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Abstract

The reliability of a model is its accuracy in predicting the physical phenomena. In this
paper, the robustness of a model of heat and mass transfer in a porous material is evaluated
by comparing the numerical predictions with experimental observations. An experimental
facility composed of an enclosure made with spruce CLT panels is used. An increase of
temperature is applied in the inside air volume to force the heat transfer from the inner to the
outer surfaces. Sensors inside the material enables to have experimental observations of the
physical phenomena. Before bench-marking the numerical model, a first set of experimental
data is used to reduce the two major source of uncertainties in the model. Indeed, the first
source arises from surface heat and mass transfer coefficients, usually determined by empirical
correlations. The second comes the thermal conductivity of the material which is defined
through standard methods as invariant for the three layers of the spruce panels. To overcome
this issue, a set of seven uncertain parameters are estimated using an hybrid optimizer after
demonstrating their theoretical and practical identifiability. Then, the reliability of the
numerical model, based on the DuFort–Frankel explicit scheme, is evaluated by comparison
to a second set of experimental data obtained in another wall of the enclosure. A very
satisfactory agreement is remarked showing the accuracy of the model to predict the physical
phenomena in this hygroscopic porous material.

Key words: heat and mass transfer; porous media; bench-marking with experimental
data; DuFort–Frankel scheme; parameter estimation problem
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Nomenclature and symbols

Latin letters, physical parameters

cm mass storage coefficient
[
kg/m 3 ]

cm, 0 , cm, 1 , cm, 2 parameter of the mass storage coefficient function
[
kg · Pa/(m 3 ·K)

]
cmq mass storage coefficient due to temperature

[
(kg · Pa)/(m 3 ·K)

]
c q , c q , 0 , c q , 1 , c q , 2 , c q , 3 heat storage coefficient

[
J/(m 3 ·K)

]
c v , c l , c a specific heat

[
J/(kg ·K)

]
hm surface mass transfer coefficient

[
m 2/(K · s)

]
h q surface heat transfer coefficient

[
W/(m 2 ·K)

]
km , km, 0 , km, 1 mass permeability coefficient

[
s
]

kmq thermo-diffusion coefficient
[
kg/(m · s ·K)

]
k q , k q , 0 , i , i =

{
1 , 2 , 3

}
heat transfer coefficient

[
W/(m ·K)

]
k q , 1 parameter of the heat transfer coefficient function

[
W/(m ·K 2)

]
L length

[
m
]

P v , P sat pressure
[
Pa
]

R v water vapor gas constant
[
J/(kg ·K)

]
r v , r v , 0 latent heat of evaporation

[
J/kg

]
T temperature

[
K
]

t , t f , t cpu time
[
s
]

x space coordinate
[
m
]

Latin letters, dimensionless parameters

F , F u , F v Fisher information matrix
[
-
]

J cost function
[
-
]

p k unknown parameter
[
-
]

R cpu computational time ratio
[
-
]

u vapor pressure field
[
-
]

v temperature field
[
-
]

Greek letters, physical parameters

φ relative humidity
[
ø
]

ρ specific mass
[
kg/m 3 ]

ω mass content
[
kg/m 3 ]

δ x uncertainty on sensor location
[
m
]

σm,P uncertainty on vapor pressure due to sensor measurement
[
K
]

σ t , P uncertainty on vapor pressure due to sensor time response
[
K
]

σ x , P uncertainty on vapor pressure due to sensor location
[
K
]

σm,T uncertainty on temperature due to sensor measurement
[
K
]

σ t , T uncertainty on temperature due to sensor time response
[
K
]

σ x , T uncertainty on temperature due to sensor location
[
K
]

σm,φ uncertainty on relative humidity due to sensor measurement
[
-
]

∆x space discretisation parameter
[
m
]

∆t time discretisation parameter
[
s
]
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Greek letters, dimensionless parameters

γ coupling parameter of the heat transfer equation
[
-
]

δ coupling parameter of the mass transfer equation
[
-
]

η coupling parameter of mass storage due to temperature
[
-
]

Ω p set of unknown parameters
[
-
]

Θ sensitivity coefficient for temperature field
[
-
]

Λ sensitivity coefficient for vapor pressure field
[
-
]

Ψ , Ψu , Ψ v determinant of Fisher matrix
[
-
]

σ variance
[
-
]

ε k estimator error on the identification of parameter p k
[
-
]

εP v
r relative error for vapor pressure field

[
-
]

εTr relative error for temperature field
[
-
]

λ i , κ i , θ , µ i , ν i , i =
{

1 , 2 , 3
}

numerical model parameters
[
-
]

Dimensionless numbers

Fo q Fourier number for heat transfer
[
-
]

Fom Fourier number for mass transfer
[
-
]

Bi Biot number
[
-
]

Le Lewis number
[
-
]

Le modified Lewis number
[
-
]

Subscripts and superscripts

f final

m mass transfer

q heat transfer

mq coupled mass coefficient under heat process

L Left boundary x = 0

R Right boundary x = L

? dimensionless parameter

∞ air ambient field

0 initial value at t = 0

◦ estimated parameter

apr a priori parameter

num numerical solution

obs observation of the field

cpu computational time

The following symbols are used in the mathematical notation:
• = designates the equality between two scalar numbers. a = b means that the scalars a

and b are the same.

• def:= stands for a definition. a def:= b means that a is defined to be equal to b .

• ≡ names the equivalence between two functions. f ≡ g means that ∀x 0 ∈ Ωx , we have
f (x 0 ) = g (x 0 ) , where Ωx stands for the domain of existence of functions f and g .
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1 Introduction
Due to their environmental impacts, building energy efficiency is a crucial challenge for de-

signers and engineers. It requires an accurate prediction of the heat losses through the walls.
Moreover, moisture is an important factor since it impacts performance through latent heat
exchange. In this context, several models have been proposed in the literature to predict the
physical phenomena of heat and mass transfer in porous material. The governing equations of
the mathematical model have been proposed in the early work of Luikov [1]. From this mathe-
matical model, numerical models have been proposed to compute the main fields with a recent
overview proposed in [2].

An important issue in elaborating model is their reliability to represent accurately and with
confidence the physical phenomena. The robustness can be assessed by comparing the numerical
predictions to experimental observations. The latter can be obtained by submitting a porous
material to forcing conditions at its boundaries. Sensors are settled inside the material to
generate local experimental measurements of the fields. On the other hand, the model is defined
based on the heat and mass conservation equation combined with boundary conditions. The
reliability of the model needs to be checked for Robin-type boundary conditions since there are
used in practical applications to represent the physical phenomena at the interface between the
material and the ambient air.

In the literature, various work aims at proposing such comparisons. Nevertheless, two im-
portant sources of uncertainties can be remarked in the attempt of validating the robustness of
the model. First, the modeling at the interface between the porous material and the ambient
air is identified as a source of error. More precisely, the values of the surface heat and mass
transfer coefficients are always uncertain. In [3] or [4], the reliability is evaluated considering
a configuration with Dirichlet boundary conditions to avoid this uncertainty. In [5], the coeffi-
cients are settled using the empirical correlation proposed in [6]. In [7, 8], the coefficients are
guessed by changing randomly their values. In [9, 10], the so-called Sherwood number is em-
ployed to compute the surface coefficients using the Reynolds number. This approach requires
costly computational fluid dynamics. In [11, 12], the coefficients are guessed by performing a
sensitivity analysis on the prediction of the physical phenomena.

The second source of discrepancies in the model reliability arises from the determination
through the standards methods of the so-called material properties. The knowledge of these
parameters is crucial since there are involved in the heat and mass transfer processes [13]. The
standards methods are based on steady-state measurement and are particularly questionable
for hygroscopic materials [14]. Furthermore, there are not appropriate for materials which are
intrinsically composed of several layers such as spruce wood panels. Indeed, according to the
standard method (ISO 8302), the thermal conductivity of spruce panels is assumed as invariant
inside the material.

