeSteinerTree(G′, E′,W ′, sk,Tk)

14 else
15 χc ←− RandomChoice(χa, χb)

different link metrics are used for comparison (Algorithm 7 -
Line 9), which can contribute differently to the acceptance rate:

• Metric-1: Dynamic Link Metric, as presented in Algo-
rithm 4.

• Metric-2: Link metric (associated to the clique c) defined760

as α1 + α2 + β1
∣∣∣E(c)

∣∣∣.
• Metric-3: Link metric (associated to the clique c) defined

as α1+α2+β1|E(c)|
residual_capacity(c) .

We can see that the Metric-2 and Metric-3 do not take into
consideration the switching resources. It is expected that Metric-765

1 and Metric-3 would lead to a decent load balancing between
cliques, which should not be the case for Metric-2. It is also
expected that Metric-1 would help in balancing switch resource
consumption.

9.2. Network Model770

For space reasons, one single network instance is consid-
ered in the presented results. It is composed of 20 nodes con-
nected via 60 links. Nodes are equipped with up to 3 radio in-
terfaces that operate on 6 disjoint frequency bands (channels).
The capacity of each channel is set to 180 units of bandwidth775

(UB). The left side of Figure 10 depicts the network topology,
each link color reflects a frequency band. It leads to 9 cliques
(as depicted in right side of Figure 10) with a number of mem-
bers ranging from 3 to 11 links. Unless specified, the flow table
and group table maximum size are set to 1000 and 100, respec-780

tively. In fact, this network instance can been seen as derived
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Algorithm 7: Shortest Path Heuristic for Comparison

Input : G(V, E); ~K;
Output: χ = [τ1, τ2, ..., τ|K|]}

1 begin
2 G′(V ′, E′)←− Clone(G(V, E))
3 W = InitiateLinkCosts()
4 foreach K ∈ ~K do
5 foreach k ∈ K do
6 τk ←− ComputeSteinerTree(G′, sk,Tk,W)
7 χ[k]←− τk

8 updateProhibitiveLinkCost(G′,W)

9 updateLinkCost(G′,W, χ)

from our test-bed of software-defined wireless multi-hop net-
work, with most nodes equipped with three 802.11 WiFi radio
interfaces (multi-radio), each able to operate on either one of
the three separated channels of the ISM 2.4GHz band or one of785

the UNII 5GHz channels, shown in [2].
Hereafter we present how we can calculate the conflict graph,

which serves then as an input for our embedding algorithms,
given the positions of the 20 nodes in a 2-D xy-axis space. First,
we implicitly assume a free space propagation model for all
transmissions, two links operating on the same channel inter-
fere if (1) they have one node in common or (2) one transmis-
sion on a link has an RSSI (Received Signal Strength Indicator)
at one of the nodes of the other link, which is greater than a pre-
defined threshold. The relationship between the distance and
RSSI is determined by the logarithmic wireless path model:

RSSI(d) = RSSI(d0) + 10η log(d/d0) + ζ

where d is the distance, d0 is the distance of reference, η is the
path attenuation factor and ζ is the shadowing factor. Therefore,
towards the end, in the interference model used for this perfor-
mance analysis, it is the position of nodes that determines the790

conflict graph and hence cliques.

9.3. Load Model
Virtual links requests are composed of a number of point-

to-point and point-to-multipoint virtual links randomly chosen
between 4 and 6. Each point-to-multipoint virtual link has a795

number of destinations randomly chosen between 2 and 6. The
bandwidth requirement of each virtual link is also chosen ran-
domly from 1 to 3 UB. Source and destination selection is per-
formed on a random basis. The request arrivals follow a Poisson
process with an arrival rate r of 0.01, 0.02, 0.03, 0.04, i.e. in800

average 1, 2, 3 or 4 requests each 100 units of time (UT). The
request life-time conforms to an exponential distribution with
an average of 1000 UT.

9.4. Simulation Settings and Implementation
The Integer Linear model was implemented in Python with805

CPLEX 12.63 solver. The experiments were carried out on a
virtual machine with 25 vCPU and 16GB of RAM and running

Figure 10: Network model used in our performance evaluation. Instead of using
the usual way of presenting cliques with conflicting links as “node”, cliques are
directly drawn on the illustrating graph, with ellipsoids covering the midpoint
of each link in the clique.

