
HAL Id: hal-03487329
https://hal.science/hal-03487329

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing Shape Collections with Alignment-Aware
Linear Models

Romain Loiseau, Tom Monnier, Mathieu Aubry, Loïc Landrieu

To cite this version:
Romain Loiseau, Tom Monnier, Mathieu Aubry, Loïc Landrieu. Representing Shape Collections with
Alignment-Aware Linear Models. International Conference on 3D Vision 2021 (3DV 2021), Dec 2021,
Londres (On-line), United Kingdom. �hal-03487329�

https://hal.science/hal-03487329
https://hal.archives-ouvertes.fr


Representing Shape Collections With Alignment-Aware Linear Models

Romain Loiseau1, 2

romain.loiseau@enpc.fr

Tom Monnier1

tom.monnier@enpc.fr

Mathieu Aubry1

mathieu.aubry@enpc.fr

Loı̈c Landrieu2

loic.landrieu@ign.fr

1LIGM, Ecole des Ponts, Univ Gustave Eiffel, CNRS, France
2LASTIG, Univ. Gustave Eiffel, ENSG, IGN, F-94160 Saint-Mande, France

Abstract
In this paper, we revisit the classical representation of 3D

point clouds as linear shape models. Our key insight is to
leverage deep learning to represent a collection of shapes
as affine transformations of low-dimensional linear shape
models. Each linear model is characterized by a shape pro-
totype, a low-dimensional shape basis and two neural net-
works. The networks take as input a point cloud and predict
the coordinates of a shape in the linear basis and the affine
transformation which best approximate the input. Both lin-
ear models and neural networks are learned end-to-end us-
ing a single reconstruction loss. The main advantage of
our approach is that, in contrast to many recent deep ap-
proaches which learn feature-based complex shape repre-
sentations, our model is explicit and every operation occurs
in 3D space. As a result, our linear shape models can be
easily visualized and annotated, and failure cases can be
visually understood. While our main goal is to introduce a
compact and interpretable representation of shape collec-
tions, we show it leads to state of the art results for few-shot
segmentation. Code and data are available at: https://
romainloiseau.github.io/deep-linear-shapes

1. Introduction

Picture a company acquiring thousands of 3D scans of
technical components; how to leverage, organize, or even
simply visualize these 3D models? Deep shape analy-
sis techniques have flourished over the last years [26] but,
even when motivated by geometric intuitions, these meth-
ods and their results remain hard to interpret and interact
with. Moreover, they are often limited by the availabil-
ity of domain and application-specific annotations. Instead
of pushing for even more complex architectures, we oper-
ate directly in 3D space and revisit the simple linear shape
model with a deep learning perspective. As illustrated in
Figure 1, we model a collection of 3D shapes with a set of
low-dimensional linear shape models. Each linear model is
defined by a prototype 3D point cloud and a set of vector ba-

Figure 1: Discovered linear models. Our approach dis-
covers without supervision linear shape models from large
collections of shapes. We show two examples of two-
dimensional families and eight additional prototypes dis-
covered for ABC [34] (top) and ShapeNet [8] (bottom).

sis that can be interpreted as fields of translation vectors for
each point of the prototype. By adding a linear combination
of this basis vector to the prototype, one can continuously
move in a low-dimensional subspace of the shape space.

We face three key challenges when trying to repre-
sent 3D shape collections with such linear models. First,
comparing shapes using Chamfer or Earth Mover dis-
tances has strong limitations for shape analysis, since they
are impacted by simple rigid or affine shape transforma-
tions, which cannot be easily represented by linear models.
Transformation-invariant distances such as the Gromov-

https://romainloiseau.github.io/deep-linear-shapes
https://romainloiseau.github.io/deep-linear-shapes


Figure 2: Method overview. Given an input point cloud x, we predict for each shape model Rk the element that best
reconstructs the input: the projection network Pk outputs the coordinates a of a shape in a linear family, and the alignment
networkAk predicts the parameters of an affine transformationAk(x) which is applied to the selected shape. The input point
cloud is then assigned to the shape model that best reconstructs it, here highlighted in green.

Hausdorff Distance [39] can be defined to overcome this
problem, but they are typically very hard to work with. Sec-
ond, finding the coordinates in the shape basis that best re-
construct a sample according to a given similarity measure
is a difficult non-convex problem. Third, operations as sim-
ple as averaging are non-trivial for point clouds, and dimen-
sionality reduction techniques such as Principal Component
Analysis [59] do not directly apply.

In this work, we present an unsupervised approach that
learns small sets of linear shape models to explain large col-
lections of point clouds. We propose to solve this task with
a clustering formulation directly in 3D space, where clus-
ters are associated to linear shape families, each modeled as
a reference prototype point cloud and a set of basis vectors
that can be interpreted as displacement fields. We explore
two ways of defining such displacement fields - either us-
ing a pointwise parametrization or an implicit one based on
parametric differentiable functions of 3D space - and ana-
lyze their benefits. In addition, to predict the coordinates
of a point cloud in the linear basis and account for shape
transformations, we extend the idea from the work of Mon-
nier et al. [41] on transformation-invariant image clustering
to the setting of 3D shape alignment. By jointly learning lin-
ear shape families and parametric functions predicting both
shape basis coordinates and alignment parameters, our ap-
proach is able to discover rich and meaningful shape models
from a collection of point clouds without any supervision.

We believe that our method has strong advantages com-
pared to recent unsupervised 3D shape analysis approaches.
First, by manipulating objects directly in 3D space, our re-
sults are easy to interpret and visualize. Second, our lin-
ear shape models can serve as a mean to explore large col-
lections of raw 3D point clouds. Finally, we show that
despite its simplicity, our model yields competitive results
for shape clustering and state-of-the-art results for few-shot
shape segmentation.
Our contributions can be summarized as follows:
• we present an unsupervised method to represent large

point cloud collections with a small set of linear fami-
lies of shapes;

• we extend the DTI clustering framework to learn linear
shape models by introducing projection networks;

• we analyse two different representations for linear shape
modeling and show the benefits of representing them
with continuous functions of space rather than pointwise
displacements;

• we demonstrate qualitative results for visualizing the
large unstructured ABC dataset [34] and obtain state-of-
the-art few-shot segmentation performances on the stan-
dard ShapeNetPart dataset [8].

2. Related work
Point cloud distances and alignment. Classical simi-
larity measures between point clouds include the Cham-
fer and Earth mover distances. These distances are how-
ever not invariant to rigid transformations. The Gromov-
Hausdorff distance [39] provides a nice framework to define
a transformation-invariance distance, but is difficult to use
in practice. Transformation-Invariant distances were also
defined for images and used for clustering by Frey and Jo-
jic [18, 20, 21, 19]. The Transformed Component Analysis
(TCA) approach [19] would be particularly relevant, al-
though operating with a discrete set of transformations may
be too limiting for aligning 3D shapes. Applying them to
3D point clouds would require to align them. This is clas-
sicaly done using the the Iterative Closest Point (ICP) al-
gorithm [3]. Instead, we take inspiration from the Deep
Transformation-Invariant framework [41] and use neural
networks to predict alignment and define similarity.

