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Introduction

Auditory cognition is a major component of Artificial Intelligence (AI), and is often treated as a 'secondary' perception system behind vision in the study of cognitive science. In fact, they should be complementary to each other and auditory cognition is an important modality for perceiving the environment. For example, when we observe an event in the environment, if two objects are in the same line, one will partially or totally occlude the other from the viewer, but the acoustic will not be occluded. In view of this, the auditory cognition could be implemented in many fields such as surveillance systems [START_REF] Lv | Double mode surveillance system based on remote audio/video signals acquisition[END_REF], fire rescue [START_REF] Baum | Sound Identification for Fire-Fighting Mobile Robots[END_REF], and health monitoring system [START_REF] Bhuiyan | Toward identifying crack-length-related resonances in acoustic emission waveforms for structural health monitoring applications[END_REF]. However, the problems of events segmentation and localization of events are more complex than the task of segmenting and localizing objects in a visual scene since sounds are rarely distinguishable by the mere presence or absence of discrete features. [START_REF] Lotto | Psychology of auditory perception: Psychology of auditory perception[END_REF] further pointed out that intelligent auditory categorization is one of the perceptual-cognitive processing that must occur. Furthermore, [START_REF] Lotto | Psychology of auditory perception: Psychology of auditory perception[END_REF]) also pointed out that different sound events are typically distinguished by their values in multiple acoustic dimensions. The categorization of sound events appears more difficult than visual target recognition.

Therefore, endowing AI with auditory cognitive ability is receiving growing attentions from researchers.

Environmental sound classification (ESC) is a staple component of environment auditory cognition. Although appropriate frameworks for automatic speech recognition (ASR) and music information retrieval (MIR) have been well established by a growing number of researchers, such as [START_REF] Juang | Automatic Speech Recognition -A Brief History of the Technology Development[END_REF][START_REF] Klapuri | Signal Processing Methods for Music Transcription[END_REF][START_REF] Zhang | Deep Convolutional Neural Network with Mixup for Environmental Sound Classification[END_REF]Yakar, Litman, Sprechmann, Bronstein, & Sapiro, 2013), etc., the ESC research is still at the early stage. [START_REF] Piczak | ESC: Dataset for Environmental Sound Classification[END_REF] has pointed out that environmental sounds are very diverse group of everyday audio events on account of considerably non-stationary characteristics that cannot be described as only speech or music. Therefore, the algorithms originally established for ASR and MIR may not be sufficient for ESC. Furthermore, the environment sounds do not have meaningful patterns or sub-structures, such as rhythm for music and phonemes for speech.

Meanwhile, it is nearly impossible to identify sound mixtures from a waveform.

Hence, the main idea of ESC is first applying feature extractions to map the input sound waveforms into feature space, and then using the eigenvectors to train a classifier for categorizing of environmental sounds. The frequency domain, spectrograms (time-frequency domain representations) and cepstral domain have been used in ESC for years. However, these features generally fail to precisely describe the content of environment sounds, since they cannot comprehensively represent the information in environment mixtures individually. Resulting in the existing ESC methods fail to reach the same level as visual events categorization algorithms. Hence, researchers have strived to maximize the information content with combination schemes of the three domains features in the past decades.

In addition to the appropriate features, a satisfied classifier is an essential component for ESC as well. Recent research shows that deep learning models are more effective than ordinary classifiers, such as the Gaussian Mixture Model (GMM), Hidden Markov Model (HMM) and Support Vector Machines (SVM) [START_REF] Dai | Acoustic Scene Recognition with Deep Learning[END_REF].

Convolutional neural networks (CNNs) is one of the outstanding structures of deep neural networks. It is first proposed for visual detection and classification, which achieve extraordinary performance, and it has been also applied in auditory recognition in recent years (Piczak, 2015a;Dai, Dai, Qu, Li, & Das, 2017;[START_REF] Hershey | CNN Architectures for Large-Scale Audio Classification[END_REF]. Although CNN has a strong ability to extract features directly from raw waveforms [START_REF] Dai | Very deep convolutional neural networks for raw waveforms[END_REF][START_REF] Qu | Understanding Audio Pattern Using Convolutional Neural Network From Raw Waveforms[END_REF], experimental results show that these models could only achieve a competitive performance with deep models that use features as input. The accuracy still cannot meet the requirements of intelligent auditory perception. The recently published works which achieve the state-of-art classification accuracy were both using the hand-craft features to train the CNN (S. [START_REF] Li | An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition[END_REF][START_REF] Zhu | Learning Environmental Sounds with Multi-scale Convolutional Neural Network[END_REF]. Meanwhile, it is reported in [START_REF] Chachada | Environmental sound recognition: A survey[END_REF] The remainder of the paper is structured as follows: in Section 2 we introduce the related works published in recent years. In Section 3 we describe feature aggregate schemes and the CNN architecture proposed in this paper. In Section 4 we show experimental results with discussion of the details in each experiment. In Section 5 we briefly conclude our work.