Ubuntu 14.04. A gap of less than 1% to the optimal solution is
considered satisfactory. Unless specified, path splitting is dis-
abled for ILP. For GA, the implementation is in Python (run-810

ning on pypy 1) using deap [31]. Unless specified, population
size is set to 18 and number of generations at 18. Cross-over
probability is 0.9 and mutation probability is 0.05. Ntop is set to
2. The simulation horizon is fixed to 10000 UT (this time pe-
riod is sufficient to have our methods in the stationary regime).815

α1, α2 and α3 are set to 1, 1 and 5 respectively throughout all
evaluation experiments.

NetworkX [32] is used to represent graphs. It is to note
that the discovery of cliques within a conflict graph (which is
NP-hard) can be easily conducted via its find_cliques API 2,820

which is based on on the algorithms published in [33] [34] and
discussed in [35]. For persistence and serialization of graph
models , network models and request models, dill [36] is used.

9.5. Performance metrics

The following performance metrics are computed during825

simulation for performance analysis purposes:

• Acceptance rate (ac, in %): the percentage of success-
ful virtual links requests out of all the requests that ar-
rived during the simulation time or accumulatively with
the time.830

• Clique utilization (cu, in %): bandwidth allocated at the
links composing a clique divided by channel capacity,
computed as 100 ∗ ξ′(c)

Bλ
.

• Switch resource utilization regarding flow table utiliza-
tion (su, in %): flow table utilization at the nodes divided835

by the initial flow table size, computed as 100 ∗ L′v
Lv

.

1http://pypy.org/
2https://networkx.github.io/documentation/stable/reference/algorithms/generated/

networkx.algorithms.clique.find_cliques.html
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Figure 11: Clique utilization (all cliques, large cliques and small cliques) and
acceptance rate with β1 = 1 v.s β1 = 0. Computed with ILP. Arrival rate = 0.02.
β2 = 0, β3 = 15. Similar results are obtained with GA.

• Switch resource utilization regarding group table utiliza-
tion (gu, in %): group table utilization at the nodes di-
vided by the initial group table size, computed as 100 ∗
M′v
Mv

.840

• Computation time (in second): the average computation
time for one request.

9.6. Performance Results
9.6.1. Coping with wireless links interference

The objective is to assess how efficient are our methods in845

reducing and avoiding wireless links interference. To this end,
β2 and β3 are set to 0 in a first place. We compare the effect of
setting β1 to 1 versus to 0.

In fact, when embedding virtual links requests, our meth-
ods favor links belonging to cliques with limited number of850

members, introducing, by the way, in their surroundings less
interference and, hence, preserving the overall available band-
width. This is clearly shown in Figure 11 which focuses on the
clique utilization of two groups of cliques: small cliques with
a small number (3 ∼ 6) of interfering links and large cliques855

with a high number (8 ∼ 11) of links. When activating inter-
ference reduction, the bandwidth consumed by large cliques is
decreased contrary to small cliques. As expected a portion of
the bandwidth consumed by a large-size clique is transferred
to smaller-size cliques: small cliques experience an increase in860

clique utilization while large cliques get less loaded.
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Figure 12: Clique utilization and acceptance rate with and without multicast
advantage. Computed with ILP. Arrival rate = 0.02. β2 = 0, β3 = 15. Similar
results are obtained with GA.

Favoring small-size cliques may lead to longer data paths
and hence more resources are needed to support the virtual links
being embedded. Since the acceptance rate is improved with
such a strategy, this means that this latter increase is compen-865

sated by the resource that are preserved thanks to interference
reduction. With the considered network and load models, our
experiments show a slight increase around 1% on the average
length of selected data paths.

9.6.2. Assessing the gain brought by the Multicast advantage870

The objective is to quantify the gain in resource usage that
our methods achieve by exploiting the multicast advantage when
embedding point-to-multipoint virtual links. Again, β2 and β3
are set to 0 in a first place. β1 is set to 1 as we have shown that
interference should be taken into consideration for the model-875

ing.
The clique utilization of the 9 cliques is presented in Figure

12. We see that disabling the multicast advantage induces extra
bandwidth consumption that overloads all cliques and causes
significantly more embedding failures.880

9.6.3. Clique utilization balancing
By setting β2 to 5, we activate clique load balancing. To

show the effect of clique load balancing, Figure 13 shows that
the clique utilizations have now much less disparity, with ILP as
well as GA, compared to Figure 11 and 12 where β2 = 0, lead-885

ing to an improved acceptance rate (99.5% for ILP and 98.5%
for GA) .

