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Abstract

Time eigenvalues emerge in several key applications related to neutron transport

problems, including reactor start-up and reactivity measurements. In this context,

experimental validation and uncertainty quantification would demand to assess

the variation of the dominant time eigenvalue in response to a variation of nuclear

data. Attention has been recently drawn to the development of theoretical and

numerical tools for a first-order Standard Perturbation Theory (SPT) applied to

time eigenvalues, which can be thought of as an extension of the well-known SPT

formalism for k-eigenvalues. In this work we present a new Monte Carlo method

enabling first-order perturbation and sensitivity analysis for time eigenvalues,

based on the Generalized Iterated Fission Probability approach that we have

recently introduced. The proposed method is detailed and its accuracy is assessed

by considering a few relevant verification tests.
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1. Introduction

The rediscovery of the Iterated Fission Probability (IFP) method has made possible

to compute first-order reactivity perturbations and sensitivity coefficients for k-

eigenvalue calculations by continuous-energy Monte Carlo methods (Nauchi and

Kameyama, 2010; Kiedrowski et al., 2011), thus enabling the implementation

of Standard Perturbation Theory (SPT) estimators in production Monte Carlo

codes (Terranova et al., 2018; Choi et al., 2018; Kiedrowski and Brown, 2013;

Jinaphanh et al., 2016; Aufiero et al., 2015; Perfetti et al., 2016; Qiu et al., 2016);

for a comprehensive review, see, e.g., (Kiedrowski, 2017).

The k eigenvalues are intrinsically related to the behaviour of neutron genera-

tions (Bell and Glasstone, 1970). In many technological applications, encom-

passing reactor start-up (Pfeiffer et al., 1974) and pulsed neutron reactivity mea-

surements (Cao and Lee, 2010), one is led to explicitly consider the evolution

of the neutron population with respect to time instead of generations: this is

tantamount to examining the α eigenvalues, which are related to the asymptotic

reactor period and to the prompt neutron decay constant (Bell and Glasstone,

1970). In this context, experimental validation, uncertainty quantification and

bias estimation through data assimilation would demand the perturbation effect

and/or sensitivity coefficients of the dominant α-eigenvalue of the neutron flux

with respect to variation in nuclear data.

Perturbation and sensitivity analysis of α eigenvalues has recently attracted much

attention, and several attempts have been made at extending the first-order SPT

methods for both deterministic (Endo and Yamamoto, 2018; Favorite, 2018)

and Monte Carlo solvers (Yamamoto and Sakamoto, 2019; Burke et al., 2019;

Jinaphanh and Zoia, 2019). Based on the Generalized IFP method proposed

in (Terranova et al., 2017), which can estimate the adjoint fundamental mode as-
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sociated to the α-eigenvalue equation, and more generally ratios of bilinear forms

involving the direct and adjoint fundamental α-modes, we have implemented a

new family of Monte Carlo estimators for perturbations and sensitivities coeffi-

cients of the α eigenvalue with respect to nuclear data (Jinaphanh and Zoia, 2019).

This method was initially verified for simplified multi-group neutron transport

problems. In this work we extend our findings by considering full continuous-

energy transport: for this purpose, the algorithm sketched in (Jinaphanh and Zoia,

2019) has been implemented in the Monte Carlo code TRIPOLI-4 R© , developed

at CEA (Brun et al., 2015).

This paper is structured as follows: in Sec. 2 we will recall the Monte Carlo imple-

mentation of direct and adjoint α-eigenvalue calculations and the Generalized IFP

method. Then, in Sec. 3 we will illustrate the formula for the first-order perturba-

tions of the α eigenvalue (including the contributions due to delayed neutrons)

and show how these quantities can be computed by the Generalized IFP method,

once appropriate estimators are introduced; these results will be extended to the

sensitivity analysis in Sec. 4. In Sec. 5 the proposed methods will be verified

against exact solutions for a few relevant benchmark configurations; furthermore,

the continuous-energy implementation of TRIPOLI-4 R© will be contrasted to the

results of the deterministic solver developed in (Endo and Yamamoto, 2018) for

the HEU-SOL-THERM-012 benchmark. Conclusions will be finally drawn in

Sec. 6.
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2. Monte Carlo methods for direct and adjoint α-eigenvalue problems

The time-dependent neutron and precursor behaviour in a multiplying system is

described by the following system of equations

1
3

∂

∂t
ϕ(r,Ω, E, t) +Lϕ(r,Ω, E, t) = Fpϕ(r,Ω, E, t) +

∑
j

χd, j(r, E)
4π

λ jc j(r, t) + Q

(1)

∂

∂t
c j(r, t) =

∫ ∫
νd, j(E′)Σ f (r, E′)ϕ(r,Ω′, E′, t)dΩdE − λ jc j(r, t), (2)

where the Boltzmann equation (1) for the neutron flux ϕ(r,Ω, E, t) at position r,

direction Ω, energy E and time t is coupled to the evolution equations (2) for the

precursor concentration c j(r, t) of family j (Bell and Glasstone, 1970). Here L

denotes the net disappearance operator,

Lϕ(r,Ω, E, t) = Ω · ∇ϕ + Σtϕ −

∫ ∫
Σs(r,Ω′, E′ → Ω, E)ϕ(r,Ω′, E′, t)dΩ′dE′

(3)

and Fp the prompt fission operator,

Fpϕ(r,Ω, E, t) =
χp(r, E)

4π

∫ ∫
νp(E′)Σ f (r, E′)ϕ(r,Ω′, E′, t)dΩ′dE′. (4)

Notation is as follows: Σt(r, E) denotes the total cross section, Σs(r,Ω′, E′ →

Ω, E) the scattering transfer kernel and Σ f (r, E) the fission cross section; νp(E)

denotes the average number of prompt fission neutrons and νd, j(E) average number

of delayed fission neutrons for precursor family j; χp(r, E) denotes the prompt

fission spectrum and χd, j(r, E) the delayed fission spectrum for precursor family

j; λ j denote the delayed neutron precursor decay constants for family j. In order

to keep notation to a minimum, we have considered a single fissile nucleus: the

generalization to several nuclei is straightforward. Finally, the term Q represents
4



the external neutron source. The kinetic equations must be assigned proper initial

and boundary conditions for ϕ(r,Ω, E, t) and c j(r, t). All physical parameters

have been supposed time-independent.