Linear Shape Modeling. The idea of representing a col-
lection of images using a low-dimensional image basis was
first developed for face images [49]. Popularized by the
classical eigenfaces model [55], linear models have since
been applied to diverse computer vision problems and data.
A linear 3D face model was designed in [4] and applied



to new view synthesis. [12] demonstrated applications to
medical data. Non-rigid surface-from-motion can also ben-
efit from linear shape basis decomposition to recover 3D
shapes [6, 54, 13]. An application of linear modeling to
unsupervised 3D keypoint discovery was recently demon-
strated in [17]. These linear models are typically learned
from a set of examples by principal component analysis,
factorization techniques [53], or defined manually [58]. Ad-
ditionally, some recent works propose to analyse shape col-
lections through implicit representations [32, 64, 14]. In
contrast, we propose a learning-based approach to model
arbitrary unregistered shapes from large collections of ex-
amples, and we use several low-dimensional linear families.

Deep Learning for 3D Analysis. Neural networks suc-
cessfully tackled numerous challenges in 3D shape analysis.
The main approaches can be broadly classified depending
on the representation of 3D data they leverage, voxels [11],
point clouds [44], graphs [35], surfaces [7, 24], structured
models [37, 23], or more recently implicit volumetric mod-
els [43, 10, 40]. They have been successfully applied to
tasks as diverse as classification [38], segmentation [52],
shape generation [24, 51], matching [42], denoising [29]
and compression [30]. In this paper, we focus on 3D point
clouds but our approach is general and could be extended to
other representations.

The key idea to use Multi-Layer Perceptron (MLP) on
point clouds was initially proposed for shape classification
and segmentation by Qi et al. [44] with an architecture
called PointNet, and for 3D point cloud generation in [16].
To answer the difficulty of annotating 3D data, new ap-
proaches are able to perform self-supervised and unsuper-
vised feature learning [62, 46, 28] and low-shot segmenta-
tion [25, 57, 22]. Especially related to ours is the recent 3D
capsule approach [63] that explicitly tries to design a shape
representation invariant to 3D transformations and can be
applied to many tasks. However, the latent representations
learned with 3D capsules and the associated generation pro-
cess are difficult to interpret. Also related to ours is the ap-
proach of Deprelle et al. [15] which proposes a 3D shape re-
construction model obtained by combining and transform-
ing learned elementary structures. This method shares sim-
ilarities with ours as it allows us to learn prototypes of parts
of shapes. However, it focuses on reconstruction accuracy,
uses a single prototype per part and mainly follows the
black-box AtlasNet [24] deformation framework.

3. Modeling Shape Collections
Our goal is to explain a collection of N point clouds

x1, . . . , xN with a small set of K shape models. For sim-
plicity, we assume that all point clouds have the same num-
ber M of points. We propose to solve this task with a clus-
tering formulation described in Sec. 3.1. We then describe
how we model alignment (Sec. 3.2) and linear shape fam-

ilies (Sec. 3.3) resulting in our final modeling. Finally, we
present how we parametrize our linear shape models and
give some training details (Sec. 3.4).

3.1. Method overview

We build a set of K shape models R = {R1, . . . ,RK}.
Each Rk maps a sample point cloud x to a reconstructed
point cloud Rk(x) which can be interpreted as the approx-
imation of x by the corresponding model. We denote by d
a distance between point clouds which measures the quality
of a reconstruction. We use the Chamfer distance in all our
experiments. We learn the shape models R by minimizing
the loss

L(R) =
∑

x∈x1,...,xN

K
min
k=1

d
(
x,Rk(x)

)
, (1)

which can be interpreted as a clustering objective defined
as the sum of the reconstruction errors with optimal cluster
assignment.

Prototype model. The simplest form of Rk is a constant
function: Rk

proto(x) = ck ∈ RM×3 where each ck can
be seen as a prototype point cloud. Such prototype point
clouds can be learned by minimizing L with batch Stochas-
tic Gradient Descent (SGD). This amounts to performing
stochastic K-means [5] for 3D point clouds. Note that this
is a weak reconstruction model, however, the goal of this
paper is not to learn the most faithful reconstruction, but
rather to summarize the collection.

3.2. Alignment-Aware Model

A clear limitation of the prototype model is that it does
not take into account simple geometric transformations of
the point clouds, such as rigid transformations. For exam-
ple, point clouds can be close to a model’s prototype ck

according to the distance d, while a rotated or translated
version of the same point cloud is far away. We would
like both point clouds to be associated with the same shape
model. To address this issue, we incorporate in each model
Rk an affine alignment component. In practice, we use neu-
ral networks Ak - which we refer to as alignment networks
- whose goal is to predict an affine transformation Ak(x)
aligning the prototype ck with a target point cloud x. This
results in an alignment-aware modelRk

align defined by:

Rk
align(x) = Ak(x)

[
ck
]
, (2)

where the affine transformation Ak(x) is applied to each
point of the prototype point cloud ck. The alignment net-
works A1, . . . ,AK can be trained alongside the prototypes
c1, . . . , cK by minimizing Equation 1. This model can be
seen as an extension of the recent Deep Transformation-
Invariant (DTI) clustering framework [41] developed for



images to point clouds. Indeed, our alignment models can
be understood as defining an approximation of an affine-
invariant version of the distance d according to which the
clustering is performed. In this paper, we rather view these
networks as an integral part of the shape models.

Note that different transformation models could be con-
sidered. In our experimental analysis, we study variations
of the model using weaker transformations, such as rigid
transformations or scaling, and show the benefits of the
affine model. On the contrary, one could consider com-
plex deformations parametrized by deep networks, such as
the ones used in FoldingNet [62] or AtlasNet [24], which
would surely lead to higher accuracy reconstructions. How-
ever, such transformations completely change the geometry
of a point cloud and are hard to interpret.

3.3. Linear Shape Modeling

Our goal in this section is to model changes in objects
more subtle than those that can be modeled by affine trans-
formations, such as the angle of the wings of an airplane,
while maintaining the model intepretability. We propose
to associate a linear shape family to each prototype point
cloud.

Linear shape families. For each model k, we define a
linear shape family as a pair formed by (i) a prototype point
cloud ck in RM×3 and (ii) a set vk of D basis vectors vk =
{vk1 , . . . , vkD}, where each vki ∈ RM×3 associates to each
point of the prototype a 3D vector and can be interpreted
as displacement fields. Each (ck, vk) defines a continuous
collection of shapes covered by translating the points of ck

along the directions defined by vk. Each element u of the
linear family (ck, vk) is characterized by a vector a in RD

defining its coordinates in the linear shape family:

u = ck +

D∑
i=1

ai v
k
i . (3)

The vector a can be interpreted as the set of amplitudes to
apply to the displacement fields {vk1 , . . . , vkD}. Note this
formally describes an affine space but we follow the con-
vention of previous works and refer to it as linear.1 Also
note that we do not explicitly enforce linear independence
between basis vectors, but their high dimensionality (M×3)
leads to such independence in practice.