Thus, the aim of this work is to evaluate the reliability of a model of heat and mass transfer in
a hygroscopic material, reducing the uncertainties due to the material properties and to the heat
and mass surface transfer coefficients. The measurements are obtained using an experimental
set-up composed of enclosures, which panels are based on three spruce layers. The fields of the
inside and outside air volumes can be controlled as forcing conditions. Sensors are settled in two
different walls to obtained experimental measurements of temperature and vapor pressure. To
avoid the mentioned sources of uncertainties, a first set of experimental observations is used to
determine the uncertain parameters in the models, namely the heat and mass surface transfer
coefficients and the thermal conductivity of the three layers composing the panels. Then, another
set of experimental observations is used for comparison with the numerical predictions. The
article is organized as follows. Section 2 presents the mathematical model and its dimensionless
formulation. Then, in Section 3, the numerical model is detailed. An innovative approach,
based on the DuFort–Frankel numerical scheme, is used to reduce the computational cost of the
direct computation. In Section 4, the methodology to solve the parameter estimation problem
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Figure 1. Illustration of physical problem with the unknown parameters.

is presented. The experimental facility to generate the observation of temperature and vapor
pressure is introduced in Section 5. In Section 6, the identifiability of the unknown parameters
is demonstrated. Then, the results of the parameter estimation problem, using the first set of
observations, are given. Finally, in Section 7, the reliability of the model is compared to another
set of experimental observations.

2 Description of the mathematical model
Fist, the governing equations of the mathematical model are described. An illustration of

the problem is given in Figure 1. A porous material is submitted to forcing conditions of
temperature and vapor pressure on each boundary. The transfer occurs in a plan perpendicular
to the gravity so the effects of the latter are negligible. A total of seven parameters are unknown
in the mathematical problem, including the boundary heat and mass surface transfer coefficients
and the thermal conductivity of each of the three layers.

2.1 Porous media

The mathematical model describes the heat and mass transfer in multi-layered wall composed
of porous media. The transfer are assumed as 1-dimensional and the spatial domain is defined
as x ∈

[
0 , L

]
, where L

[
m
]
is the thickness of the wall. The physical phenomena are observed

for the time t ∈
[
0 , t f

]
. The field of interests are the temperature T

[
K
]
and the vapor

pressure P v
[
Pa
]
defined according to:

T :
[

0 , L
]
×
[

0 , t f
]
−→ R>0 , P v :

[
0 , L

]
×
[

0 , t f
]
−→ R>0 ,(

x , t
)
7−→ T

(
x , t

)
,

(
x , t

)
7−→ P v

(
x , t

)
.

The saturation pressure P sat
[
Pa
]
is given by a temperature dependent function given by the

Antoine’s law:

P sat
(
T
) def:= P ◦sat ·

(
T − T a

T b

)α

, T > T a ,

with P ◦sat = 997.3 Pa , T a = 159.5 K , T b = 120.6 K and α = 8.275 . The moisture content
in the porous material is denoted as ω

[
kg/m 3 ] and the relative humidity by φ

[
ø
]
.

5



2.2 Governing equation

According to [1], the governing equations of heat and mass transfer in porous media are:
∂ω

∂t
= ∂

∂x
·
(
km ·

∂P v
∂x

)
+ ∂

∂x
·
(
kmq ·

∂T

∂x

)
,

c q ·
∂T

∂t
= ∂

∂x
·
(
k q ·

∂T

∂x

)
+ r v ·

∂

∂x
·
(
km ·

∂P v
∂x

)
.

The chosen potential to write the governing equations is the vapor pressure. Thus, one can
write:

∂ω = ∂ω

∂φ
· ∂φ + ∂ω

∂T
· ∂T .

It is assumed negligible the variation of the moisture content with temperature ∂ω

∂T
= 0 . In

addition, using the relation between relative humidity and vapor pressure, φ = P v
P sat

, we have:

∂φ = 1
P sat

· ∂P v −
P v
P 2

sat
· ∂P sat
∂T

· ∂T .

The Clapeyron relation gives:
∂P sat
∂T

= r v
R v · T 2 · P sat ,

where r v
[
J/kg

]
is the latent heat of vaporization and R v

[
J/(kg ·K)

]
the gas constant of water

vapor. Using these results, the time variation of moisture content is given by:
∂ω

∂t
= cm ·

∂P v
∂t

− cmq ·
∂T

∂t
,

where

cm
def:= ∂ω

∂φ
· 1
P sat

, cmq
def:= cm · P v ·

r v
R v · T 2 .

Thus, the heat and mass transfer is given by the following system of coupled partial differential
equations:

cm ·
∂P v
∂t

= ∂

∂x

(
km ·

∂P v
∂x

)
+ ∂

∂x

(
kmq ·

∂T

∂x

)
+ cmq ·

∂T

∂t
, (1a)

c q ·
∂T

∂t
= ∂

∂x

(
k q ·

∂T

∂x

)
+ r v ·

∂

∂x

(
km ·

∂P v
∂x

)
. (1b)

2.3 Material properties

The wall is composed of several layers of wood spruce panels. It is assumed that only the
thermal conductivity varies according to each layer. So, other properties do not vary according
to the different layers. The sorption curve of the material is given as a third order polynomials.
Thus, the storage coefficients are computed using the following functions:

cm
(
T , P v

) def:= 1
P sat(T ) ·

(
cm, 0 + cm, 1 ·

P v
P sat(T ) + cm, 2·

(
P v

P sat(T )

) 2)
, (2a)

c q
(
T , P v

) def:= c q , 0 + c q , 1 ·
P v

P sat(T ) + c q , 2·
(

P v
P sat(T )

) 2
+ c q , 3·

(
P v

P sat(T )

) 3
, (2b)

cmq
(
T , P v

) def:= cm
(
T , P v

)
· P v ·

r v
(
T
)

R v · T 2 . (2c)
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The gas constant for water vapor is R v = 462 J/(kg · K) . The thermo-diffusion coefficient
kmq

[
kg/(m · s · K)

]
is set as constant. The mass permeability coefficient varies according to

temperature and vapor pressure:

km
(
T , P v

) def:= km, 0 + km, 1 ·
P v

P sat(T ) . (3a)

It is assumes that the thermal conductivity varies according to temperature and space:

k q
(
x , T

) def:=
3∑
i=1

k q , i
(
x , T

)
, (4a)

where

k q , i
(
x , T

) def:= ψ i (x ) · k q , 0 , i + k q , 1 · T .

The piece-wise function for each layer ψ i is defined by:

ψ i
(
x
) def:=


1 , x i−1 6 x 6 x i ,

0 , otherwise ,

where x i−1 denotes the interface location in the space domain between the layer i−1 and i . The
three unknown parameters of the material properties are the thermal conductivity coefficients
k q , 0 , i

[
W/(m ·K)

]
, i =

{
1 , 2 , 3

}
.

The mass transfer under temperature gradient coefficient kmq is set as constant and indepen-
dent of the fields. The latent heat of vaporization r v

[
J/kg

]
depends on temperature according

to:

r v
(
T
) def:= r v , 0 +

(
c v − c l

)
·
(
T − T c

)
,

with c v
[
J/(kg ·K)

]
and c l

[
J/(kg ·K)

]
the specific heat of vapor and liquid water, respectively.

The numerical values for the physical constants are r v , 0 = 2.5·10 6 J/kg , c v = 1870 J/(kg·K) ,
c l = 4180 J/(kg ·K) and T c = 273.15 K .