Time eigenvalue equations (often called α-eigenvalue equations) are obtained

from Eqs. (3) and (4) by postulating variable separation and assuming a time-

dependence of the kind exp(αt) for the flux and the precursors, for a given set of

eigenvalues α and time-independent eigenfunctions ϕα(r,Ω, E) and cα, j(r) (Bell

and Glasstone, 1970). Plugging the eigenvalue equations for the precursors into

that for the neutrons yields

α

3
ϕα(r,Ω, E) +Lϕα(r,Ω, E) = Fpϕα(r,Ω, E) +

∑
j

λ j

λ j + α
Fd, jϕα(r,Ω, E), (5)

where we have introduced the delayed fission operator

Fd, jϕα(r,Ω, E) =
χd, j(r, E)

4π

∫ ∫
νd, j(E′)Σ f (r, E′)ϕα(r,Ω′, E′)dΩ′dE′ (6)

The fundamental eigen-pair {α, ϕα} of Eq. (5) can be determined by Monte Carlo

methods by using the α-k power iteration, originally proposed for prompt decay

constants (Brockway et al., 1985) and later extended to the general case with

neutrons and precursors (Zoia et al., 2015). In order for this paper to be self-

contained, we briefly recall the algorithm here: for more details, the reader

is referred to (Zoia et al., 2015). The basic idea is to add a factor 1/k that

multiplies the production terms and to iteratively adjust the α value such that

Eq. (5) is satisfied with k = 1. For positive α, the term Σα = α/3 on the

left hand side is interpreted as a “capture” cross section in the modified power

iteration (Brockway et al., 1985; Cullen, 2003). For negative α, Σα is moved to the

right hand side of the equation and interpreted as a “production” term (Brockway

et al., 1985; Cullen, 2003). The standard implementation of this algorithm
5



has been shown to be numerically unstable for negative α, possibly leading

to abnormal termination (Hill, 1983). An improved algorithm that overcomes

these limitations has been proposed (Zoia et al., 2014, 2015; Mancusi and Zoia,

2018): Eq. (5) is formally rearranged in order to preserve the balance between

destructions and productions, namely,

Lϕα + Σα,ηϕα = Fpϕα +
∑

j

λ j

λ j + α
Fd, jϕα + Fα,ηϕα. (7)

where we have introduced a positive α-absorption cross section Σα,η = −ηα/3 > 0,

η being an arbitrary positive constant, and the associated α-production operator

Fα,ηϕα =

∫ ∫
νηδ(Ω −Ω′)δ(E − E′)Σα,ηϕα(r,Ω′, E′) dΩ′dE′. (8)

The term

νη =
η + 1
η

> 0 (9)

can be interpreted as the average number of (copy) neutrons produced by the

α-production operator having a delta spectrum (Zoia et al., 2015). Finally, the

term λ j/(λ j + α) acts as a positive weight multiplier for the delayed neutrons

(for physical reasons, the dominant eigenvalue satisfies α > −min j[λ j]). Sev-

eral other techniques exist for α eigenvalue problems including neutrons and

precursors, such as those suggested in (Hoogenboom, 2002; Nauchi, 2013; Josey,

2018): in this work, we will focus on the α-k power iteration; method-to-method

comparisons are left for future work.

2.1. Generalized Iterated Fission Probability

The equation adjoint to Eq. (5) reads (Bell and Glasstone, 1970)

α

3
ϕ†α(r,Ω, E)+L†ϕ†α(r,Ω, E) = F †p ϕ

†
α(r,Ω, E)+

∑
j

λ j

λ j + α
F
†

d, jϕ
†
α(r,Ω, E) (10)
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where ϕ†α is formally the eigenfunction adjoint to ϕα and physically represents the

asymptotic importance 1 of a neutron introduced into the system with coordinates

r,Ω, E. The adjoint operators appearing in Eq. (10) are defined as

L†ϕ†α(r,Ω, E) = −Ω · ∇ϕ†α + Σtϕ
†
α −

∫ ∫
Σs(r,Ω, E → Ω′, E′)ϕ†α(r,Ω′, E′)dΩ′dE′

(11)

F †p ϕ
†
α(r,Ω, E) = νp(E)Σ f (r, E)

∫ ∫
χp(r, E′)

4π
ϕ†α(r,Ω′, E′)dΩ′dE′ (12)

F
†

d, jϕ
†
α(r,Ω, E) = νd, j(E)Σ f (r, E)

∫ ∫
χd, j(r, E′)

4π
ϕ†α(r,Ω′, E′)dΩ′dE′. (13)

In a recent work, a Generalized IFP method has been proposed in order to

compute ϕ†α by Monte Carlo methods (Terranova et al., 2017). In the following

we will briefly recall the Generalized IFP algorithm, whose basic idea is to relate

the fundamental adjoint eigenfunction to the neutron importance, similarly to

what is done for the regular k-eigenvalue IFP formulation (for a comprehensive

description, see (Terranova et al., 2017)). The neutron importance Iα in the α-

eigenvalue problems can be estimated by recording the descendants after M latent

generations corresponding to an ancestor injected into the system at coordinates

r,Ω, E. For positive α, the additional term Σα acts as a sterile capture: neutrons

will not further contribute to the importance. Neutrons can contribute to the

importance only by being promoted to the next generation by prompt and delayed

fission 2. For negative α, neutrons can be also promoted to the next generation

(and thus contribute to the importance Iα) via the α-production term, associated to

the copy operator with cross section Σα,η. Extensive comparisons between ϕ†α as

computed by estimating Iα via the Generalized IFP methods and by estimating the

1For very long times.
2In this latter case, their weight is assigned a correction factor λ j/(λ j + α), as discussed above.
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asymptotic importance in time-dependent simulations have been recently carried

out and show that the two quantities are in very good agreement (Nauchi et al.,

2019).