Projection networks. If we had access to ordered point
clouds, i.e. lists of M points in R3 where the i-th points are
in correspondence, we would be able to use the L2 distance
to measure point clouds similarity. In this case, computing
the coordinates of the element of the linear family closest

1An analogy can be made with the face reconstruction model Eigen-
Face [56]: c is equivalent to the mean face, and v to the eigenfaces.

to a target point cloud would simply amount to perform-
ing Euclidean projection. This is however not the case for
unordered point clouds, for which the notion of distance is
more complicated. For common point cloud similarity mea-
sures such as the Chamfer distance, finding the closest point
cloud in a linear family is a difficult non-convex optimiza-
tion problem. This task is made even harder by the fact that
we use our alignment networks to transform the elements of
the family before comparing them with the input cloud.

Therefore, we propose to leverage deep learning to es-
timate which element of a linear family is the closest to a
target point cloud after alignment. More specifically, we as-
sociate to each linear family (ck, vk) a neural network Pk

which aims at associating to a given input sample the coor-
dinates of the element in the linear family minimizing the
distance d. The output of the network Pk(x) ∈ RD is in-
terpreted as the coordinates a of the point cloud defined in
Equation 3. By analogy with the L2 distance case, we refer
to these networks as projection networks.

Full model. We define our final shape model R as a col-
lection of models Rk

full each composed of a linear family
(ck, vk), an alignment network Ak and a projection net-
work Pk. Given a target point cloud x, our model recon-
structs it by (i) selecting an element of the linear family
(ck, vk) through the projection network Pk, and (ii) align-
ing it with the target using the transformation predicted by
the alignment network Ak. More formally, we write each
shape model as:

Rk
full(x) = Ak(x)

[
ck +

D∑
i=1

[
Pk(x)

]
i
vki

]
, (4)

where
[
Pk(x)

]
i

refers to the i-th component of Pk(x) and
the affine transformation Ak(x) is applied to each point of
the point cloud independently. Again, we optimize jointly
the ck, vk,Ak and Pk to minimize the reconstruction loss
defined in Equation (1).

3.4. Parameterization and training details

We first describe how we parametrize the linear fami-
lies, then provide implementation details such as networks
architecture and our curriculum learning strategy.

Linear family parametrization. While the prototypical
point cloud ck is modeled directly using learnable parame-
ters in RM×3, the basis vectors vki can be parametrized in
two different ways:
• Pointwise parametrization: for each model k, we rep-

resent vk as vectors of learnable parameters of size
D× (M × 3) that can directly be interpreted as D point-
wise displacement vectors of the prototype ck.

• Implicit parametrization: we use implicit parametric
functions of the 3D space modeled as neural networks to



O
ur

s,
pr

ot
o

O
ur

s,
al

ig
n

O
ur

s,
fu

ll
D

=
5

Figure 3: Learned prototypes and comparisons. We compare the prototypes from our different shape modeling discovered
in ABC [34] (left, 5 shape models out of 10) and ShapeNetCore [8] (right, 5 shape models out of 55). Note how sharp the
prototypes become when the shape modeling complexity increases, respectively with alignment-awareness and 5-dimensional
linear families.

define the displacement fields. More precisely, for each
model k and basis dimension i, we learn a parametric
function Vk

i : R3 7→ R3 mapping any point in the 3D
space to a displacement direction. Writting [ck]p the 3D
coordinates of the p-th point of prototype ck, the 3D co-
ordinates [vki ]p of the i-th basis vector associated to the
point p are [vki ]p = Vk

i ([ck]p).
Intuitively, the pointwise parametrization seems better
suited for modeling complex and discontinuous trans-
formations within a shape family such as the appear-
ance/disappearance of object parts. On the contrary, the
transformations learned with implicit parametrizations are
derived from continuous functions of the 3D space and can
be expected to be more regular.

We compare both settings in Section 4.2, and show
that pointwise parametrizations provide better shape recon-
structions, but that implicit parametrization yields more in-
terpretable transformations preserving semantic correspon-
dences. Thus, unless specified otherwise, we use the im-
plicit parametrization of the basis in the rest of the paper.

Architecture. For each model k, the alignment network
Ak takes as input a point cloud and outputs a vector in R12

corresponding to a linear 3D operator and a translation vec-
tor applied to each point of the model. The projection net-
work Pk also takes a point cloud as input and outputs a vec-
tor in RD that is interpreted as coordinates in the linear fam-
ily (ck, vk). These networks share a common PointNet [44]
backbone encoder which acts as a global feature extractor.
This shared encoder starts with a sequence of three linear
layers with batch normalization [31] and ReLU activation
acting on points independently and sequentially generating
representations of size 64, 128 and 1024, and ends with a
max-pooling over all points. This encoder is then followed
by 2 × K Multi-Layer Perceptrons (MLPs) corresponding
to each prediction task (alignment or projection) and each
shape model. Each MLP has one hidden layer of size 128.

The implicit parametrizations Vk
i : R3 7→ R3 are MLPs

with 2 hidden layers of size 128.

Curriculum learning. Inspired by the curriculum learn-
ing of [41], we propose to learn our models by gradually
increasing the models complexity. We first learn raw pro-
totype models (Rk

proto), an optimization which corresponds
to performing a gradient-based K-means algorithm in the
3D space. Second, we augment each model with alignment
awareness (Rk

align). Finally, we gradually increase the linear
families dimension up to the desired one, resulting in our
final shape model (Rk

full).

Implementation details. Our implementation - which
will be released upon publication - uses PyTorch, Torch-
Points3D [9], and an efficient CUDA implementation of
the Chamfer distance which significantly speeds up train-
ing. With K = 10 prototypes and D = 5, our model has
4.6M parameters. For comparison, the reconstruction mod-
els proposed by Wang et al. [57] and Groueix et al. [25]
have respectively 2.6M and 10.0M parameters. See our
supplementary material for additional details.

4. Experiments
In this section, we analyze the benefits of our method to

represent shape collections, first qualitatively (Section 4.1)
then quantitatively (Section 4.2). Finally, we demonstrate
that it leads to results on par with state of the art for few-
shot and low shot shape segmentation (Section 4.3).

4.1. Qualitative results

We demonstrate the potential of our method for explor-
ing large shape collections.

Datasets. The ShapeNet dataset [8] is a large collection
of over 50K 3D models organized along 55 common ob-
ject categories such as chairs, airplanes, or cars. The ABC
dataset [34] is a very large collection of Computer-Aided



· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

Figure 4: Basis vectors. Examples of linear shape models
obtained after training on ABC with D = 5. The prototype
is represented at the top and each row corresponds to one
of the dimension of the linear families. The models’ basis
vectors correspond to complex morphological changes.