2.4 Initial and boundary conditions

At the initial state, the temperature and vapor pressure are known in the material:

T = T 0(x ) , P v = P 0
v (x ) , t = 0 ,

where T 0 and P v , 0 are given function of space:
At the interface between the material and the ambient air, Robin type boundary conditions

are assumed for the heat flow

k q ·
∂T

∂x
+ r v · km ·

∂P v
∂x

= hLq ·
(
T − T L

∞( t )
)

+ r v · hLm ·
(
P v − P L

v ,∞( t )
)
, x = 0 ,

k q ·
∂T

∂x
+ r v · km ·

∂P v
∂x

= −hRq ·
(
T − T R

∞( t )
)
− r v · hRm ·

(
P v − P R

v ,∞( t )
)
, x = L ,

and for the mass one

km ·
∂P v
∂x

+ kmq ·
∂T

∂x
= hLm ·

(
P v − P L

v ,∞( t )
)
, x = 0 ,

km ·
∂P v
∂x

+ kmq ·
∂T

∂x
= −hRm ·

(
P v − P R

v ,∞( t )
)
, x = L ,
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where the air ambient temperature T L ,R
∞ and vapor pressure P L ,R

v ,∞ are given time dependent
functions. The parameters h q

[
W/(m 2 ·K)

]
and hm

[
m 2/(K ·s)

]
are the heat and mass surface

transfer coefficients. They are the additional four unknown parameters for the left and right
boundaries. A relation is introduced between both coefficients using the Lewis Le

[
ø
]
number:

hLm =
hLq

R v · ρ a · c a · LeL
, hRm =

hRq

R v · ρ a · c a · LeR
,

where ρ a = 1.16 kg/m 3 is the dry air specific mass and c a = 10 3 J/(kg ·K) the specific heat
of dry air.

2.5 Dimensionless formulation

To carry on the numerical analysis, the physical problem is transformed into a dimensionless
formulation. For this, the time and space domains are scaled according to:

x ? = x

L
, t ? = t

t ref .

The fields are also transformed into:

u = P v
P ref
v

, v = T

T ref .

It is important to note that T ref [ ◦C ] and P ref
v

[
Pa
]
should not be taken to zero.

The storage and diffusion coefficients as well as the latent heat of vaporization are converted
in dimensionless ones:

c ?m = cm
c ref
m

, c ?q = c q
c ref
q

, c ?mq = cmq
c ref
mq

,

k ?m = km
k ref
m

, k ?q = k q
k ref
q

, k ?qm = k qm
k ref
qm

, r ? = r v
r v , 0

.

In this way, the dimensionless Fourier numbers are defined:

Fom = k ref
m · t ref

c ref
m · L 2 , Fo q =

k ref
q · t ref

c ref
q · L 2 .

The coupling parameters between both heat and mass transfer are set:

γ = k ref
m · P ref

v · r v , 0
k ref
q · T ref , δ =

k ref
mq · T ref

k ref
m · P ref

v

, η =
c ref
mq · T ref

c ref
q · P ref

v

.

For the boundary conditions, the time dependent Biot number is introduced:

Bi = h q · L
k ref
q

,

as well as a modified Lewis number:

Le = R 1 · ρ a · c a ·
k ref
m · T ref

k ref
q

·
(

Le
) 2/3

.

In the end, the dimensionless formulation of the heat and mass problem is:

c ?m ·
∂u

∂t ?
= Fom · ∂

∂x ?

(
k ?m ·

∂u

∂x ?

)
+ δ · Fom · ∂

2v

∂x ? 2 + η · c ?mq ·
∂v

∂t ?
, (5a)

c ?q ·
∂v

∂t ?
= Fo q · ∂

∂x ?

(
k ?q ·

∂v

∂x ?

)
+ γ · Fo q · r ? · ∂

∂x ?

(
k ?m ·

∂u

∂x ?

)
. (5b)
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The boundary condition becomes for the mass transfer:

k ?m ·
∂u

∂x ?
+ δ · ∂v

∂x ?
= BiL

LeL
·
(
u − uL∞

)
, x ? = 0 , (6a)

k ?m ·
∂u

∂x ?
+ δ · ∂v

∂x ?
= − BiR

LeR
·
(
u − uR∞

)
, x ? = 1 , (6b)

and for the heat one:

k ?q ·
∂v

∂x ?
+ r ? · γ · k ?m ·

∂u

∂x ?
= BiL ·

(
v − v L∞

)
+ r ? · γ · BiL

LeL
·
(
u − uL∞

)
, x ? = 0 ,

(7a)

k ?q ·
∂v

∂x ?
+ r ? · γ · k ?m ·

∂u

∂x ?
= −BiR ·

(
v − vR∞

)
− r ? · γ · BiR

LeR
·
(
u − uR∞

)
, x ? = 1 .

(7b)

In the dimensionless representation, the unknown parameters are BiL , LeL , BiR , LeR and
k ?q , 0 , i , i =

{
1 , 2 , 3

}
.

3 Direct numerical model
The numerical model used to solve the so-called direct problem is now described. It requires

to be efficient by saving computational efforts and providing accurate solutions of the governing
equations. These needs are particularly justified in the framework of parameter estimation
problem where the direct problem is solved many time.

3.1 The DuFort–Frankel numerical method

A uniform discretisation is considered for space and time lines. The discretisation parameters
are denoted using ∆t for the time and ∆x for the space. The discrete values of functions u (x , t )
and v (x , t ) are written as unj

def:= u (x j , tn ) and v nj
def:= v (x j , tn ) with j = 1 , . . . , Nx

and n = 1 , . . . , N t . It is remarked that j = 1 and j = Nx corresponds to x = 0 and
x = 1 , respectively. For the sake of clarity, the super-script ? is removed in this section for
the description of the numerical method.

The DuFort–Frankel scheme is employed to build an efficient numerical model for the heat
and mass balance equations (5a) and (5b). The original work may be consulted in [15]. It
affords an explicit numerical scheme. Thus, no costly sub-iterations are required to treat the
nonlinearities, as in implicit approaches. Furthermore, as demonstrated in [16, 17], it has an
extended stability region, so the so-called Courant-Friedrichs-Lewy (CFL) condition [18] is not
an impediment. Interested readers may consult [16, 17] for further details and its applications
for heat and moisture transfer in building porous materials. Since many details are provided in
[17] for a similar system of coupled partial differential equations, the demonstration of the fully
discrete equations is not detailed.

From Eq. (5a), using the DuFort–Frankel numerical scheme, the following fully discrete
dynamical system is obtained:

un+1
j − 1

1 + λ 3
·
(
λ 1 · unj+1 + λ 2 · unj−1 +

(
1 − λ 3

)
· un−1

j (8)

+ κ 1 · v nj+1 + κ 2 · v nj−1 − κ 3 ·
1
2 ·
(
v n+1
j + v n−1

j

)
+ θ ·

v n+1
j − v n−1

j

2 ·∆t

)
= 0 ,

9



where the coefficients
{
λ i
} 3
i = 1 ,

{
κ i
} 3
i = 1 and θ are defined as:

λ 1
def:= 2 · Fom · ∆t

∆x 2 ·
k n
m , j + 1

2

cnm , j

, λ 2
def:= 2 · Fom · ∆t

∆x 2 ·
k n
m , j − 1

2

cnm , j

, λ 3
def:= 1

2 ·
(
λ 1 + λ 2

)
,

κ 1 = κ 2
def:= 2 · Fom · ∆t

∆x 2 ·
δ

cnm , j

, κ 3
def:= κ 1 + κ 2 θ

def:= η · 2 ·∆t · cmq , j
c q , j

Similarly, using the DuFort–Frankel numerical scheme for Eq. (5b), the fully discrete dy-
namical system is:

v n+1
j − 1

1 + µ 3
·
(
µ 1 · v nj+1 + µ 2 · v nj−1 +

(
1 − µ 3

)
· v n−1

j (9)

+ ν 1 · unj+1 + ν 2 · unj−1 − ν 3 ·
1
2 ·
(
un+1
j + un−1

j

))
= 0 ,

with the following coefficients:

µ 1
def:= 2 · Fo q · ∆t

∆x 2 ·
k n
q , j + 1

2

cnq , j
, µ 2

def:= 2 · Fo q · ∆t
∆x 2 ·

k n
q , j − 1

2

cnq , j
,

µ 3
def:= 1

2 ·
(
µ 1 + µ 2

)
, ν 1

def:= 2 · γ · r nj · Fo q · ∆t
∆x 2 ·

k n
m , j + 1

2

cnq , j
,

ν 2
def:= 2 · γ · r nj · Fo q · ∆t

∆x 2 ·
k n
m , j − 1

2

cnq , j
, ν 3

def:= ν 1 + ν 2 .