In order to estimate more generally bi-linear forms requiring both ϕα and ϕ†α, the α-

k power iteration is first run until convergence is attained: after D inactive cycles,

neutrons will obey the fundamental eigenmode ϕα. Then, at each successive

generation g a neutron is tagged as an ancestor, and its future contributions to

the importance Iα are monitored. The corresponding importance Iα ∝ ϕ
†
α of this

ancestor is estimated at a later generation g + M + 1 via the Generalized IFP

method. Finally, adjoint-weighted tallies can be constructed for a generic operator

A as

〈ϕ†αAϕα〉 ∝
∑

i

πiTi. (14)

Here Ti is the tally associated toAϕα in the Monte Carlo simulation, evaluated

during the first generation of the Generalized IFP cycle via the contribution

of the ancestor; πi is the corresponding importance collected at the end of the

Generalized IFP cycle, i.e., the number of descendant neutrons corresponding to

the ancestor, after M latent generations (Terranova et al., 2017); and the sum is

extended over the ancestors, which bears a strong similarity to the procedure for k-

eigenvalues (Kiedrowski et al., 2011). Contrary to the standard IFP method, where

descendant neutrons can only originate from fission events, in the Generalized

IFP method the α-production can also promote particles to the next generation

(for negative α), and the contribution of the delayed fission neutrons to the next

generation must be rescaled by a factor λ j/(λ j+α). The scheme of the Generalized

IFP for bi-linear forms is displayed in Fig. 1. The error in the Generalized IFP

calculations is estimated similarly to regular IFP, by collecting adjoint-weighted

scores at each cycle after convergence (Terranova et al., 2017). In addition to the
8



random nature of the simulated histories and the associated tallies Ti, fluctuations

on the obtained averages stem from the variability of the neutron importances πi

and of the α value estimated at each cycle.

αguess α(0)
MC

S(0) 1 2 · · · gg-1 D B

discarded

α(g) = k(g)α(g−1) α
(b)
MC = k

(b)
MC α

(b−1)
MC

α-k P.I. α-k P.I.+IFPα

α0

ϕ(0)
α

α
(0)
MC

M=2M=2 M=2

ϕ(B)
α ∼ ϕα
α(B)

MC

〈ϕ†
α, Aϕα〉MC

α0

αguess

α(g)

batchesD

Figure 1: A schematic representation of the Generalized IFP algorithm for bi-linear forms

〈ϕ†α,Aϕα〉 within power iteration (P.I.). Courtesy of N. Terranova and A. Zoia, from Ref. (Terra-

nova et al., 2017).

3. First-order perturbation theory for time-eigenvalues

In close analogy with the standard perturbation theory for k-eigenvalues, the first-

order perturbation theory for time-eigenvalues can be formulated as follows (Bell

and Glasstone, 1970; Endo and Yamamoto, 2018). Consider Eqs. (5) and (10) for

the direct and adjoint neutron flux, respectively, with leakage boundary conditions,

and assume that a perturbation is introduced on the system parameters (cross

sections, neutron multiplicities, decay constants, concentrations and/or densities).
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Let us denote by A′ = A + ∆A the perturbed operators and by ϕ′α = ϕα + ∆ϕα

the corresponding perturbed neutron flux, which satisfies

α′

3
ϕ′α(r,Ω, E) +L′ϕ′α(r,Ω, E) = F ′pϕ

′
α(r,Ω, E) +

∑
j

λ′j

λ′j + α′
F ′d, jϕ

′
α(r,Ω, E),

(15)

α′ = α + ∆α being the perturbed eigenvalues. The key goal of perturbation theory

is to express the variation ∆α of the eigenvalue as a function of the variations

introduced in the nuclear data. Multiply now Eq. (15) by the unperturbed adjoint

flux ϕ†α and Eq. (10) by the perturbed direct flux ϕ′α, and integrate over the phase

space (such integration will be denoted by brackets, namely, 〈· · · 〉). Subtracting

the resulting equations yields

(α′−α)〈ϕ†α
1
3
ϕ′α〉 = 〈ϕ†α

(
∆Fp + ∆S − ∆Σt

)
ϕ′α〉+〈ϕ

†
α

∑
j

∆

(
λ j

λ j + α
Fd, j

)
ϕ′α〉, (16)

where we denote by S the scattering operator and we define the differences of

operators

∆S = S′ − S (17)

∆Σt = Σ′t − Σt (18)

∆Fp = F ′p − Fp (19)

∆

(
λ j

λ j + α
Fd, j

)
=

λ′j

λ′j + α′
F ′d, j −

λ j

λ j + α
Fd, j. (20)

Assuming then small perturbations and retaining only the first-order terms (prod-

ucts of perturbed quantities can be safely neglected 3), we obtain the expression

3 The first-order expansion of the scattering, collision and prompt fission operators works

similarly as in the k-eigenvalue perturbation formulation. The expansion of the delayed fission

operator on the other hand is unusual: for the sake of completeness, we provide its derivation.
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for ∆α, namely,

∆α =

〈ϕ†α(∆Fp + ∆S − ∆Σt)ϕα〉 +
∑

j

(
λ j

λ j+α
〈ϕ†α∆Fd, jϕα〉 +

α∆λ j

(λ j+α)2 〈ϕ
†
αFd, jϕα〉

)
〈ϕ†α

1
3
ϕα〉 +

∑
j

λ j

(λ j+α)2 〈ϕ
†
αFd, jϕα〉

.

(22)

An equivalent formulation 4 was recently proposed in (Endo and Yamamoto,

2018; Yamamoto and Sakamoto, 2019).

The numerator of Eq. (22) contains two terms: the former expresses the variations

in the prompt part of the Boltzmann operator ∆Bp = ∆Fp+∆S−∆Σt, and is similar

to the analogous expression appearing in the k-eigenvalue perturbation formula,

whereas the latter expresses the variations in the delayed neutron contributions,

either via the delayed fission operator itself, or via the precursor decay constants.