Design (CAD) models of diverse mechanical object parts,
such as screws or pipes. We used the first six chunks from
this dataset and considered the connected components of
each mesh as separate objects (≈ 70K shapes). We apply
our approach using 55 shape models for ShapeNet and 10
for ABC. For both datasets, we uniformly sample points on
the objects’ surface to obtain point clouds.

Prototypes. We present in Figure 3 examples of proto-
types learned when successively adding different compo-
nents of our method. The first line, denoted “Ours, proto”,
represents the linear families’ prototypes learned during the
first stage of our training (Rproto). The second line, denoted
“Ours, align”, displays the learned prototypes after the sec-
ond stage of our training (Ralign), during which affine align-
ment networks are learned jointly with their model’s pro-
totype. Finally, the third line denoted “Ours, full D = 5”
illustrates the prototypes learned at the last stage of train-
ing (Rfull) alongside linear shape families of dimension 5
and their associated projection networks. We show the cen-
ter of each linear shape model, defined by taking the me-
dian amplitude ai in each dimension i when considering all
point clouds associated with the model, i.e. point clouds for
which this model outputs the best reconstruction.

The prototypes learned with the Chamfer distance (first
line) appear noisy, hinting that they are not well aligned
with the shapes they try to approximate. When adding
alignment networks, we obtain the prototypes of the sec-
ond line, which are much cleaner, outlining the interest of
using a transformation-invariant model, as well as the fact
that our approach can effectively learn such a model. Fi-
nally, the prototypes obtained with our full method are even

sharper and smoother, indicating that linear shape families
can better model the associated point clouds.

Our results on the ABC dataset outline the capacity of
our full model to differentiate between different types of
shapes, as prototypes correspond to different object types.
By looking at the prototypes, one can grasp at a glance the
diversity of shapes contained in this large-scale dataset.

Linear shape models. In Figure 4, we illustrate some
of the linear shape models learned on ABC (more results
for both datasets are in the supplementary material). The
top row shows the center of the linear shape models, and
the subsequent lines illustrate the five basis vectors. For
each model and each basis vector, we represent two shapes
whose amplitudes for the considered dimensions are set to
the 5-th and 95-th percentile values of all point clouds as-
sociated to the model, while the other amplitudes remain at
the median value. Again, we can see how the different di-
mensions give insights on the diversity of shapes within the
dataset.

Reconstructions. In Figure 5, we show examples of re-
constructed shapes from ShapeNet (airplanes, cars, and
chairs) for four different linear shape families. As expected,
the model is able to reconstruct objects precisely while re-
maining visually interpretable. Again, more examples can
be seen in supplementary material.

4.2. Quantitative Analysis for Clustering and Re-
construction

The qualitative results described in the previous section
outline the potential of our approach for visualizing and an-
alyzing large, unstructured, and diverse shape collections.
We now provide a more quantitative analysis of these re-
sults on the standard ModelNet10 dataset [61].

Data and evaluation. ModelNet10 contains 3991 train
and 909 test aligned 3D point clouds obtained from CAD
models of 10 different classes. We use this dataset both
in its original aligned version and also with added random
rotations around the z-axis to evaluate the capacity of our
method to represent unaligned data. Unless specified oth-
erwise, the results are given for the original dataset. We
trained the different variants of our method with 10 recon-
struction models on train and test shapes of ModelNet10.
We evaluate in Table 1 the clustering accuracy and recon-
struction error measured by the Chamfer Distance. To mea-
sure the quality of the resulting clustering, we assign to each
model the majority label of its associated point clouds from
the train set. The accuracy of the classification is then de-
fined by assigning to test shapes the label of the model giv-
ing the best reconstruction.

Alignment. We compute the performance of our models
only defined by prototypes (“Ours proto”), and then train
models with alignments of different complexities (“Ours,



Table 1: Results on ModelNet10. We present results with
10 linear shapes models, first for different restrictions of the
alignment networks, then for different basis vector config-
urations. The steps in the curriculum training of our model
are in bold. We report clustering accuracy in % (’Accu-
racy’) and the Chamfer distance multiplied by 103 (’CD’),
Results are averaged over five runs.

Accuracy CD

Ours, proto 63.9± 1.5 20.0± 0.4

... with supervision 79.0 ± 0.2 23.5 ± 0.0

O
ur

s,
al

ig
n

Rigid transformation (6D) 64.6 ± 5.2 16.2 ± 0.1

Trans. + Iso. Scaling (4D) 71.5 ± 4.1 15.0 ± 0.1

Trans. + Aniso. Scaling (6D) 74.1 ± 3.0 10.4 ± 0.1

Linear (9D) 71.85 ± 4.7 11.1 ± 0.1

Affine (12D) 75.9± 3.0 9.7± 0.0

... with supervision 88.9 ± 0.5 11.2 ± 0.0

O
ur

s,
fu

ll

D
=

1 Pointwise parametrization 74.3 ± 1.7 7.9 ± 0.0

Implicit parametrization 77.5± 2.8 8.1± 0.0

... with supervision 89.7 ± 0.6 9.5 ± 0.0

D
=

5 Pointwise parametrization 75.1 ± 1.7 5.7 ± 0.0

Implicit parametrization 77.0± 3.4 5.9± 0.0

... with supervision 90.4 ± 1.0 7.8 ± 0.0

FoldingNet [62] 76.3 ± 7.5 3.5± 0.0

align”). We first evaluate a model whose alignment net-
works are restricted to a rigid transformation (“Rigid trans-
formation (6D)”), with rotations parametrized with quater-
nions. We also evaluate models with a scaling and a trans-
lation (“Trans. + Iso. Scaling (4D)”), axis-aligned scalings
and a translation (“Trans + Aniso. Scaling (6D)”), a linear
transformation (“Linear (9D)”), and finally an affine trans-
formation (“Affine (12D)”). We observe that using align-
ment networks allows significant clustering improvement
in terms of accuracy and reconstruction quality. Moreover,
restricting the output of the alignment networks leads to a
lower performance: even for centered and rotation-aligned
data such as ModelNet, allowing complex alignments ben-
efits both clustering and reconstruction.

Linear families. We then evaluate models with affine
alignment but different linear basis (“ours, full”). We com-
pare the results between one-dimensional (D = 1) and
five-dimensional (D = 5) linear families as well as be-
tween basis vectors learned in the pointwise and implicit
parametrization (see Section 3.3). Increasing the dimension
of the shape families improves the reconstruction error but
slightly decreases the clustering accuracy with the implicit
parametrization. This can be explained by the models be-
coming too expressive, resulting in point clouds from dif-
ferent classes being associated with the same model.

Table 2: Non-aligned data. Clustering Accuracy (’Accu-
racy’, in %) and reconstruction error (’CD’, Chamfer dis-
tance multiplied by 103) obtained with 10 linear shapes
models on the rotated version of ModelNet10. ∆CD is the
difference of reconstruction error when training the same
model on the aligned or unaligned datasets.