Then, the two systems Eqs. (8) and (9), are solved to obtain an explicit formulation of the
fields un+1

j and v n+1
j . For the sake of notation compactness, the results are provided in the

supplementary MapleTM file.
The storage and latent heat of vaporization coefficients are evaluated using the following

interpolation:

c j
def:= c

(
u j , v j

)
, r j

def:= r
(
v j
)
.

The diffusion coefficients are interpolated according to:

k j + 1
2

def:= k

(
1
2 ·
(
u j + u j+1

)
,

1
2 ·
(
v j + v j+1

))
.

For the boundary conditions, a second order accurate discretisation in space is used to main-
tain the accuracy properties. For the boundary x = 0 , the discretisation of Eqs. (6a) and (7a)
yields :
km, 1
2 ·∆x ·

(
−u 3 + 4 · u 2 − 3 · u 1

)
+ δ

2 ·∆x ·
(
− v 3 + 4 · v 2 − 3 · v 1

)
(10a)

= BiL

LeL
·
(
u 1 − uL∞

)
, (10b)

k q , 1
2 ·∆x ·

(
− v 3 + 4 · v 2 − 3 · v 1

)
+ γ · r 1 · km, 1

2 ·∆x ·
(
−u 3 + 4 · u 2 − 3 · u 1

)
(10c)

= BiL ·
(
v 1 − v∞

)
+ γ · r 1 ·

BiL

LeL
·
(
u 1 − uL∞

)
.

(10d)
Then, the system (10) is solved to give an explicit expression of u 1 and v 1 . A very similar
operation is achieved for the boundary x = 1 .

10



3.2 Metrics of efficiency and reliability of a model

To evaluate the efficiency of a numerical model, one criteria is the computational (CPU) run
time required to compute the solution. It is measured using the MatlabTM environment with a
computer equipped with Intel i7 CPU and 32 GB of RAM. The following ratio is defined:

R cpu
def:= t cpu

t f
,

where t cpu
[
s
]
is the measured CPU time and t f is the final physical time of the simulation.

The reliability of a model is assessed by comparing the numerical results with experimental
observations. The relative error for temperature or vapor pressure is computed according to:

εP vr (x ?0 , t ? ) def:= unum (x ?0 , t ? ) − u obs (x ?0 , t ? )
u obs (x ?0 , t ? ) ,

εTr (x ?0 , t ? ) def:= v num (x ?0 , t ? ) − v obs (x ?0 , t ? )
v obs (x ?0 , t ? )

,

where x ?0 is the sensor location, the super script num. defined the output field computed with
the model and obs. stands for the experimental observation of the field.

4 Parameter estimation
The purpose is to use experimental observations to retrieve the seven unknown parameters

hLq , hLm , hRq , hRm , k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3 . Thus, the set of unknown dimensionless param-
eters is defined by:

Ω p =
{

BiL , BiR , LeL , LeR , k ?q , 0 , 1 , k
?
q , 0 , 2 , k

?
q , 0 , 3

}
.

We denote by p k , with k ∈
{

1 , . . . , N p
}
, a component of the set Ω p . In our case, the

total number of unknown parameters is N p = 7 . The distinction is realized between a priori
parameters p apr

k , used as initial guesses in the optimization procedure and in the computation of
the sensitivity equations. The estimated parameter after the optimization process are denoted
by p ◦k . It is assumed that measurement errors are additive with zero mean, constant variance,
uncorrelated and normal distribution.

4.1 Sensitivity equations

To discuss the identifiability of the unknown parameters, the scaled dimensionless local sen-
sitivity functions are introduced for both fields u and v [19, 20]:

Θ k :
(
x , t

)
7−→ σ p

σu
· ∂u
∂p k

, Λ k :
(
x , t

)
7−→ σ p

σ v
· ∂v
∂p k

,

where σu and σ v are the variance of the error measuring u and v , respectively. The parameter
σ p is set to unity since we assume that prior information on the unknown parameter p k has low
accuracy and is equal for all parameters. The sensitivity functions are computed by differenti-
ating the governing equations (5a) and (5b) with respect to the unknown parameter p k . The
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sensitivity equations can be written in a succinct way as:

c ?m ·
∂Θ k

∂t ?
= Fom · ∂

∂x ?

(
k ?m ·

∂Θ k

∂x ?
+ ∂k ?m

∂p k
· ∂u
∂x ?

)
+ δ · Fom · ∂

2Λ k

∂x ? 2

+ η ·
(
c ?mq ·

∂Λ k

∂t ?
+

∂c ?mq
∂p k

· ∂Λ k

∂t ?

)
− ∂c ?m

∂p k
· ∂u
∂t ?

,

c ?q ·
∂Λ k

∂t ?
= Fo q · ∂

∂x ?

(
k ?q ·

∂Λ k

∂x ?
+

∂k ?q
∂p k

· ∂v
∂x ?

)
+ γ · Fo q ·

(
∂r ?

∂p k
· ∂

∂x ?

(
k ?m ·

∂u

∂x ?

)

+ r ? · ∂

∂x ?

(
k ?m ·

∂Θ k

∂x ?
+ ∂k ?m

∂p k
· ∂u
∂x ?

))
−

∂c ?q
∂p k

· ∂v
∂t ?

.

The boundary conditions of the sensitivity equations are obtained using a similar approach:

k ?m ·
∂Θ k

∂x ?
+ δ · ∂Λ k

∂x ?
= ∂

∂p k

( BiL

LeL

)
·
(
u − uL∞

)
+ BiL

LeL
·Θ k −

∂k ?m
∂p k

· ∂u
∂x ?

, x ? = 0

k ?m ·
∂Θ k

∂x ?
+ δ · ∂Λ k

∂x ?
= − ∂

∂p k

( BiR

LeR

)
·
(
u − uR∞

)
− BiR

LeR
·Θ k −

∂k ?m
∂p k

· ∂u
∂x ?

, x ? = 1

and

k ?q ·
∂Λ k

∂x ?
+ r ? · γ · k ?m ·

∂Θ k

∂x ?
= ∂BiL

∂p k
·
(
v − v L∞

)
+ BiL · Λ k + γ · ∂

∂p k

(
r ? · BiL

LeL

)
·
(
u − uL∞

)

+ r ? · γ · BiL

LeL
·Θ k −

∂k ?q
∂p k

· ∂v
∂x ?

− γ · ∂

∂p k

(
r ? · k ?m

)
· ∂u
∂x ?

, x ? = 0 ,

k ?q ·
∂Λ k

∂x ?
+ r ? · γ · k ?m ·

∂Θ k

∂x ?
= − ∂BiR

∂p k
·
(
v − vR∞

)
− BiR · Λ k − γ · ∂

∂p k

(
r ? · BiR

LeR

)
·
(
u − uR∞

)

− r ? · γ · BiR

LeR
·Θ k −

∂k ?q
∂p k

· ∂v
∂x ?

− γ · ∂

∂p k

(
r ? · k ?m

)
· ∂u
∂x ?

, x ? = 1 .