The effect on the delayed fission operator is similar to that of the k-eigenvalue

formulation, with the addition of a weight correction factor that is specific to the

α-eigenvalue formulation. The effect on the precursor decay constants, on the

contrary, is a distinct feature of the α-eigenvalue formulation: the k-eigenvalue is

insensitive to variations in the λ j. The denominator of Eq. (22) can be also given a

suggestive interpretation: the former term clearly represents the adjoint-weighted

time spent by the neutrons in the system (Bell and Glasstone, 1970). By using the

Inserting α′ = α+ ∆α and λ′j = λ j + ∆λ j into Eq. (20), using the expansion 1/(1 + x) = 1− x + · · ·

and keeping only the first-order terms yields

∆

(
λ j

λ j + α
Fd, j

)
=

λ j + ∆λ j

λ j + α + ∆λ j + ∆α
(Fd, j + ∆Fd, j) −

λ j

λ j + α
(Fd, j)

=
λ j

λ j + α

(
1 +

∆λ j

λ j

) (
1 −

∆λ j + ∆α

λ j + α

)
(Fd, j + ∆Fd, j) −

λ j

λ j + α
Fd, j

=
λ j

λ j + α
∆Fd, j +

α∆λ j

(λ j + α)2Fd, j −
λ j∆α

(λ j + α)2Fd, j. (21)

4Contrary to (Endo and Yamamoto, 2018), we neglect the perturbation on the neutron speed.
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definitions

cα, j(r) =
1

λ j + α

∫ ∫
νd, j(E′)Σ f (r, E′)ϕα(r,Ω′, E′)dΩ′dE′ (23)

and

c†α, j(r) =
λ j

λ j + α

∫ ∫
χd, j(r, E′)

4π
ϕ†α(r,Ω′, E′)dΩ′dE′ (24)

for the direct and adjoint precursor eigenmodes, respectively, we can rewrite

λ j(
λ j + α

)2 〈ϕ
†
αFd, jϕα〉 = 〈c†α, j(r)cα, j(r)〉, (25)

carrying the units of a time. The denominator of Eq. (22) might be thus thought

of as an adjoint-weighted average life-time accounting for both neutron and

precursors within the system.

The fundamental α eigenvalue represents the inverse of the asymptotic reactor

period T , including the precursor contributions. It is then interesting to express

the first-order perturbation ∆T of the reactor period in terms of the perturbation

∆α of the eigenvalue: by using T = 1/α, we find

∆T = −
∆α

α2 . (26)

The effects of a perturbation of nuclear data on the prompt time eigenvalue αp,

which results from Eqs. (5) and (10) when the delayed contributions are neglected,

can be estimated by using the same argument as above. The resulting expression

for ∆αp is simpler (Bell and Glasstone, 1970), and can be written as

∆αp =
〈ϕ†α(∆Fp + ∆S − ∆Σt)ϕα〉

〈ϕ†α
1
3
ϕα〉

=
〈ϕ†α∆Bpϕα〉

〈ϕ†α
1
3
ϕα〉

(27)

which physically represents the (adjoint-weighted) total variation of the events oc-

curring during the (prompt) neutron histories over the (adjoint-weighted) neutron

life-time (Endo and Yamamoto, 2018).
12



3.1. Estimating the perturbations by Monte Carlo methods

The operators ∆S , ∆Fp, ∆Σt, ∆Fd, j and ∆λ j are independent of α and can be

analytically expressed in terms of the variations of nuclear data, concentrations

and densities. As discussed above, the Generalized IFP method can be indiffer-

ently applied to sub- and super-critical systems (corresponding to negative and

positive dominant time eigenvalue, respectively). With the exception of ∆λ j, these

operators are the same as those occurring in the SPT formulation for k-eigenvalue

problems. As such, the bi-linear forms appearing in Eq. (22) can be computed

based on the tallies proposed in (Kiedrowski et al., 2011) for standard IFP-based

reactivity perturbations, the only difference being that the particle trajectories

τ must be simulated within the Generalized IFP scheme described above. The

explicit expressions for theses estimators are recalled in Tab. 1.

Scalar product Estimators Ti

〈ϕ†α∆Σtϕα〉
∑
τ∈i ∆Σt`τ

〈ϕ†α∆Sϕα〉
∑
τ∈i

∆Σs
Σs

〈ϕ†α∆Fpϕα〉
∆(νpΣ f )
νpΣ f

λ j

λ j+α
〈ϕ†α∆Fd, jϕα〉

∆(νd, jΣ f )
νd, jΣ f

〈ϕ†α
1
3
ϕα〉

∑
τ∈i

1
3
`τ

Table 1: Monte Carlo estimators for perturbed operators. Notation is as in (Terranova et al., 2018)

and `τ is the length travelled by the neutron during history τ.

The operator ∆λ j is easily expressed as the difference between the perturbed

and unperturbed decay constants. Care must be taken in evaluating the delayed

neutron contributions πd, j
i to the neutron importance of family j: since each

delayed neutron promoted to the following generation is attributed a weight

13



correction factor λ j/(λ j + α), we have

λ j

λ j + α
〈ϕ†αFd, jϕα〉 ∝

∑
i

π
d, j
i , (28)

contrary to the case of k-eigenvalue IFP calculations, where the estimator associ-

ated to the delayed fission operator is simply πd, j
i .

4. Sensitivity analysis for time eigenvalues

In uncertainty propagation and bias projection, it may be easier to work with

sensitivity coefficients rather than perturbations. By using the same arguments

as in (Endo and Yamamoto, 2018), first-order sensitivity coefficients of the α-

eigenvalue to a generic nuclear data parameter xn can be derived based on a slight

modification of Eq. (22), which yields

S α,xn =
xn

α

∂α

∂xn
=

1
α

〈ϕ†α∂xnBpϕα〉 +
∑

j

(
λ j

λ j+α
〈ϕ†α∂xnFd, jϕα〉 +

α∂xnλ j

(λ j+α)2 〈ϕ
†
αFd, jϕα〉

)
〈ϕ†α

1
3
ϕα〉 +

∑
j

λ j

(λ j+α)2 〈ϕ
†
αFd, jϕα〉

,

(29)

where ∂xn applied to a generic operatorA denotes the scaled partial derivative

∂xnA = xn
∂A

∂xn
. (30)

4.1. Estimating the sensitivity coefficients by Monte Carlo methods

In the following we will discuss the Monte Carlo estimators associated to the terms

appearing in Eq. (29). Once the random contributions Ti for the derivative of each

operator with respect to the parameter xn have been collected, the corresponding

adjoint-weighted quantities can be obtained as in Sec. 2.1 by multiplying Ti by

the associated importance πi at then end of each Generalized IFP cycle. Again,

the Generalized IFP method can be indifferently applied to sub- and super-critical

systems.
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The denominator appearing in Eq. (29) is exactly the same as that occurring

for perturbations, and can be thus estimated as detailed above. The estima-

tors needed for the terms appearing at the numerator in the expression of the

α-eigenvalue sensitivities can by estimated by adapting the IFP-based tallies

presented in (Kiedrowski and Brown, 2013) for k-eigenvalue sensitivities. Table

2 displays the random contributions Ti for sensitivity coefficients.