Accuracy ∆Accuracy CD ∆CD

Ours, proto 41.2 ± 3.4 −22.7 30.1 ± 0.1 −10.1

Ours, align 61.8 ± 3.3 −14.1 11.0 ± 0.1 −1.3

Ours, full D = 1 65.2 ± 6.7 −12.3 9.3 ± 0.0 −1.2

Ours, full D = 5 68.8± 7.9 −8.2 6.7± 0.0 −0.8

Baseline and supervised upper bound. As a baseline,
we performed k-means clustering in feature space using the
implementation of FoldingNet [62] proposed by [50]. The
resulting accuracy is comparable to that of our best models’.
However, FoldingNet relies on learning black-box deep de-
formations of a planar patch, and the resulting shape family
and generation process are thus harder to interpret than ours.

We also trained our model in a supervized manner by
associating a class to each model, and only training each
model on point clouds from their class (“with supervision”
lines, in light gray). As expected, this ”oracle” setting per-
forms better in terms of clustering accuracy, but with lower
reconstruction quality. This can be explained by the pres-
ence of classes with high variability such as chairs which
require several families to fully cover, and similar classes
such as desks and tables which can be well reconstructed
by a single family.

Non-aligned data. In Table 2, we report our approach’s
performance when trained on ModelNet10 with random ro-
tations. We observe that adding alignment networks to the
model results in significantly better metrics compared to
simple prototypes. Our full models with alignment are able
to reach reconstruction qualities almost comparable to the
equivalent models trained on aligned shapes. Similarly, the
drop in clustering performance is reduced when adding the
alignment networks and linear shape families. This outlines
the capacity of our models to handle raw unaligned data.
We present in the appendix illustrations of the prototypes
learned in this setting.

4.3. Application to few/low-shot Segmentation

Our linear shape models can perform semantic segmen-
tation by transferring point labels from the model’s proto-
type to the reconstructed point cloud. More precisely, given
an input point cloud x, we identify the model k with the
lowest reconstruction error. We then compute x̃ = Rk

full(x),
the point cloud reconstructed by this model. We transfer the
point annotation from the prototype ck to x̃. Finally, each
point of x is assigned the label of the closest point of x̃.
This strategy is especially meaningful in a few-shot setting,
since only the prototypes need to be annotated.



Table 3: 10-shot segmentation. We report pointwise IoU for 9 classes and the average IoU over all 16 classes of ShapeNet-
Part. See text for details.

airplane bag cap car chair lamp laptop mug table avg

Shared
Gadelha et al. 2020 [22] — — — — — — — — — 74.1

encoder
Ours, full D = 5 (random) 71.7 70.6 84.0 62.1 78.8 68.7 93.1 87.5 70.6 72.5

Ours, full D = 5 (prototype) 79.4 73.0 81.8 72.1 83.6 76.1 94.7 89.8 76.2 77.4

Wang et al. 2020 [57] 67.3 74.4 86.3 — 83.4 68.7 93.8 90.9 74.2 —
One encoder Groueix et al. 2019 [25] 67.1 — — 61.4 78.9 65.8 — — 66.1 —

per class Ours, full D = 5 (random) 72.2 66.0 75.5 63.0 79.1 68.9 93.1 84.2 69.4 —
Ours, full D = 5 (prototype) 80.0 79.7 76.1 72.0 83.6 77.1 94.9 91.1 75.9 —

In
pu

t
O

ut
pu

t
In

pu
t

O
ut

pu
t

In
pu

t
O

ut
pu

t

Failure
cases

Figure 5: Reconstruction results. Examples of sam-
ples annotated pointwise with our semantic-segmentation
method (D = 5). We visually selected failure cases where
semantic regions were wrongly predicted. Prototypes are rep-
resented on the left column, the “input” lines display input samples
with ground truth annotations and the “output” lines our recon-
struction with pixel labels propagated from the prototype.

Few-shot Segmentation. In this setting, where we only
use a few annotations for each class and train our model
with only the reconstruction loss as described earlier, we
consider two methods to annotate the prototypes:

• Random. We randomly pick one sample from the train
set for each model and propagate its labels to their near-
est points of the aligned prototype.

• Prototype. We align all samples from the train set for
each model’s prototype and label each point with ma-
jority voting. This second setting is meant to emulate the
manual annotation of the 10 prototypes. While this is not
directly comparable to other approaches, it outlines the
crucial advantage given by our approach, which identi-
fies a small set of prototype shapes that can be annotated
instead of using random samples. Some prototypes an-
notated in this manner can be seen in Figure 5.

We use the densely annotated ShapeNetPart [47] to evalu-

ate the segmentation performance of our few-shot segmen-
tation scheme. We report in Table 3 the performance of our
10-shot segmentation scheme for nine classes of ShapeNet-
Core, and the average performance over all 16 classes. As
mentioned in Section 3.4, all the alignment and projection
networks share a common PointNet [44] encoder which acts
as a global feature extractor. To compare with previous
works that use either a shared model or a different model
per class, we present results using either a single encoder
for all classes or one encoder per class. Using only 10
samples from the dataset to annotate our prototypes, we ob-
serve that the annotation from random samples performs on
par or better than state-of-the-art approaches. Annotating
prototypes (using all training samples) significantly outper-
forms all methods. This shows that our approach can be
used to precisely and densely annotate large shape datasets
with minimal human intervention. We also observe some
failure cases shown in the last column of Figure 5: since
our model can only move points and not add or subtract
them, shapes with optional parts, such as the arms of chairs,
may be mislabeled.

Low-shot Segmentation. Our model can also be trained
in a low-shot setting, yielding a slight improvement of +1
and +2 mIoU compared to 3D capsules [63] when trained
with only 1% or 5% of annotated shapes. More details on
these results are provided in the supplementary material.

5. Conclusion
We presented a new take on linear shape models with

deep learning, representing large un-annotated collections
of 3D shapes. Our alignment-aware model produces con-
cise, expressive and interpretable overviews of unaligned
point clouds collections. We show that our method leads to
state-of-the-art results for few-shot segmentation.

Acknowledgements This work was supported in part by
ANR project READY3D ANR-19-CE23-0007 and HPC re-
sources from GENCI-IDRIS (Grant 2020-AD011012096).
We thank François Darmon, Damien Robert, Vivien Sainte
Fare Garnot and Yang Xiao for inspiring discussions and
valuable feedback.



Supplementary material
6. Implementation details

Our implementation uses PyTorch, Torch-Points3D [9],
and an efficient CUDA implementation of the Chamfer
distance which significantly speeds up training. Code
and data are available at: https://romainloiseau.

github.io/deep-linear-shapes

Training strategy. We use the Adam optimizer [33] with
a learning rate of 0.001, a batch size of 64, and neither
weight decay nor data augmentation. Our model takes point
clouds in R1024×3 as input for all experiments, except for
the few-shot segmentation task that takes point clouds in
R2048×3 as input.