9.6.4. Switch resource consumption and balancing
To show how flow table resource is consumed and balanced

and in which manner this might impact , we set the initial flow890

table size to 90, and compared the results of β3 = 0 versus
β3 = 15 using ILP, as is shown in Figure 14. Apart from a
much better balancing of flow table resource utilization, we also
see an improved acceptance rate (99.5% v.s. 94.5%). Hence,
flow table resource balancing should be activated. The effect895

of switch resource balancing of GA is shown in Figure 15. We
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Figure 13: Clique utilization balancing with ILP and GA. Arrival rate = 0.02.
β3 = 15.
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Figure 14: Switch resource consumption of all nodes, computed with ILP, with
initial flow table size set at 90. Arrival rate = 0.02. β2 = 5

can see that GA is less effective than ILP in switch resource
balancing.

Figure 16 presents the group table utilization, computed
with ILP and GA. We observe that with ILP and GA, thanks900

to the multicast advantage, the group table consumption re-
mains very limited despite the successful mapping of point-to-
multipoint virtual links. As expected, for the considered simu-
lation model, group table entries are abundant in comparison to
embedding needs. As a consequence, it does not play a decent905

role in the selection of the data paths. Hence, there is no need
to balance its utilization in the formulation.

9.6.5. Path splitting
Figure 17 shows that with path splitting, the acceptance rate

improves slightly. However, if we limit the initial switch re-910

sources, then we observe that ILP-PS delivers much worse re-
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Figure 15: Switch resource consumption of all nodes, computed with GA, with
initial flow table size set at 90. Arrival rate = 0.02. β2 = 5.
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Figure 16: Group table consumption of ILP and GA. Arrival rate = 0.02. β2 =

5, β3 = 15.
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Figure 17: Acceptance rate of the heuristic using 3 different link metrics as well
as ILP, GA and ILP-PS, for different arrival rates. β2 = 5, β3 = 15.

sults than ILP and GA. Figure 20 depicts this with initial flow
table size set to 90. We see that ILP-PS consumes more group
table entries and flow table entries, and the latter will lead to
embedding failures of ILP-PS compared to ILP.915

9.6.6. Comparison with heuristic algorithms
Here we present the results of SPH using different link met-

rics, as is shown in Figure 17. We see that the heuristic with
all 3 link metrics has a lower acceptance rate than ILP, ILP-PS
and GA. However, Metric-1 has the best performance, while920

Metric-2 has the worst. Also, Figure 18 and Figure 19 show that
Metric-1 leads to a relatively good balancing both in clique load
and switch resource utilization, while Metric-3 leads only to a
decent balancing in clique load. Metric-2, as expected, leads to
an unbalanced situation, and hence gives the worst acceptance925

rate.

9.6.7. Embedding method selection : ILP v.s. GA

There are two important criteria to consider when choos-
ing the method to be applied: (1) accuracy (leading to optimal930
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Figure 18: Clique load balancing of heuristic using the 3 different link metrics
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Figure 19: Switch resource balancing of heuristic using the 3 different link
metrics

acceptance rate) and (2) computation time. Figure 17 shows
the acceptance rate using different methods, and we can see
that ILP-PS (ILP with path splitting enabled) gives slightly bet-
ter results than ILP and GA. Figure 21 and Figure 22 present
the acceptance rate and the computation time obtained with GA935

when considering different population and generation sizes. For
the considered network model, GA with a population of 18 in-
dividuals and 18 generations lasts 80% of the computation time
of ILP. With smaller population and generation size (e.g. 12
and 12), the computation time can be significantly reduced (less940

than 1/10 of ILP), bringing only minor degradation of the ac-
ceptance rate (∼1.5%). Our experiments show that for larger
network models, GA shows a significant advantage in compu-
tation time compared to ILP. For example, if we take a net-
work substrate composed of of 60 nodes and 166 cliques using945

7 channels (shown in Figure 23), our experiments show that
with the graph as input, it takes ILP more than 4 minutes to
compute the results for each virtual link request. As a contrast,
it takes GA (with a population size of 18 and a generation num-
ber of 18) less than 1 minute. Our experiments for networks950

composed of up to 100 nodes confirm this trend. On the con-
trary, with ILP-PS, as the search space explodes, the computa-
tion time can be several folds of that of ILP and hence much
more than GA. This is another major shortcoming of ILP-PS,
besides more induced consumption of switch resources.955