Scalar product Estimators Ti

〈ϕ†α∂xnΣtϕα〉
∑
τ∈i δxn,ΣtδE∈gγnxn`τ

〈ϕ†α∂xnSϕα〉
∑
τ∈i δxn,σsδn, jδE∈g

〈ϕ†α∂xnFpϕα〉
∑
τ∈i δxn,νpσ f δn, jδE∈g

λ j

λ j+α
〈ϕ†α∂xnFd, jϕα〉

∑
τ∈i δxn,νd, jσ f δn, jδE∈g

α
(λ j+α)2∂xnλ j〈ϕ

†
αFd, jϕα〉

∑
τ∈i δxn,λ jδn, j

α
λ j+α

Table 2: Monte Carlo estimators for sensitivity coefficients. Notation is as in (Terranova et al.,

2018), `τ is the length travelled by the neutron during history τ and γn is the concentration of the

isotope related to xn.

Similarly to perturbations, the variations in the prompt part of the Boltzmann

operator is similar to the analogous expression appearing in the k-eigenvalue sen-

sitivity coefficients. For the delayed fission operator contribution to the sensitivity

for the precursor family j, δxn,νd, jσ f is equal to one if the parameter xn is equal to a

delayed fission for family j, cross section or average number of delayed neutrons

νd, j, and δn, j is equal to one when the sampled nucleus and fission reaction match

the considered nucleus and reaction n. The random contribution is set to zero

otherwise. The factor λ j/(λ j + α) is actually implicitly taken into account, as

mentioned above for the perturbation tallies.

Considering the decay constant contributions to the sensitivity corresponding to
15



the precursor family j, δxn,λ j is equal to one if the parameter xn is equal to the

decay constant λ j of the precursor family j and δn, j is equal to one when the

sampled nucleus and fission reaction match the considered nucleus and reaction

n. The random contribution is set to zero otherwise. Again, a factor λ j/(λ j + α) is

implicitly estimated by the considered tally.

Finally, constrained and unconstrained sensitivities to fission spectrum and scat-

tering laws can be computed similarly to k-eigenvalue sensitivities (the λ j/(λ j +α)

factor will be implicitly taken into account for delayed fission contributions to the

fission spectrum).

4.2. Normalization of the sensitivity coefficients

The sensitivity coefficients given in Eq. (29) are relative, as customary for k-

eigenvalue sensitivity analysis. This implies that the amplitude of S α,xn depends

on the (absolute) value of α, whose estimates may in turn be substantially affected

by the choice of nuclear data libraries (and phase space discretization in the case

of deterministic solvers). These considerations are of utmost importance when

performing code-to-code comparisons for the sensitivity coefficients. For instance,

a difference of about 150 pcm on the estimated reactivity between a Monte Carlo

and a deterministic code might correspond to a discrepancy of about 25% in the

prompt neutron decay constant value αp, as illustrated in Sec. 5.3. In such cases,

it is reasonable to rescale the computed sensitivity coefficients by the ratio of α

values estimated by the different codes. In addition to these considerations, the

definition in Eq. (29) may lead to a singularity when the system is exactly critical

(α = 0). These two issues may be overcome by considering non-normalized

coefficients

S̃ α,xn = xn
∂α

∂xn
. (31)
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The Monte Carlo estimators would not be affected by this definition, apart from

an overall scaling factor 1/α.

5. Verification tests

The algorithms described in Sec. 3 and 4 have been implemented in the develop-

ment version of TRIPOLI-4 R© . For the verification of the proposed methods for

first-order perturbations and sensitivities of α-eigenvalues, we have selected three

significant benchmark configurations. The first is a continuous-energy neutron

thermalization problem in an infinite medium, for which reference analytic so-

lutions can be obtained. The second is a two energy groups and two precursor

families transport problem in an infinite medium, which can be solved analytically

for the k- and α-eigenvalue formulations (Terranova et al., 2017; Kiedrowski,

2010). Finally, we have numerically verified our implementation by considering

the HEU-SOL-THERM-012 benchmark, for which sensitivity profiles have been

recently computed in (Endo and Yamamoto, 2018) by using a deterministic solver.

All results provided in the following tables are presented with a one-σ Monte

Carlo relative uncertainty in %. For energy-resolved sensitivity profiles, the un-

certainty displayed in the figures corresponds to one absolute standard deviation.

5.1. A neutron thermalization model

We have considered a simplified continuous-energy neutron thermalization model,

describing an infinite medium composed of an ideal gas of non-fissile nuclei,

which lends itself to exact solutions for the α-eigenvalue equation (Duderstadt

and Martin, 1979). Scattering is assumed to be at the thermal equilibrium, with a

so-called amnesia kernel that is capable of thermalizing the neutrons in a single

collision, with a Maxwellian spectrum M(E) ∝
√

E exp(−E/θ), θ being the

17



average post-collision energy. In addition to scattering, we take into account

capture, which leads to the eigenvalue problem

α

3(E)
ϕα(E) + Σt(E)ϕα = M(E)

∫ ∞

0
Σs(E′)ϕα(E′)dE′, (32)

where 3 =
√

E by conveniently choosing the units of the speed 5. The normaliza-

tion of ϕα(E) is arbitrary, and it is convenient to set∫ ∞

0
Σs(E′)ϕα(E′)dE′ = 1. (33)

We set now the cross sections

Σs(E) = Σ0
s

Σc(E) =
Σ0

c
√

E

and choose θ = 1. By using the same strategy as in (Duderstadt and Martin,

1979), it can be shown that the dominant α eigenvalue reads then α = −Σ0
c , with

associated eigenfunction

ϕα =
M(E)

Σ0
s
. (34)

By considering the equation adjoint to Eq. (32) and using the normalization∫ ∞

0
M(E′)ϕ†α(E′)dE′ = 1, (35)

the adjoint flux turns out to be simply ϕ†α = 1 for this problem.