Curriculum learning. Inspired by the curriculum learn-
ing strategy of [41], we propose to learn our models by
gradually increasing the models complexity. We first learn
raw prototype models (Rk

proto), an optimization which corre-
sponds to performing a gradient-based K-means algorithm
in the 3D space. Second, we augment each model with
alignment awareness (Rk

align). Finally, we gradually in-
crease the linear families dimension up to the desired one,
resulting in our final shape model (Rk

full). Curriculum learn-
ing allows the model to choose the number of displacement
fields D according to the complexity of the studied dataset.
Early stopping occurs when the benefit of adding a new de-
gree of liberty (i.e. increasing D by one) does not meet a
criterion on the loss or on a validation task, see Figure 7.

Alignment networks and basis vectors are initially set
to identity and zero, respectively. When unfreezing a new
module (alignment or a dimension of projection), the learn-
ing rate for the new weights is initially set to a tenth of
the learning rate applied for the rest of the network, and
gradually increased over 50 epochs to the global learning
rate. This “warm-up” heuristic helps the network learn
more smoothly from one step of the curriculum to the next.

Initialization strategy. As it is the case for many clus-
tering algorithms, initialization can be critical. In our case,
we initialize the prototype point clouds with samples of the
training set chosen according to a k-means++ strategy [2]
with respect to the Chamfer distance.

Cluster reassignment. To prevent empty clusters, we re-
assign at the end of each epoch any cluster that was se-
lected fewer times than 20% of the expected size of clus-
ters (N/K) in the evenly distributed cluster assignment of
Equation 1. Clusters are reassigned by selecting and dupli-
cating another cluster. The duplicated cluster is chosen with

a probability proportional to the mean of its reconstruction
error over the last epoch. To break the symmetry, we add
Gaussian noise with variance 10−4 to both its prototype
and vector basis. The alignment and projection networks
are copied without adding noise. We decrease the reassign-
ment threshold tenfold after each curriculum step in order
to preserve less populated but expressive clusters.

Table 4: Low-shot supervised segmentation results on
ShapeNetPart. We report the IoU averaged over all classes.

Training SONet 3D-PointCapsNet Ours
data [36] [63] full D = 5

1% 64 67 68

5% 69 70 72

Memory and Speed. With K = 10 prototypes and D =
5, our model has 4.6M parameters. For comparison, the
reconstruction models proposed by Wang et al. [57] and
Groueix et al. [25] have respectively 2.6M and 10.0M pa-
rameters. Our model can be trained on a single NVIDIA
GeForce RTX 2080Ti within a few hours on the 3 991 sam-
ples of ModelNet10, and in less than a day on ShapeNet-
Core. Inference on all samples from ShapeNetCore (≈ 50k
shapes) takes less than 4 minutes.

Choice of K. The number of models can be automati-
cally selected through usual model selection heuristics such
as the Bayesian Information Criterion (BIC), as we show
in Figure 8. Being entirely unsupervized, there is no re-
striction on how linear families relate to classes: complex
classes can be represented by several models, and similar
classes by a single family. However, as demonstrated in
our clustering experiments, when the number of classes and
models are the same, linear families and classes tend to be
assigned on a one-to-one basis

7. Low-shot setting
Low-Shot Semantic Segmentation. Our models can
learn to perform semantic segmentation from a small num-
ber of annotated examples. We first initialize a set num-
ber of prototypes per class with random examples from the
training set. This allows us to associate each prototype’s
point with a part semantic label. We then perform our stan-
dard training scheme, but with an altered Chamfer distance,
which can only match points with the same part label from
the true and reconstructed point clouds. At inference time,
we can associate a part label to each point of the input shape
by taking the points’ closest neighbor in their reconstructed
shape. This setting is supervised in the sense that we use the
point labels explicitly during training. As presented in Ta-
ble 4, our model trained on only 1 and 5% of the annotated

https://romainloiseau.github.io/deep-linear-shapes
https://romainloiseau.github.io/deep-linear-shapes


Figure 6: Modeling ShapeNet. Prototypes from all 55 linear shape models learned on ShapeNet [8], with our final 5-
dimensional model “Ours, full D = 5”. In this figure, the prototypes have been manually rearranged with respect to their
semantics. Note that some diverse classes such as tables or chairs are modeled by several models.

0 1 2 3 4 5

0.75

0.76

0.77

D

A
cc

ur
ac

y

6

7

8

9

·10−3

C
DAccuracy

CD

Figure 7: Influence of D on ModelNet. The reconstruc-
tion error (CD) decreases with added degrees of freedom.
In contrast, the clustering Accuracy stops increasing when
D >= 3, hinting that we have reached a sufficient level of
complexity.

0 2 4 6 8 10 12 14 16 18 20

B
IC

0 10 20 30 40 50 60 70 80 90

ModelNet10
ShapeNet

Figure 8: Model Selection. We can select the number of
clusters K using the BIC. We obtain 7 clusters for Mod-
elNet and 30 for ShapeNet, which is consistent with the
shapes’ diversity.

shapes yields an improvement of +1 and +2 average IoU
points respectively, compared to 3D-Capsule [63]. In con-
trast to this more complex model, our linear shape models
remain viewable and interpretable.

8. Self-supervised classification

Self-supervised classification. To assess the capacity of
our approach to extract relevant information from 3D mod-
els, we evaluate it in a standard self-supervised feature
learning setup. We train our method on ShapeNetCore with
55 5-dimensional families, extract features from our results,
and train and evaluate a linear SVM on the ModelNet10/40
train-test split following standard practices. We define three
features that can be extracted from our model. A first type
of features is defined as the soft-minimum of the distance
between an input point and the reconstruction predicted by
each linear shape model, with a temperature taken here as
100 (“Distances”). These first features are complemented
by concatenating the coordinates predicted by the projec-
tion networks (“Distances and coordinates”). Finally, we
directly use the features from our point cloud encoder (“Em-
bedding”).

We present the results obtained with these different
features in Table 5, and compare to approaches specifi-
cally designed for self-supervised classification. While our
method’s performance is below most of these dedicated ap-
proaches, our results are still promising. Interestingly, we



can see that adding shape coordinates to the distances sig-
nificantly boosts the results, and even outperforms the latent
embedding learned by the encoder, which outlines that our
learned shape spaces are informative and meaningful.

Table 5: Results of the self-supervised classification task.
We report the accuracy of a linear SVM trained on the train-
ing set of ModelNet using as input feature the reconstruc-
tion error to 55 linear shape families of dimension 5 aug-
mented or not by the predicted coordinates, or the latent
vector outputted by the point cloud encoder. In parenthesis,
we report the name of the backbone network used (Point-
Net [44], PointNet++ [45], or VGG19 [48]).