The sensitivity functions qualify the sensitivity of the field according to changes in the param-
eter p k . Thus, a small magnitude of the sensitivity function signifies that large changes in p k
induce small changes in the field. Moreover, an optimal evaluation of the unknown parameters
is obtained when the sensitivity functions are linearly independent with large magnitudes for all
parameters. These information are gathered in the scaled Fisher information matrix [21–23]:

F u def:=
[
F u
i j

]
, F v def:=

[
F v
i j

]
, F

def:=
[
F i j

]
,

(
i , j

)
∈
{

1 , . . . , N p
}
,

where each element of the matrices is computed by:

F u
i j

def:=
Nm∑
q = 1

1
t f
·
∫ t f

0
Θ ?
i

(
x q , t

)
·Θ ?

j

(
x k , t

)
dt ,

F v
i j

def:=
Nm∑
q = 1

1
t f
·
∫ t f

0
Λ ?
i

(
x q , t

)
· Λ ?

j

(
x k , t

)
dt ,

F i j
def:= F u

i j + F v
i j ,

where Nm is the number of observations obtained during the experiments. Moreover, the quality
of the experimental design to retrieve the unknown parameters with accuracy is analyzed through
the D-optimum criteria:

Ψu def:= detF u , Ψ v def:= detF v , Ψ def:= detF .
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To ensure the maximal accuracy in the estimation of the unknown parameters, it is expected to
maximize the quality index Ψ relatively to the measurement plan. Last, an important result is
given in [21] using the Cramer–Rao inequality under the assumption stated. An error estimator
of the retrieved parameter can be computed according to:

ε k
def:=

√(
F −1 )

k k
.

High values of ε k might be due to important error during the parameter estimation process.

4.2 Solving the parameter estimation problem

The inverse problem aims at determining the estimated parameter p ◦ verifying:

p ◦
def:= arg min

Ω p

J , (11)

where J is the so-called cost function defined by the least square estimator:

J
(
u , u obs , v , v obs

) def:= wu ·
∣∣∣∣∣∣∣∣ u − u obs

u obs

∣∣∣∣∣∣∣∣
2

+ w v ·
∣∣∣∣∣∣∣∣ v − v obs

v obs

∣∣∣∣∣∣∣∣
2
, (12)

where
∣∣∣∣∣∣ • ∣∣∣∣∣∣

2
is the L 2 error:

∣∣∣∣∣∣ • ∣∣∣∣∣∣
2

: y 7−→
∫ t f

0

(
y
(
t
) )2

dt .

The parameters wu and w v are weights defined as the variance of the vapor pressure and
temperature measurements, respectively. There are essential to scale the cost function J to
avoid advantaging one measurement compared to the other [24]. The experimental observations
are denoted by u obs and v obs . It also important to mention that the domain of the observations
and the solutions of the direct problem verifies dom u obs ≡ dom u and dom v obs ≡ dom v .

To solve the parameter estimation problem, an robust technique is used based on the Single-
Objective Hybrid Optimizer (SOHO) [25, 26]. It is composed on three individual algorithms,
namely the NSGA-III [27], NSDE [28] and MOEA-DD [29]. This combination enables to increase
the robustness of the optimization algorithms for a large set of problems. The hybrid optimizer is
initialized using one of the three previously mentioned algorithms. The algorithm runs until no
longer decreasing in the residual is observed. Then, an alternative algorithm is chosen randomly
among the remaining two. By this random selection, the process is made as stochastic to search
the optimum parameters and to avoid user bias.

5 Description of the experimental facility

5.1 Set-up

The experimental facility, entirely described in [30], is used to generate the experimental
observations. The set-up is an enclosure with an interior volume measuring 0.8× 0.88× 0.88 =
0.62m 3, built with 6-cm-thick highly hygroscopic walls composed of CLT panels. A picture of
the set-up is shown in Figure 3(a) and one of a slice of CLT panel in Figure 3(b). The latter
clearly highlights the three layers of the material. Each layer has a thickness of 2 cm . The
cube is placed in a climatic chamber to control the outdoor temperature and relative humidity.
The indoor temperature of the enclosure is controlled using four heating resistances connected
to a controller. An ultrasonic humidifier, placed outside the facility, injecting droplets of water
trough a flexible hose thermally insulated with a silicone rubber sheathing enables to control
the relative humidity level.
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Figure 2. Illustration of the experimental set-up with the sensor locations.

In terms of sensors, two walls are monitored as illustrated in Figure 2(a). A thermocouples
(TC) is set on each inside and outside surfaces of the wall. As illustrated in Figure 2(b), three
sensors are set inside the wall n ◦1 at the position x 1 , x 2 and x 3 , respectively. For the wall
n ◦2 , only one sensor is settled at the position x 2 . The exact position is given in Table 1. The
position uncertainty is σx = 0.3 cm on the x-axis. The inside conditions are monitored with
four TCs and four SHTs placed in a horizontal plane at y = 0.44 m. The outside boundary
conditions are measured with a sensor placed 0.3 m above the cube. For each sensor, the time
step between two consecutive measurements is set to 10 min.

Table 1. Sensors positions within the walls.

Wall x1 (cm) x2 (cm) x3 (cm)

n ◦1 1 3.44 4.08

n ◦2 - 3.44 -

5.2 Material properties

The material properties of the material come from [30]. The storage coefficients defined in
Eq. (2) equals cm, 0 = 31.7 kg/m 3 , cm, 1 = − 113.8 kg/m 3 , cm, 2 = 162 kg/m 3 for the mass
and c q , 0 = 630·10 3 J/(K·m 3 ) , c q , 1 = 132.5·10 3 J/(K·m 3 ) , c q , 2 = − 237.8·10 3 J/(K·m 3 ) ,
c q , 3 = 2.25.7 · 10 3 J/(K · m 3 ) for the heat. The diffusion coefficients from Eq. (3) are
km, 0 = 3 ·10−13 s and km, 1 = 4.45 ·10−12 s . The coefficient of variation of the heat diffusion
coefficient with temperature in Eq. (4) is k q , 1 = 2 · 10−4 W/(m ·K 2) . In the absence of data,
the so-called thermo-diffusion coefficient is set to zero kmq = 0 kg/(m · s · K) . The a priori
value of the unknown parameters hLq , hLm , hRq , hRm , k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3 are reported in
Table 3.

5.3 Experimental observations

Before applying the forcing conditions to generate the experimental observations, the cube is
set into an ambiance with constant temperature T = 20.5 ◦C and vapor pressure P v = 1100 Pa
for 30 days. The purpose is to ensure a steady state regime inside the walls before the carrying the
experiments. Then, to generate the experimental observations used in the parameter estimation
problem, the outside conditions are maintained constant around 20.5 ◦C and 1100 Pa . For the
inside condition, an increase of temperature is imposed maintaining the relative humidity as
constant (no source or sink). As a consequence, it leads to an increase of vapor pressure.
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(a) (b)

Figure 3. Picture of the experimental set-up with the cube in the experimental chamber (a) and
the CLT panel used (b).

The total uncertainty on the observations are evaluated through the propagation of the
uncertainties [31]. For the temperature, the total uncertainty is computed according to:

σT =
√
σ 2
m,T + σ 2

x , T + σ 2
t , T , (13)

where σm,T = 0.1 ◦C is the measurement sensor uncertainty, σx , T is the uncertainty due to
the sensor location and σ t is the one due to the response time of the sensor. The two last terms
are given by:

σx , T = ∂T

∂x
· δx , σ t , T = ∂T

∂t
· δ t , (14)

where δx = 0.3 cm for the sensors located at x ∈
{
x 1 , x 2 , x 3

}
, δx = 0.15 cm for the

sensors located at x ∈
{

0 , L
}
and δ t = 10 min are the position uncertainty and the response

time of the sensor. The term ∂T

∂x
in Eq. (14) is evaluated at the location of the sensors using the

numerical model and the a priori values of the unknown parameters. It should be noted that
this term is not considered for the sensors in the ambient air. The second term ∂T

∂t
is computed

using the measurements and a discrete second order finite difference approach.
For the uncertainty on the vapor pressure, a similar procedure is adopted:

σP =
√
σ 2
m,P + σ 2

x , P + σ 2
t , P , (15)

where the uncertainty due to the position and the response time are given by:

σx , P = ∂P v
∂x
· δx , σ t , P = ∂P v

∂t
· δ t .