The sensitivity coefficients of the time eigenvalue with respect to the capture cross

section can thus be computed exactly, based on Eq. (29): for an arbitrary energy

5The energy is equally expressed in arbitrary units, and the typical scale of energy is implicitly

defined by setting the value of the average post-collision energy θ.
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group between energies Eg and Eg+1 we have

S g(Σc) = −
1
α

∫ Eg+1

Eg
ϕ†α(E′)Σc(E′)ϕα(E′)dE′∫ ∞

0
ϕ†α0(E′)

1
3′
ϕα(E′)dE′

= exp(−Eg) − exp(−Eg+1). (36)

The sensitivity coefficients computed by the Generalized IFP method described

in Sec. 4 are compared to Eq. (36) in Fig. 2: a very good agreement is found.

Higher fluctuations are found for E � θ, due to poor statistics in the tails of the

post-scattering distribution.

Figure 2: Sensitivity profiles to absorption cross section computed using Monte Carlo Generalized

IFP (red) and analytic solutions (blue).

5.2. Two groups infinite medium

As a second verification test, we have considered a two-group infinite medium

configuration, for which exact solutions can be computed for the direct and adjoint

time eigenpairs (Terranova et al., 2017). The model assumes that there is no up-

scattering, neutrons can only induce fissions when colliding in the thermal group
19



and that all prompt fission neutrons are emitted exclusively in g = 1. Two delayed

families a and b are taken into account. The resulting eigenmodes read

ϕα,2

ϕα,1
=

Σs,12
α
32

+ Σr,2 − ζ2νf,2Σf,2
(37)

ϕ†α,1

ϕ†α,2
=

Σs,12
α
31

+ Σr,1
(38)

ζi =
∑

j

λ j

λ j + α
χd, j(3i)β j, (39)

where Σr = Σc +Σ f is the removal cross section and the α eigenvalues are the roots

of a fourth-order polynomial (Terranova et al., 2017). The model parameters are

provided in Tab. 3. In order to test our implementation for negative α-eigenvalues,

the thermal capture cross section was increased by 50 % with respect to its

reference value given in (Terranova et al., 2017). The fundamental eigenvalue

corresponding to these parameters reads α0 = −0.03672.

g 3 Σc,g Σf,g Σs,g→1 Σs,g→2 νtot βa βb χa→g χb→g λa λb

1 10 1 0 1/2 1/2 0 0 0 3/4 1/2

2 5 3/2 1 0 1 24/5 1/4 1/8 1/4 1/2 0.5 0.07

Table 3: Values for the physical parameters of the two-group infinite medium system

Reference values for the first-order perturbations and sensitivities can be then

obtained from Eqs. (22) and (29) by using the expressions for the direct and

adjoint fluxes given above. The perturbation contributions due to the collision

term ∆Σt, to scattering ∆S, to prompt fission ∆Fp, to delayed fission ∆Fd, j

and to the decay constants ∆λ j can be separately estimated and contrasted to

their analytical counterparts. For comparison, the exact perturbation ∆αex is

also obtained by analytically computing the α eigenvalue for the perturbed and
20



reference configuration and taking the difference.

Table 4 shows the results for a -10% perturbation of the fission cross section

Σf,2 and a +7% perturbation of the second family decay constant λb. Monte

Carlo perturbation results obtained from the Generalized IFP method are in

good agreement with analytical results, the discrepancy lying below 0.7% for all

the contributions to the total perturbation. Although discrepancies lie slightly

outside of the 3-σ confidence interval, the standard deviation is known to be

underestimated in the Monte Carlo α-k power iteration due to cycle-to-cycle

correlations (Zoia et al., 2014). For this configuration, the first-order perturbation

is close to the exact perturbation, with a small discrepancy of 0.7%.

Perturbation term Analytic Monte Carlo ± σ(%) MC / Analytic

Collision -0.00370 -0.00372 ± 0.13 1.0053

Prompt fission -0.00371 -0.00374 ± 0.17 1.0066

Delayed fission -0.00552 -0.00554 ± 0.09 1.0040

Decay constant -0.00246 -0.00246 ± 0.04 0.9991

Total first-order ∆α -0.00799 -0.00801 ± 0.07 1.0031

Exact ∆α -0.00807

α-eigenvalue -0.03672 -0.03671 ± 0.014 0.9996

Table 4: Results for the variation ∆α in the time eigenvalue corresponding to a perturbation of

both the fission cross section and λb (the decay constant of the second precursor family).

The perturbation ∆α corresponding to variations from -10% to +10% of the

capture cross section in both energy groups is displayed in Fig. 3. A very good

agreement is found between the reference solutions for the first-order perturbations

and the Monte Carlo simulations. In the limit of small perturbations, the first-order
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∆α is close to the exact perturbation, as expected.

Figure 3: Change ∆α of the time eigenvalue as a function of the capture cross section perturbation.

We compare the first-order perturbations obtained by the Generalized IFP method (black crosses)

to the first-order perturbation formula that is used as a reference (red diamonds). The results

corresponding to the exact perturbation are also displayed (blue triangles), for comparison.

Table 5 displays the sensitivity coefficients of α with respect to various nuclear

data, including cross sections and decay constants. A very good agreement

is observed between the Monte Carlo and analytic calculations of sensitivity

coefficients: discrepancies lie below 0.3% and analytic results lie within 3-σ

confidence intervals of the Monte Carlo results.
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Cross section Analytic Monte Carlo ± σ(%) MC / Analytic

Σc,1 1.03673 1.03966 ± 0.083 1.00282

Σc,2 1.51308 1.51579 ± 0.065 1.00179

Σ f ,2 -1.50568 -1.50864 ± 0.061 1.00197

Σs,1 -1.03292 -1.03639 ± 0.083 1.00335

λa 0.0518364 0.0519299 ± 0.084 1.00180

λb 0.936949 0.936835 ± 0.005 0.99988

Table 5: Sensitivity coefficients of the time eigenvalue α in the two-group infinite medium model.

5.2.1. Prompt neutron decay constant

We conclude the analysis of the two-group model by considering the prompt

neutron decay constant, which results from turning off delayed neutrons (βa =

βb = 0) and setting the total νtot to the prompt νp. Keeping the other parameters

of the model as in Tab. 3, the dominant time-eigenvalue reads α0 = −5. Tables 6

and 7 display the sensitivity coefficients and perturbations, respectively, of the

prompt neutron decay constant with respect to nuclear data.