Nfeat. MN40 MN10

Ours, full D = 5 (PointNet)
Distances 55 70.5 86.2

Distances and coordinates 330 86.8 90.9

Embedding 512 86.2 89.6

3D-GAN [60] 7168 83.3 91.0

VIP-GAN [27] (VGG19) 512 90.2 92.2

FoldingNet [62] 512 88.4 94.4

Latent-GAN [1] (PointNet) 512 84.5 95.4

Rec-Space [46] (PointNet) 512 87.3 91.6

Multi-Task [28] 512 89.1 —
Label-Efficient [22] (PointNet++) 512 89.8 —

9. Learned Linear Shape Models

In this section, we show qualitative examples of learned
linear shape models. In Figure 6, we represent all 55 mod-
els learned on ShapeNet [8], with our final 5-dimensional
model “Ours, full D = 5”. This illustrates how our model
can be used to represent concisely a diverse and complex
dataset such as ShapeNet without any supervision. In Fig-
ure 9, we show the 10 models learned on our subset of
ABC [34] for the three steps of our curriculum strategy, il-
lustrating the benefit of both alignment networks and linear
families to learn such a diverse shape dataset. We also dis-
play the vector basis for all 5 learned dimensions, represent-
ing the richness of each linear shape family.

Lastly, we represent in Figure 10 the models learned on
ModelNet with random rotations. We observe that when
alignment networks are used, the obtained prototypes are
similar to the ones obtained on the aligned version of the
dataset. This shows that our approach can be used success-
fully on raw, un-aligned datasets.

10. Reconstruction results
We show some reconstruction results in Figure 11 and

Figure 12 for ABC and ShapeNet respectively. For each
model, we represent some sample shapes for which the
model provides the reconstruction with the lowest error.
Viewing our approach in terms of clustering, this amounts
to showing elements from the clusters associated with each
model. Note that in Figure 12, our linear models are as-
sociated with rich subsets of shapes which remain mostly
semantically homogeneous.



Ours,
proto

Ours,
align

Ours,
full D = 5

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Figure 9: Modeling ABC. 10
prototype from linear shape
models learned on the ABC
dataset [34]. Note that the proto-
types are smoother and sharper
when using alignment networks
and 5-dimensional linear fami-
lies. On the right-most columns,
we illustrate the 5 dimensions of
the linear family of each shape
model. Each linear family spans
a rich subset of the space of
shapes.



O
ur

s,
pr

ot
o

O
ur

s,
al

ig
n

O
ur

s,
fu

ll
D

=
5

(a) 10 prototypes of the linear shape models learned from the aligned ModelNet10 dataset.

O
ur

s,
pr

ot
o

O
ur

s,
al

ig
n

O
ur

s,
fu

ll
D

=
5

(b) 10 prototypes of the linear shape models learned from the rotated ModelNet10 dataset.

Figure 10: Modeling ModelNet10. Prototype learned on ModelNet’s [61] aligned version (a) and with random z-axis
rotations (b). In this figure, the models are manually rearranged to be in correspondence across the two experiments. Note
how our model without alignment networks (“Ours, proto”) is unable to learn meaningful prototypes on un-aligned data. In
contrast, our models with alignment networks learn sharp and informative prototypes despite the rotations. This shows that
alignment networks allow our model to handle a raw, un-aligned dataset to produce a compact overview of its shape diversity.



In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

Figure 11: Visualizing Reconstructions on ABC. The left-most columns represent prototypes from all 10 linear models
learned on the ABC dataset. For each prototype, we select 6 samples for which this model gives the best reconstruction
(“Input”, top line). We then represent the associated reconstruction provided by the model (“Output”, top line). Each family
represents a wide variety of morphologically homogeneous shapes: round rings, square rings, bent archs, cylinders, etc...
Looking at the prototypes gives us a concise overview of the shape diversity.



In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

In
pu

t
O

ut
pu

t

Figure 12: Visualizing Reconstructions on ShapeNet. The left-most columns represent prototypes from some of the 55
linear models learned on the ShapeNet dataset. For each prototype, we select 6 samples for which this model gives the best
reconstruction (“Input”, top line). We then represent the associated reconstruction provided by the model (“Output”, top
line). We observe that the samples associated with a given model are for the most part semantically homogeneous, and well
represented by their prototype.



References
[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative
models for 3D point clouds. In ICCV, 2018.

[2] David Arthur and Sergei Vassilvitskii. k-means++: The
advantages of careful seeding. Technical report, Stanford,
2006.

[3] Paul J Besl and Neil D McKay. Method for registration of
3-d shapes. In Sensor fusion IV: control paradigms and data
structures. International Society for Optics and Photonics,
1992.

[4] Volker Blanz and Thomas Vetter. A morphable model for the
synthesis of 3D faces. In SIGGRAPH, 1999.

[5] Leon Bottou and Yoshua Bengio. Convergence properties of
the k-means algorithms. In NeurIPS, 1995.

[6] Christoph Bregler, Aaron Hertzmann, and Henning Bier-
mann. Recovering non-rigid 3D shape from image streams.
In CVPR, 2000.

[7] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur
Szlam, and Pierre Vandergheynst. Geometric deep learning:
going beyond euclidean data. Signal Processing Magazine,
2017.

[8] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi,
and Fisher Yu. ShapeNet: An Information-Rich 3D Model
Repository. Technical Report arXiv:1512.03012, Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015.

[9] Thomas Chaton, Chaulet Nicolas, Sofiane Horache, and Loic
Landrieu. Torch-points3D: A modular multi-task frame-
workfor reproducible deep learning on 3D point clouds. In
3DV, 2020.

[10] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In CVPR, 2019.

[11] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4D
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019.

[12] Tim F Cootes and Christopher J Taylor. Statistical models
of appearance for medical image analysis and computer vi-
sion. In Medical Imaging : Image Processing. International
Society for Optics and Photonics, 2001.

[13] Yuchao Dai, Hongdong Li, and Mingyi He. A simple prior-
free method for non-rigid structure-from-motion factoriza-
tion. International Journal of Computer Vision, 2014.

[14] Yu Deng, Jiaolong Yang, and Xin Tong. Deformed implicit
field: Modeling 3d shapes with learned dense correspon-
dence. In CVPR, pages 10286–10296, 2021.

[15] Theo Deprelle, Thibault Groueix, Matthew Fisher,
Vladimir G Kim, Bryan C Russell, and Mathieu Aubry.
Learning elementary structures for 3D shape generation and
matching. In NeurIPS, 2019.

[16] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set
generation network for 3D object reconstruction from a sin-
gle image. In CVPR, 2017.

[17] Clara Fernandez-Labrador, Ajad Chhatkuli, Danda Pani
Paudel, Jose J Guerrero, Cédric Demonceaux, and Luc

Van Gool. Unsupervised learning of category-specific sym-
metric 3d keypoints from point sets. ECCV, 2020.

[18] Brendan J Frey and Nebojsa Jojic. Estimating Mixture Mod-
els of Images and Inferring Spatial Transformations Using
the EM Algorithm. In CVPR, 1999.

[19] Brendan J Frey and Nebojsa Jojic. Transformed component
analysis: Joint estimation of spatial transformations and im-
age components. In ICCV, 1999.