The sensor measures the relative humidity and we have the following relation:

∂ P v = P sat · ∂ φ + φ · ∂P sat
∂T

· ∂ T .
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Figure 4. Variation of the boundary conditions for vapor pressure (a) and temperature (b).

Thus, the measurement uncertainty of the vapor pressure is computed using the propagation
relation:

σm,P = P sat (T ) · σm,φ + P v · r v
R v · T 2 · σm,T ,

where σm,φ = 0.018 ø is the uncertainty measurement from the sensor on relative humidity.
The boundary conditions are illustrated in Figures 4(a) and 4(b) with the uncertainty bounds.

The uncertainties are higher for the vapor pressure than for temperature measurements. The
uncertainty of the measurements are shown in Figures 5(a) and 5(b) for the sensor located at
x = x 3 . The contribution of each term in Eqs. (13) and (15) is highlighted. For the vapor
pressure, the measurement uncertainty scales with O( 65 ) Pa . Due to the sensor position, the
uncertainty increases by O( 5 ) Pa . It can be remarked that the time response of the sensor
has almost no influence on the uncertainty propagation. For the temperature, the measurement
uncertainty is 0.1 ◦C . With the sensor position, it increases to O( 0.3 ) ◦C . The time response
of the sensor has more influence, particularly at the beginning of the design where the variations
are the most important. At t = 1.5 h, additional 0.2 ◦C are due to the time response in the
total uncertainty.

The measured temperature and vapor pressure at t = 0 are illustrated in Figure 6 for the
wall n ◦1 . It can be assumed that the gradient of both fields is established. Thus, first order
polynomial of x ∈

[
0 , L

]
are fitted for each field:

T 0 (x ) = −6.825 · x + 20.75
[ ◦C ] , P 0

v (x ) = −502.7 · x + 1087
[
Pa
]
.

Similarly, for the wall n ◦2 , the fitted first order polynomial of x is

T 0 (x ) = 4.23 · x + 19.93
[ ◦C ] , P 0

v (x ) = −690.7 · x + 1066
[
Pa
]
.

These interpolations are used as initial condition in the numerical model.

6 Results of the parameter estimation problem

6.1 Theoretical identifiability

The issue is first to demonstrate the theoretical identifiability of the unknown parameters.
According to [21, 32], a parameter P is Structurally Globally Identifiable (SGI) in the model y
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Figure 5. Variation of observations uncertainties for vapor pressure (a) and temperature (b) at
x = x 3 .
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Figure 6. Profiles of measured and interpolated vapor pressure (a) and temperature (b) at
t = 0 for the wall n ◦1 .
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if the following condition is verified:

∀ (x , t ) , y
(
P
)

= y
(
P ′
)

=⇒ P = P ′ .

This property is now evaluated for our model and the seven unknown coefficients BiL , LeL ,
BiR , LeR , k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3 . For the sake of clarity and without loss of generality,
the subscript ? is removed only in this subsection.

6.1.1 Parameters k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3

The demonstration is first carried for the parameter k q , 0 , 1 . A set of observable fields u(x =
x 1 , t ) and v(x = x 1 , t ) is obtained with the parameter k q , 0 , 1 . A second one is hold
u ′(x = x 1 , t ) and v ′(x = x 1 , t ) according to the parameter k ′q , 0 , 1 . The point of
observation x 1 is located in the first layer, so by definition:

k q(x = x 1 , u ) = k q , 0 , 1 + k q , 1 · u .

Thus, using the governing equation (5b) at the point of observation x = x 1 , one can write for
the first set of observable:

c q (u , v ) · ∂v
∂t

= Fo q · ∂
∂x

( (
k q , 0 , 1 + k q , 1 · u

)
· ∂v
∂x

)
(16)

+ γ · Fo q · r ( v ) · ∂
∂x

(
km (u , v ) · ∂u

∂x

)
and for the second set:

c q (u ′ , v ′ ) · ∂v
′

∂t
= Fo q · ∂

∂x

( (
k ′q , 0 , 1 + k q , 1 · u ′

)
· ∂v

′

∂x

)
(17)

+ γ · Fo q · r ( v ′ ) · ∂
∂x

(
km (u ′ , v ′ ) · ∂u

′

∂x

)
.

It is assumed that u(x , t ) ≡ u ′(x , t ) and v(x , t ) ≡ v ′(x , t ) . We also have ∂u
∂x
≡ ∂u ′

∂x
and

∂v

∂x
≡ ∂v ′

∂x
, ∂

2u

∂x 2 ≡
∂ 2u ′

∂x 2 and ∂ 2v

∂x 2 ≡
∂ 2v ′

∂x 2 and ∂u

∂t
≡ ∂u ′

∂t
and ∂v

∂t
≡ ∂v ′

∂t
. By carrying the

operation Eq. (16) minus Eq. (17) and after some simplification, one obtains:

(
k q , 0 , 1 − k ′q , 0 , 1

)
· ∂

2v

∂x 2 = 0 .

It follows that:

k q , 0 , 1 = k ′q , 0 , 1 (18)

and the parameter k q , 0 , 1 is SGI. A very similar demonstration can be carried out to prove that
the parameters k q , 0 , 2 and k q , 0 , 3 are SGI. It requires using the observable fields at x = x 2 for
k q , 0 , 2 and x = x 3 for k q , 0 , 2 , knowing that x 2 and x 3 are located in the second and third
layers, respectively.

6.1.2 Parameters BiL , LeL , BiR and LeR

The theoretical identifiability is now demonstrated for the parameters BiL , LeL , BiR and
LeR . A first set of observable fields u(x = 0 , t ) and v(x = 0 , t ) , obtained with the set of pa-
rameters

{
BiL , LeL , BiR , LeR , k q , 0 , 1

}
is considered. A second one is also hold with u ′(x =
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0 , t ) and v ′(x = 0 , t ) related to the parameters
{

BiL ′ , LeL ′ , BiR ′ , LeR ′ , k ′q , 0 , 1
}
. Using

the boundary condition at x = 0 , defined in equation (6a), one can write:

km ·
∂u

∂x
+ δ · ∂v

∂x
− BiL

LeL
·
(
u − uL∞

)
= km ·

∂u ′

∂x
+ δ · ∂v

′

∂x
− BiL ′

LeL ′
·
(
u ′ − uL∞

)
.

(19)

Similarly, with equation (7a), it yields:

(
k q , 0 , 1 + k q , 1 · u

)
· ∂v
∂x

+ r · γ · km ·
∂u

∂x
− BiL ·

(
v − v L∞

)
+ r · γ · BiL

LeL
·
(
u − uL∞

)
(20)

=
(
k ′q , 0 , 1 + k q , 1 · u ′

)
· ∂v

′

∂x
+ r · γ · km ·

∂u ′

∂x
− BiL ′ ·

(
v ′ − v L∞

)
+ r · γ · BiL ′

LeL ′
·
(
u ′ − uL∞

)
.

Now, it is assumed that u(x , t ) ≡ u ′(x , t ) and v(x , t ) ≡ v ′(x , t ) . Thus, we also have
∂u

∂x
≡ ∂u ′

∂x
and ∂v

∂x
≡ ∂v ′

∂x
. Using this assumption and the results from Eq. (18), showing that

parameter k q , 0 , 1 is SGI, equations (19) and (20) can be rewritten as:(
BiL

LeL
− BiL ′

LeL ′

)
·
(
u ′ − uL∞

)
= 0 , (21a)

(
BiL − BiL ′

)
·
(
v ′ − uL∞

)
+ r · γ ·

(
BiL

LeL
− BiL ′

LeL ′

)
·
(
u ′ − uL∞

)
= 0 (21b)

By performing Eq. (21a) minus Eq. (21b), we have:

−
(

BiL − BiL ′
)
·
(
v ′ − v L∞

)
= 0 ,

Since v ′ and v L∞ are independent, it produces:

BiL = BiL ′

and the parameter BiL is SGI. Using this result and equation. (21a), we obtain:

r · γ · BiL ·
(

1
LeL

− 1
LeL ′

)
·
(
u ′ − uL∞

)
= 0 .