Cross section Analytic Monte Carlo ± σ(%) MC / Analytic

Σc,1 0.857143 0.857317 ± 0.026 1.00020

Σc,2 0.857143 0.856377 ± 0.020 0.99911

Σ f ,2 -0.285714 -0.28616 ± 0.115 1.00156

Σs,1 -0.428571 -0.427668 ± 0.077 0.99789

Table 6: Sensitivity coefficients of the prompt decay constant α in the two-group infinite medium.

As above, results show a very good agreement between the Monte Carlo and

analytic solutions.
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Perturbation term Analytic Monte Carlo ± σ(%) MC / Analytic

Collision -0.285714 -0.28558 ± 0.018 0.99953

Prompt fission -0.428571 -0.428713 ± 0.033 1.00033

Total first-order ∆α -0.142857 -0.143133 ± 0.113 1.00193

Exact ∆α -0.14835

α-eigenvalue -5. -5.00226 ± 0.0092 1.00052

Table 7: Results for the variation ∆α of the prompt decay constant corresponding to a perturbation

of -10% of the fission cross section in the two-group infinite medium.

5.3. HEU-SOL-THERM-012

As a final verification case for continuous-energy transport, we have selected the

HEU-SOL-THERM-012 benchmark, taken from the ICSBEP handbook (ICS-

BEP, 2018). The chosen configuration corresponds to the simplified version of

this benchmark, with three concentric spheres containing respectively a UO2F2

solution with highly enriched Uranium (27.9244 cm radius), aluminium cladding

(0.2 cm thickness) and water (15 cm thickness). The time-eigenvalue sensitiv-

ity analysis for the proposed model was carried out in (Endo and Yamamoto,

2018) by using a modified 1D deterministic solver of PARTISN (Alcouffe et al.,

2018) with 252 energy groups (Rearden and Jessee, 2018) and the ENDF/B-VII.1

library (Chadwick et al., 2011). This offers the possibility of contrasting the re-

sults obtained by our continuous-energy implementation in TRIPOLI-4 R© to those

of (Endo and Yamamoto, 2018). In (Endo and Yamamoto, 2018), the sensitivity

analysis was performed on the prompt neutron decay constant αp. In Monte Carlo,

this constant can be estimated by turning off the sampling of delayed neutrons.

This is what is done in this configuration. Our calculations have been performed
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with 15000 neutrons per cycle, 1000 inactive cycles, 3000 active cycles and

10 latent generations for the Generalized IFP method. In view of performing

consistent code-to-code comparisons, we have also selected the ENDF/B-VII.1

nuclear data library. Digitalized data of the deterministic calculations have been

kindly provided by the authors of (Endo and Yamamoto, 2018).

A preliminary Monte Carlo run for time-eigenvalue calculations yields a prompt

decay constant αp = −76.77991 s−1 ± 0.14102 %. This is consistent with the

estimate α̃p ' (βeff − ρ)/Λeff that can be obtained from a k-eigenvalue calculation

(Truchet et al., 2015), using the point-kinetics approximation with IFP-based

values for kinetics parameters: the TRIPOLI-4 R© calculations yield βeff = 714 pcm

and Λeff = 80.25522 µs , with keff = 1.000921, hence α̃p ' −77.59 s−1, in good

agreement with the α-eigenvalue calculation.

The computed value for αp using the PARTISN code is αp = −96.13 s−1 (Endo

and Yamamoto, 2018), which is probably due to the differences between multi-

group and continuous-energy treatment of neutron transport. For the deterministic

calculations, keff = 0.99944 and βeff = 725 pcm while generation time is Λeff =

80.73 µs (Endo and Yamamoto, 2018). This small discrepancy in keff (about 150

pcm) is responsible for a much larger discrepancy in αp. Since the αp values

estimated by the Monte Carlo and deterministic calculations are quite different, it

is reasonable to normalize the computed sensitivities by the ratio of the αp values,

as discussed above. We have thus rescaled the TRIPOLI-4 R© simulation results by

the dimensionless factor q = 76.78/96.13.

Table 8 displays the ten major contributors (in absolute value) to the energy-

integrated sensitivity coefficients as computed by TRIPOLI-4 R© and PARTISN,

and the relative difference between them. Overall, a very good agreement is

observed between the deterministic and Monte Carlo calculations, with a relative
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difference below 2%. The only exception is the sensitivity to the elastic scattering

of 27Al, which displays a higher relative difference of 5%. However, the Monte

Carlo uncertainty for these quantities is about 4.6% (adjoint-weighted sensitivities

for elastic and inelastic scattering show slow convergence also in standard IFP cal-

culations for k-eigenvalue calculations (Kiedrowski and Brown, 2013)), meaning

that these results are consistent. The calculations performed with PARTISN did

not include the implicit sensitivity due to resonance self-shielding (Williams et al.,

2001); however, numerical tests have shown that the impact of this contribution is

negligible for the benchmark configuration examined here (Endo and Yamamoto,

2018).

Isotope - reaction T4 ± σ(%) PARTISN T4 / PARTISN - 1

235U ν̄p -1.2940e+02 ± 0.15 -1.2783e+02 -0.0121
235U σ f -6.3748e+01 ± 0.18 -6.2916e+01 -0.0131
1H σn,γ 5.0845e+01 ± 0.14 5.0374e+01 -0.0093
1H σel -3.7759e+01 ± 10.09 -3.7021e+01 -0.0195
235U σn,γ 1.1691e+01 ± 0.14 1.1551e+01 -0.0120
16O σel -7.5922e+00 ± 1.95 -7.5062e+00 -0.0113
27Al σel -1.6214e-01 ± 4.60 -1.5345e-01 -0.0536
234U σn,γ 1.5001e-01 ± 0.16 1.4855e-01 -0.0097
27Al σn,γ 1.0448e-01 ± 0.39 1.0411e-01 -0.0036
238U σn,γ 8.9630e-02 ± 0.27 8.8836e-02 -0.0089

Table 8: Ten major contributors (in absolute value) to the energy-integrated sensitivity coefficients

of the time eigenvalue α using the ENDF/B-VII.1 library.

Figures 4 and 5 display the sensitivity profiles to the elastic scattering of 1H

(including S α,β data) and the fission cross section of 235U, respectively, using
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the 238-groups energy mesh defined in the SCALE software package (Rearden

and Jessee, 2018). An example of (constrained) sensitivity to the prompt fission

spectrum of 235U is shown in Fig. 6. A very good agreement is found between

the TRIPOLI-4 R© and the PARTISN calculations in all energy groups.