[20] Brendan J Frey and Nebojsa Jojic. Fast, large-scale
transformation-invariant clustering. In NeurIPS, 2002.

[21] Brendan J Frey and Nebojsa Jojic. Transformation-Invariant
Clustering Using the EM Algorithm. Transactions on Pat-
tern Analysis and Machine Intelligence, 2003.

[22] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma,
Evangelos Kalogerakis, Liangliang Cao, Erik Learned-
Miller, Rui Wang, and Subhransu Maji. Label-efficient learn-
ing on point clouds using approximate convex decomposi-
tions. In ECCV, 2020.

[23] Kyle Genova, Forrester Cole, Daniel Vlasic, Aaron Sarna,
William T Freeman, and Thomas Funkhouser. Learning
shape templates with structured implicit functions. In ICCV,
2019.

[24] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. A papier-mâché ap-
proach to learning 3D surface generation. In CVPR, 2018.

[25] Thibault Groueix, Matthew Fisher, Vladimir G Kim,
Bryan C Russell, and Mathieu Aubry. Unsupervised cycle-
consistent deformation for shape matching. In Computer
Graphics Forum, 2019.

[26] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,
and Mohammed Bennamoun. Deep learning for 3D point
clouds: A survey. Transactions on Pattern Analysis and Ma-
chine Intelligence, 2020.

[27] Zhizhong Han, Mingyang Shang, Yu-Shen Liu, and Matthias
Zwicker. View inter-prediction gan: Unsupervised represen-
tation learning for 3D shapes by learning global shape mem-
ories to support local view predictions. In AAAI, 2019.

[28] Kaveh Hassani and Mike Haley. Unsupervised multi-task
feature learning on point clouds. In CVPR, 2020.

[29] Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. Total
denoising: Unsupervised learning of 3D point cloud clean-
ing. In CVPR, 2019.

[30] Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and
Raquel Urtasun. Octsqueeze: Octree-structured entropy
model for lidar compression. In CVPR, 2020.

[31] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015.

[32] Chiyu Jiang, Jingwei Huang, Andrea Tagliasacchi, and
Leonidas Guibas. Shapeflow: Learnable deformations
among 3d shapes. In NeurIPS, 2020.

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. ICLR, 2015.

[34] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In CVPR, 2019.



[35] Loic Landrieu and Martin Simonovsky. Large-scale point
cloud semantic segmentation with superpoint graphs. In
CVPR, 2018.

[36] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-
organizing network for point cloud analysis. In CVPR, 2018.

[37] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao
Zhang, and Leonidas Guibas. Grass: Generative recursive
autoencoders for shape structures. Transactions on Graph-
ics, 2017.

[38] Franco Manessi, Alessandro Rozza, and Mario Manzo. Dy-
namic graph convolutional networks. Pattern Recognition,
2020.

[39] Facundo Mémoli and Guillermo Sapiro. A theoretical and
computational framework for isometry invariant recognition
of point cloud data. Foundations of Computational Mathe-
matics, 2005.

[40] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3D reconstruction in function space. In CVPR,
2019.

[41] Tom Monnier, Thibault Groueix, and Mathieu Aubry. Deep
Transformation-Invariant Clustering. In NeurIPS, 2020.

[42] G Dias Pais, Srikumar Ramalingam, Venu Madhav Govindu,
Jacinto C Nascimento, Rama Chellappa, and Pedro Miraldo.
3DRegNet: A deep neural network for 3D point registration.
In CVPR, 2020.

[43] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In CVPR, 2019.

[44] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3D classification
and segmentation. In CVPR, 2017.

[45] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In NeurIPS, 2017.

[46] Jonathan Sauder and Bjarne Sievers. Self-supervised deep
learning on point clouds by reconstructing space. In
NeurIPS, 2019.

[47] Manolis Savva, Angel X Chang, and Pat Hanrahan.
Semantically-enriched 3D models for common-sense knowl-
edge. In CVPR Workshops, 2015.

[48] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015.

[49] Lawrence Sirovich and Michael Kirby. Low-dimensional
procedure for the characterization of human faces. Journal
of the Optical Society of America, 1987.

[50] An Tao. Unsupervised point cloud re-
construction for classific feature learn-

ing. https://github.com/AnTao97/
UnsupervisedPointCloudReconstruction,
2020.

[51] Maxim Tatarchenko, Stephan R Richter, René Ranftl,
Zhuwen Li, Vladlen Koltun, and Thomas Brox. What do
single-view 3D reconstruction networks learn? In CVPR,
2019.

[52] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,
Beatriz Marcotegui, François Goulette, and Leonidas J
Guibas. Kpconv: Flexible and deformable convolution for
point clouds. In ICCV, 2019.

[53] Carlo Tomasi and Takeo Kanade. Shape and motion from
image streams under orthography: a factorization method.
International Journal of Computer Vision, 1992.

[54] Lorenzo Torresani, Aaron Hertzmann, and Chris Bregler.
Nonrigid structure-from-motion: Estimating shape and mo-
tion with hierarchical priors. Transactions on Pattern Analy-
sis and Machine Intelligence, 2008.

[55] Matthew Turk and Alex Pentland. Eigenfaces for recogni-
tion. Journal of Cognitive Neuroscience, 1991.

[56] Matthew A Turk and Alex P Pentland. Face recognition us-
ing eigenfaces. In CVPR, 1991.

[57] Lingjing Wang, Xiang Li, and Yi Fang. Few-shot learning of
part-specific probability space for 3D shape segmentation. In
CVPR, 2020.

[58] Yu Wang, Alec Jacobson, Jernej Barbič, and Ladislav Ka-
van. Linear subspace design for real-time shape deformation.
Transactions on Graphics, 2015.

[59] Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and Intelligent Labora-
tory Systems, 1987.

[60] Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of
object shapes via 3D generative-adversarial modeling. In
NeurIPS, 2016.

[61] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3D
shapenets: A deep representation for volumetric shapes. In
CVPR, 2015.

[62] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-
ingnet: Point cloud auto-encoder via deep grid deformation.
In CVPR, 2018.

[63] Yongheng Zhao, Tolga Birdal, Haowen Deng, and Federico
Tombari. 3D point capsule networks. In CVPR, 2019.

[64] Zerong Zheng, Tao Yu, Qionghai Dai, and Yebin Liu. Deep
implicit templates for 3d shape representation. In CVPR,
2021.

https://github.com/AnTao97/UnsupervisedPointCloudReconstruction
https://github.com/AnTao97/UnsupervisedPointCloudReconstruction

	. Introduction
	. Related work
	. Modeling Shape Collections
	. Method overview
	. Alignment-Aware Model
	. Linear Shape Modeling
	. Parameterization and training details

	. Experiments
	. Qualitative results
	. Quantitative Analysis for Clustering and Reconstruction
	. Application to few/low-shot Segmentation

	. Conclusion
	. Implementation details
	. Low-shot setting
	. Self-supervised classification
	. Learned Linear Shape Models
	. Reconstruction results