Again, since u ′ and uL∞ are independent it returns that:

LeL = LeL ′

and the parameter LeL is SGI. A very similar demonstration can be performed using the bound-
ary conditions (6b) and (7b) and the observable fields u(x = 1 , t ) and v(x = 1 , t ) to prove
that the parameters

{
BiR , LeR

}
are SGI.

It is important to remark that the seven parameters BiL , LeL , BiR , LeR , k q , 0 , 1 , k q , 0 , 2
and k q , 0 , 3 are theoretically identifiable because the experimental design enables to obtain
two observable fields at the boundaries x =

{
0 , 1

}
and one measurement in each material

x =
{
x 1 , x 2 , x 3

}
. Indeed, the demonstration for k q , 0 , 1 is realized using the governing

equation (5b) at the point of observation x 1 . The proof of identifiability is obtained because x 1
is located in the material 1 , which thermal property k q , 0 , 1 is unknown. In addition, the proof
for the parameters BiL , LeL , BiR and LeR is obtained using the result of identifiability of the
parameter k q , 0 , 1 from Eq. (18). Without these conditions, the theoretical identifiability could
not be demonstrated.
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6.2 Practical identifiability

The computation of the sensitivity equation is realised using the numerical model described
in Section 3 and the discretisation parameters ∆t = 36 s and ∆x = 6 · 10−2 cm . The a priori
values of the unknown parameters, reported in Table 3 are used.

The time evolution of the sensitivity coefficients of the four parameters BiL , LeL , BiR and
LeR are shown in Figure 7. Several results can be observed. First, for both fields u and v , the
magnitude of the sensitivity functions are higher for the right Biot numbers BiR than for the
left one BiL , as noticed in Figures 7(a)–7(d). It is consistent since the forcing conditions occurs
at the right boundary according to the experimental design shown in Figures 4(a) and 4(b).

Secondly, for BiL and LeL , the magnitudes of the sensitivity functions are maximal at x = 0 .
The model is the more sensible to these parameters at the boundary x = 0 . It is corroborated
by the fact that these parameters influence the model through the boundary condition defined
in Eqs. (7a) and (6a). Similar remarks can be done for the parameters BiR and LeR .

By comparing qualitatively the sensitivity functions for Biot and Lewis parameters, it can be
noted that the variations are very poor for the LeL and LeR . It indicated that the estimation
of these parameters may be less accurate.

The variation of the criteria Ψ as a function of the number of measurement are shown in
Figure 8(a). As expected, it increases with the number of measurement considered. The optimal
design is obtained when using the five measurements for the parameter estimation problem. In
Figure 8(b), the variation of the criteria Ψ according to the time length of the experimental
design is given. The criteria reaches it maximal around t = 5 h . This peak corresponds to
the increase of temperature and vapor pressure in the material. After t = 20 h , the criteria
Ψ scales with 0 . It coincides with the reach of the quasi-steady state in the process as noted in
Figure 9. These results reveals that it is not necessary to increase the duration of the experiment
to ensure the maximum accuracy when estimating the unknown parameters.

The correlation between the sensitivity functions are given in Table 2. It is computed from the
Jacobian matrix. The correlation between the couple of unknown parameters

(
BiL , k ?q , 0 , 1

)
,(

BiR , k ?q , 0 , 2
)
,
(

BiL , LeL
)
and

(
BiR , LeR

)
is reduced by using multiple observations at dif-

ferent points in the material. One may conclude that all the unknown parameters are identifiable
from a practical point of view.

Table 2. Correlation between the sensitivity coefficients.

for u for v

BiL LeL BiR LeR k ?q , 0 , 1 k ?q , 0 , 2 k ?q , 0 , 3 BiL LeL BiR LeR k ?q , 0 , 1 k ?q , 0 , 2 k ?q , 0 , 3

BiL 1 −0.3 −0.03 0.7 0.5 −0.4 −0.5 1 −0.3 −0.8 −0.5 −0.4 −0.7 −0.4

LeL 1 −0.7 0.5 0.6 0.5 −0.4 1 −0.1 −0.2 −0.1 0.2 0.3

BiR 1 −0.2 −0.7 −0.8 0.6 1 −0.4 −0.5 −0.8 −0.4

LeR 1 −0.2 0.3 0.4 1 0.3 0.4 −0.02

k ?q , 0 , 1 1 0.5 −0.8 1 0.5 −0.4

k ?q , 0 , 2 1 −0.3 1 0.08

k ?q , 0 , 3 1 1

6.3 Parameter estimation

The parameter estimation problem is solved using the optimization procedure described in
Section 4.2 and the direct numerical model detailed in Section 3. The discretisation parameters
are set to ∆t = 36 s and ∆x = 6 · 10−2 cm . In this way, one direct computation of the
numerical model requires 12 s , which corresponds to a ratio of R cpu = 0.13 s/h of physical
simulation. The evolution of the cost function and its gradient according to the iterations is given
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Figure 7. Time evolution of the sensitivity coefficients of the parameters BiL (a,c), BiR (b,d),
LeL (e,g) and LeR (f,h) at the measurements points x ? ∈

{
0 , x ?1 , x ?2 , x ?3 , 1

}
for vapor

pressure (a,b,e,f) and temperature (c,d,g,h).
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Figure 8. Variation of the criteria Ψ according to the number of measurement (a) and to the
time length of the experimental design (b).

in Figures 11(a) and 11(b). Around 100 iterations are required for the algorithm to estimate
the parameters.

The estimated parameter after optimization are reported in Table 3. The value of the param-
eter is in accordance with the physical expectations. As mentioned in [2, 33], the heat and mass
surface coefficients scales with this order of magnitude. The heat surface coefficient is higher
for the left boundary. Indeed the left boundary is in contact with the climatic chamber. The
convective heat transfer are probably higher in the climatic chamber than inside the cube. Using
the estimated parameter k q , 0 , i , it corresponds to a thermal conductivity of 0.14 W/(m · K) ,
0.12 W/(m ·K) and 0.09 W/(m ·K) at 20 ◦C for the layers 1 , 2 and 3 , respectively. This values
are consistent with the thermal conductivity of spruce measured and reported in [34, 35].

The error estimator of the parameters at the left boundary hLq and hLm is particularly high.
It is due to a low magnitudes of the sensitivity coefficients of the Biot numbers at this boundary
as noticed when comparing Figures 7(a)–7(d). For the other parameters, the uncertainty is very
satisfactory, being at least one order lower than the parameter value.

Figure 9 shows a comparison between the experimental observations and the numerical pre-
dictions obtained with the seven estimated parameters BiL , LeL , BiR , LeR , k ?q , 0 , 1 , k ?q , 0 , 2
and k ?q , 0 , 3 . A satisfactory agreement is remarked for all points of observations. The predictions
remains in the uncertainty band of the measurements. Some little discrepancies are noted for
the temperature field at x = x 3 . The residual between the numerical computations and the
experiments are shown in Figures 10(a) and 10(b) for vapor pressure and temperature, respec-
tively. The residuals are signed particularly at the beginning of the experiments t ∈

[
0 , 10

]
h ,

indicating that some physical phenomena may be omitted in the description of the mathe-
matical model. Despite these observations, the residuals remain under the uncertainty of the
measurement as deduced from Figure 13 showing the probability density function of the relative
residuals. For the sake of compactness, the probability density function are only presented for
x = x 2 and x = L .

7 Evaluating the reliability of the mathematical model
To evaluate the reliability of the mathematical model with the estimated parameters, the

numerical predictions are compared with other experimental observations. The latter is obtained
in the wall n ◦2 of the cube shown in Figure 2(a). The numerical model is used to compute the
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Figure 9. Comparison between the numerical predictions with the estimated parameters BiL ,
LeL , BiR , LeR , k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3 and the experimental observations for vapor
pressure (a,c,e) and temperature (b,d,f).
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Figure 10. Residual between the numerical predictions and the experimental observations for
vapor pressure (a) and temperature (b).
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Figure 11. Convergence of the optimisation process: evolution of the cost function (a) and its
variation (b) with the number of iterations.
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Table 3. Values of the unknown parameters.