10. Re-embedding vs embedding for changing VLs

When a VL evolves, the data paths on which it is established
need to be recomputed in order to keep providing the requested
QoS. These data paths can be recomputed from scratch by us-
ing the embedding algorithm. This leads to minimal network960

resource consumption but typically implies VL service disrup-
tion, the time the newly computed data paths get installed in
place of the initial ones.
Another alternative followed by our re-embedding algorithm is
to rely on the already provisioned data paths and proceed with965

some additions and adjustments. The main expected benefit is
a limited service disruption time with a price to pay in terms of
a less efficient (near optimal) network resource consumption.

Therefore, the objective is to compare the re-embedding
to the embedding algorithm in terms of service disruption and970

consumed resources, when used for changing VLs.
To that end, we adopt the network model, load model and sim-
ulation settings of the previous section, and we consider a sce-
nario where the network is not highly loaded. Indeed, it is under
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Figure 20: Switch resource consumption with ILP and ILP-PS. The initial flow
table size is set to 90. Arrival rate = 0.02. β2 = 5, β3 = 15.
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this condition that it should be used to limit service disruption at975

the cost of a slight increase in network resources consumption
(in comparison to the optimal solution). More precisely, the ini-
tial capacity of each wireless channel at 500 UB, and the initial
flow table and group table sizes are respectively set to 5000 and
500. The arrival rate is set at 0.02. Each time a new request980

Ko arrives, the embedding algorithm is used (ILP as defined in
Section 5, with α1 = 1, α2 = 1, α3 = 5, β1 = 1, β2 = 1, β2 = 5,
β3 = 15, path splitting disabled). For every VL ko ∈ Ko, at its
mid-life, a random number between 1 and 4 of new destinations
are added, forming an evolving sub-request ke ∈ Ke. To treat re-985

quest Ke, we use the embedding algorithm of Section 5, and the
re-embedding algorithm of Section 6 with ρ = 100000 (similar
results are observed with the genetic algorithms of Sections 7
and 8).

Our main findings are the following. With the considered990

assumptions no service disruption is observed with our re-embedding
algorithm. When the embedding algorithm is used, in more
than 42% of the cases, the VLs requests are embedded on dif-
ferent data paths leading to service disruptions. Regarding the
consumed network resources, in comparison to the embedding995

algorithm, the near optimal data paths computed by the re-embedding
algorithm (that avoid service disruption) induce an average in-
crease in bandwidth resource consumption of 5.4% and switch-
ing resource consumption of 4.7%. A detailed analysis of the
data paths computed by the re-embedding algorithm reveals that1000

the "multicast advantage" is often adopted. This is the main rea-
son why the increase in network resource consumption remains
limited. This is fostered by the highly meshed topology of the
considered wireless network.

11. Conclusion1005

In this paper, we developed an Integer-Linear programming
method and a genetic algorithm method for the resource alloca-
tion of multiple virtual links in wireless software defined multi-
radio multi-channel multi-hop networks. In comparison to ex-
isting works, the main contribution of our proposals lies in the1010

conjunction of the following features: (1) the support of point-
to-multipoint virtual links in addition to point-to-point virtual
links, and, in a wireless context, how to benefit from the multi-
cast advantage to gain in bandwidth consumption, (2) the con-

Figure 23: A large network substrate composed of 60 nodes and 166 cliques,
using 7 channels

sideration of switching resources in the allocation of resources1015

in addition to the bandwidth of channels. Through our evalua-
tions, we show that both of our proposed methods work well.
More interestingly, we investigated how the consideration of
interference, multicast advantage as well as resource balancing
could impact the embedding results, and, how the two proposed1020

methods differ in performance and computation time. We have
also proposed two re-embedding algorithms which can be in-
corporated into our scheme to support dynamic VLs requests
with the objective of limiting, if not avoiding whenever possi-
ble, service disruption.1025

One important perspective to this work is to extend our
algorithms by considering more general interference models,
more particularly, those which capture the cumulative interfer-
ence caused by transmissions form multiple nodes, e.g. the
SINR interference model. Another future direction is to con-1030

sider two other QoS requirements, namely end to end transfer
delay and reliability.
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