Figure 4: Sensitivity profile to the 1H elastic scattering cross section (including S α,β data). Red:

PARTISN calculation; green: TRIPOLI-4 R© calculation.

In addition to comparison with the deterministic code PARTISN, we have also

computed direct perturbations ∆α of the time eigenvalue due to small variations

of some nuclide concentrations. The α eigenvalues corresponding to a positive

and negative perturbation have been computed, and a centered difference is

calculated. This direct (exact) perturbation ∆α has been then compared to a first-

order perturbation based on the sensitivity coefficients of the concentration, as

obtained by the Generalized IFP method. Results are gathered in Tab. 9 and show

a rather good agreement, which further corroborates the proposed algorithms for
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Figure 5: Sensitivity profile of the time eigenvalue α to the 235U fission cross section. Red:

PARTISN calculation; green: TRIPOLI-4 R© calculation.

perturbations and sensitivity analysis in continuous-energy transport problems.

Isotope : perturbation Exact ∆α ± σ (%) First-order ∆α ± σ (%)

235U : 1% 5.0739e+01 ± 1.549 5.0070e+01 ± 0.239
1H : 5% -6.4282e+01 ± 1.257 -6.2919e+01 ± 4.396
16O : 5% 3.5080e+01 ± 2.148 3.5803e+01 ± 1.995

Table 9: Comparison of direct exact perturbations and first-order perturbations for the time

eigenvalue α.

We conclude our analysis by assessing the impact of the nuclear data library on

the obtained results. For this purpose, we have re-run our calculations using

the JEFF-3.1.1 library (Santamarina et al., 2009). For the eigenvalue, we obtain

αp = −75.42 s−1. Energy-integrated sensitivity coefficients are compared in
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Figure 6: Sensitivity profile of the time eigenvalue α to the 235U prompt fission spectrum, with

constrained coefficients (the integral sensitivity yields zero). Red: PARTISN calculation; green:

TRIPOLI-4 R© calculation.

Tab. 10, where R1 is the relative difference between the results obtained by

using the two nuclear data libraries (taking ENDF/B-VII.1 as the reference),

and R2 is the relative difference divided by the combined standard deviations 6.

Simulation findings show that the discrepancies on the sensitivity coefficients

induced by the choice of the nuclear data library are typically small for this

benchmark configuration. An interesting exception is represented by the case of

the sensitivity profile to 16O radiative capture cross section (which however is

not among the ten major contributors to sensitivities displayed in Tab. 10): for

this cross section, a large discrepancy is found in the MeV region, as shown in

Fig. 7. The observed effect on the sensitivity profile is actually due to the very

6Confidence intervals are consistent when R2< 3.
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different shape of the cross sections in this energy region between JEFF-3.1.1 and

ENDF/B-VII.1 libraries.

Isotope - reaction ENDFB/VII.1 ± σ(%) JEFF3.1.1 ± σ(%) R1 R2

235U ν̄p -1.6493e+02 ± 0.15 -1.6500e+02 ± 0.17 0.0004 0.17
235U σ f -8.1253e+01 ± 0.18 -8.1246e+01 ± 0.19 -0.0001 0.04
1H σn,γ 6.4807e+01 ± 0.14 6.4840e+01 ± 0.16 0.0005 0.24
1H σel -4.8127e+01 ± 10.09 -4.9349e+01 ± 9.18 0.0254 0.19
235U σn,γ 1.4901e+01 ± 0.14 1.4910e+01 ± 0.16 0.0006 0.28
16O σel -9.6770e+00 ± 1.95 -9.7391e+00 ± 2.00 0.0064 0.23
27Al σel -2.0666e-01 ± 4.60 -2.0572e-01 ± 4.62 -0.0045 0.07
234U σn,γ 1.9120e-01 ± 0.16 1.8969e-01 ± 0.18 -0.0079 3.32
27Al σn,γ 1.3317e-01 ± 0.39 1.3225e-01 ± 0.40 -0.0069 1.24
238U σn,γ 1.1424e-01 ± 0.27 1.1420e-01 ± 0.27 -0.0003 0.09

Table 10: Ten major contributors (in absolute value) to the energy-integrated sensitivity coefficients

of the time eigenvalue α using the ENDF/B-VII.1 and JEFF-3.1.1 nuclear data libraries, with the

former as the reference.
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Figure 7: Sensitivity profiles of the time eigenvalue α to 16O radiative capture cross section using

the ENDF/B-VII.1 (red curve) and JEFF-3.1.1 (green curve) nuclear data libraries. Although the

applied sensitivity methodology is identical for both cases, a large discrepancy is found in the

MeV region, due to the very different shape of the cross sections in this energy range between

JEFF-3.1.1 and ENDF/B-VII.1 libraries.

6. Conclusions

A new method for computing time-eigenvalue sensitivity coefficients and per-

turbations has been successfully developed and implemented within the frame

of a α-k iteration scheme. This method relies on the Generalized IFP method

that we have recently introduced for continuous-energy Monte Carlo transport

codes and shares some features with the standard IFP algorithm for k-eigenvalue

calculations. Specific tallies designed to estimate the terms appearing in the

formulas for perturbations and sensitivities have been devised. The proposed

strategy has been first tested for simple configurations where analytic expressions

exist for α eigenvalues and eigenfunctions, in continuous-energy and multi-group
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transport, so that reference solutions can be computed for the first-order ∆α per-

turbations and the associated sensitivities. The method has been implemented in

the development version of TRIPOLI-4 R© and compared to the simulation findings

obtained from the deterministic solver PARTISN for the HEU-SOL-THERM-012

benchmark. In all tested cases, the proposed algorithm has shown satisfactory

results in terms of accuracy and robustness.

Several independent implementations of perturbations and sensitivities for time

eigenvalues have been recently published, encompassing both deterministic and

Monte Carlo solvers (Endo and Yamamoto, 2018; Favorite, 2018; Yamamoto and

Sakamoto, 2019; Burke et al., 2019; Jinaphanh and Zoia, 2019): it might be then

interesting to compare the distinct merits and drawbacks of each method on some

benchmark configurations.
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