A priori value Estimated Ω p =
{

Bi , Le , k q , 0 , i
}

Estimated Ω p =
{

Bi , Le
}

Parameter p apr
k p ◦

k Error estimator ε k p ◦
k Error estimator ε k

hLq
[
W/(m 2 ·K)

]
10 7.76 ± 0.3 8.21 ± 0.1

hLm
[
m 2/(K · s)

]
7.6 · 10 −6 2.8 · 10 −6 ± 4 · 10 −5 2.6 · 10 −8 ± 9 · 10 −9

hRq
[
W/(m 2 ·K)

]
5 6.4 ± 2 · 10 −3 7.2 ± 7 · 10 −3

hRm
[
m 2/(K · s)

]
3.7 · 10 −6 1.1 · 10 −9 ± 8 · 10 −10 2.7 · 10 −6 ± 2 · 10 −7

k q , 0 , 1
[
W/(m ·K)

]
6.3 · 10 −2 8.2 · 10 −2 ± 2 · 10 −3 - -

k q , 0 , 2
[
W/(m ·K)

]
6.3 · 10 −2 6.9 · 10 −2 ± 1 · 10 −3 - -

k q , 0 , 3
[
W/(m ·K)

]
6.3 · 10 −2 3.1 · 10 −2 ± 1 · 10 −4 - -

solution with the discretisation parameters set to ∆t = 36 s and ∆x = 6 · 10−2 cm . The
material properties are detailed in Section 5.2. For the unknown parameters hLq , hLm , hRq , hRm
and k q , 0 , i , i =

{
1 , 2 , 3

}
, the estimated values reported in Table 3 are used. The boundary

and initial conditions are given in Section 5.3.
Figure 12 compares the numerical predictions with the experimental observations. A very

satisfactory agreement is observed between both results. A small discrepancy is observed for the
temperature at x = 0 . As mentioned before, the Biot and Lewis numbers at this boundary
have been determined with low confidence. Thus, additional experimental observations should
be generated using, for instance, forcing conditions at the boundary x = 0 , to estimate with
better accuracy these two parameters.

To discuss further the robustness of the mathematical model, two hypothesis are now dis-
cussed. First, the importance of the coupling term cmq ·

∂T

∂t
in Eq. (1a) is evaluated. For this,

using the estimated values of the seven unknown parameters reported in Table 3, an additional
computation of the direct model is performed setting to zero the coupling parameter η = 0 .
The impact of the coupling term is observed in Figures 13(a) and 13(b). As expected, when
vanishing, the prediction of the temperature almost do not change since the coupling term af-
fects the mass transport equation (1a). However, the relative error on the prediction scales with
− 20% for the vapor pressure at x = x 2 . Thus, omitting this term in the mass transport
equation leads to an important underestimation of the vapor diffusion process in the material.

The second hypothesis analyzed concerns the assumption of a different thermal conductivity
for each layer of the CLT panels. Figures 14(a) and 14(b) compares the numerical predictions
with the experimental measurements in the wall n ◦1 at the quasi-steady state regime t =
96 h . For vapor pressure, the hypothesis of considering a constant in space vapor diffusion
is acceptable since the slope of vapor pressure do not vary much according to space. On the
contrary, for temperature, the experimental measurement seems to highlight three different
slopes for each layer. Using the estimated parameters, the direct model predicts three distinct
profiles of temperature in each layer. Additional computations are carried out considering a
direct model with a constant in space thermal conductivity equal to the a priori value k q , 0 , i =
6.3 · 10−2 W/(m · K) , i = { 1 , 2 , 3 } . The unknown Biot and Lewis numbers are then
estimated using the same optimization procedure. Results are reported in Table 3 in the column
“Estimated Ω p =

{
Bi , Le

}
”. As shown in Figures 13(c) and 13(d), the prediction of the fields

at the surface x = L are not changed compared to the previous optimization results. However,
discrepancies in the predictions appear at x = x 2 as shown in Figures 13(a) and 13(b). This
discrepancies can also be remarked in Figure 14(b) for the measurement inside the material. In
addition, Figure 11(a) reports that the cost function is higher for the case searching only for
the Biot and Lewis numbers. Thus, one may conclude on the importance of modeling the heat
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Figure 12. Comparison between the numerical prediction with the estimated parameters BiL ,
LeL , BiR , LeR , k q , 0 , 1 , k q , 0 , 2 and k q , 0 , 3 and experimental observations from another wall
for vapor pressure (a,c,e) and temperature (b,d,f).

transfer process by considering a space dependent thermal conductivity according to each layer.
Without this assumption, the prediction of the model are reliable only at the boundaries.

8 Conclusion
The reliability of a numerical model is a crucial feature to predict the physical phenomena

with accuracy. Several works in the literature proposed an evaluation of the robustness of
models for heat and mass transfer in porous material by comparing the numerical predictions
to experimental observations. Nevertheless, two major sources of error are identified. First,
the heat and mass surface transfer coefficients, which are generally assumed using empirical
correlations. The second source raises from the material properties which are determined using
the standard methods with experimental data obtained in steady-state regime.

To faces this challenge, the article proposed to evaluate the reliability of a model for an
hygroscopic material, reducing these sources of uncertainty. After presenting the mathemati-
cal model of heat and mass transfer in Section 2, Section 3 detailed the numerical model to
compute the solution of the governing equations. It is based on an explicit unconditionally
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Figure 13. Probability density function of the relative residual between the experimental
observations and the numerical predictions for vapor pressure (a,c) and temperature (b,d). The
grey shadow represents the band of measurement uncertainty.
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Figure 14. Comparison between the numerical predictions and the experimental observations
for vapor pressure (a) and temperature (b) at the quasi-steady state regime t = 96 h .
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stable numerical scheme. It permits to avoid costly subiterations at each time iterations to
treat the non-linearities of the problem. Furthermore, the stability condition of the standard
Euler explicit approach can be relaxed to reduce the computational efforts. This feature is
particularly important in the framework of parameter estimation problem. The experimental
facility is composed of an enclosure made with spruce CLT panels. The inside and outside air
volumes temperature and vapor pressure can be controlled. Two walls of the small cube are
monitored using sensors. The experimental observations are generated by forcing an increase of
temperature in the inside air volumes. It induces a diffusion process of heat and mass from the
inner to the outer parts of the walls.

In Section 6, a first set composed of five experimental observations is used to estimate seven
unknown parameters in the model, namely the heat and mass surface transfer coefficients and the
thermal conductivity of each of the three layers. The theoretical identifiability of the unknown
parameters is demonstrated. It appears that the seven parameters are identifiable only because
the experimental design provides five measurements, located at the boundaries and in each layer
of the wall. Then, the practical identifiability is verified by computing the sensitivity coefficients
of each parameter. Last, the results of the parameter estimation problem are presented. The
physical values of the parameters are in accordance with several references from the literature.
The use of hybrid optimizer ensures an estimation in less than 60 iterations.

Last, the reliability of the model is evaluated by comparing the numerical prediction to a
second set of experimental observations obtained in another wall for the same forcing conditions.
A very satisfactory prediction is observed highlighting the good reliability of the model. The
importance of the coupling between heat and mass transfer is discussed. Furthermore, the
importance of considering a space-dependent thermal conductivity is shown. It indicates that
the standard methods to determine this material property is questionable for such hygroscopic
material.

In this work, the experimental observations are generated through an increase in tempera-
ture. The driven process is heat transfer. Further works should focus on generating additional
experimental observations by forcing the mass transfer through the material. It will require
to improve the mathematical model by integrating the hysteresis effects on the sorption curve,
which are particularly important for such materials.
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