Related Works

Acoustic features developed for speech and music analysis are based on psychoacoustic properties of auditory signals such as pitch, loudness and timbre which are easy to be computed and applied generally along with other features. [START_REF] Chachada | Environmental sound recognition: A survey[END_REF] recognition. This framework outperforms on the GTZAN dataset. [START_REF] Zhao | CASA-based robust speaker identification[END_REF] presented a detailed demonstration and analysis of the advantages and disadvantages of MFCC and GFCC, respectively. [START_REF] Burgos | Gammatone and MFCC Features in Speaker Recognition[END_REF] combined MFCC and GFCC, and then, principal component analysis (PCA) was performed to reduce the feature dimensions. The aggregated features performed better than single features in the ASR system.

Even though the content of environmental sounds is more diverse than speech and music signals, the features established for ASR and MIR are still widely used in ESC due to their considerable performance. Several single feature-based or hybrid feature-based approaches can be found in literatures. (Piczak, 2015a) first proposed a CNN with Log-Mel spectrogram for ESC. The spectrograms are split into segments of 41 frames and combined with their deltas as a 2-channel input of the CNN. Two similar CNN-based frameworks use Log-Mel spectrogram can be found in [START_REF] Salamon | Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification[END_REF] and [START_REF] Takahashi | Deep Convolutional Neural Networks and Data Augmentation for Acoustic Event Detection[END_REF]. (H. [START_REF] Zhang | Robust sound event recognition using convolutional neural networks[END_REF] proposed a novel spectrogram image feature (SIF) for CNN based ESC system. They firstly extracted the spectrogram from a sound signal.

Then, the spectrogram is smoothed in frequency, and the down sample and de-noised of new spectrogram are performed. At last, the time-domain energy was computed for each frame, while the maximum energy indices with the six frames around each of them were used to form the SIF. [START_REF] Boddapati | Classifying environmental sounds using image recognition networks[END_REF] extracted spectrogram, MFCC and Cross Recurrence Plot (CRP) from sound signals and aggregated them in to a single channel color image. Two CNN-based models, AlexNet and GoogleNet, were applied to verify the performance of this feature on the ESC-50 and UrbanSound8K datasets. The mixed Log-Mel and Gammatone spectrograms are used in (Z. [START_REF] Zhang | Deep Convolutional Neural Network with Mixup for Environmental Sound Classification[END_REF] with a 8-layer CNN for environment sounds classification. (S. [START_REF] Li | An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition[END_REF] proposed a stacked CNN for ESC where one uses Log-Mel spectrograms with their first order derivation as input and the second CNN uses raw waveforms. The SoftMax values of the two CNNs are then fused by a decision-level fusion method named DS evidence theory.

As can be seen from the above introduction, Chroma, Tonnetz and Spectral Contrast have been widely used for music recognition but are rarely introduced to the classification of environmental sounds. In view of the excellent performance of combination of different features in MIR and ASR, it is worthwhile to apply them in environmental sounds categorization tasks. To our best knowledge, the proposed approach to combine CST with MFCC and Log-Mel spectrogram in a CNN-based ESC system is original.

Method

In this section, we first introduce the fine-tuned CNN architecture with its parameter settings. Then, we will elaborate detailed introduction of each feature applied in our work and the aggregate schemes of each feature set. Finally, the two datasets used for evaluation these features are introduced, separately.

CNN

A CNN consists of a series layers including input layer, hidden layer and output layer. The input layer can process multidimensional data like 1D for signals and sequences, 2D for images and 3D for videos.

The function of the convolutional layer is to extract features from the input data, which contains multiple convolution kernels. All elements that consist of the convolution kernel corresponds to a weight coefficient and a bias vector, similar to a neuron of a feedforward neural network (neuron). Neurons in a convolutional layer are organized in feature maps, each neuron of a feature map is connected to a region of neighboring neurons in the previous layer. These neighboring neurons are referred to as the neuron's receptive field in the previous layer. The new feature map can be obtained by first convolving the input with a learned kernel and then applying an element-wise nonlinear activation function on the convolved results. The complete feature maps are obtained by using multiple kernels. The mathematical formula which expresses the convolution process is defined as:
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Where n is the number of input feature maps from former layer, k X is the input patch centered at location ( , ) i j , k W and k b are the weight and bias vector of th k filter. ( , ) s i j is the value of the corresponding position element of the output matrix corresponding to the convolution kernel k W .

In order to make CNN, which is a multi-layer neural network can have a better understanding of nonlinear features, the activation function has been applied in CNN.

ReLU [START_REF] Nair | Rectified linear units improve restricted boltzmann machines[END_REF] is generally used in CNN, which is defined as:

( ) max(0, ) f x x = (2)
Pooling processing aims at compressing each feature maps to realize feature selection and information filtering. For example, if the pooling stride is 2 2 × , then, every 2 2 × elements in one feature map will be turned to be one element for consisting of a new feature map as the input of next convolutional layer. Average pooling [START_REF] Wang | End-to-end text recognition with convolutional neural networks[END_REF] and max pooling [START_REF] Boureau | A theoretical analysis of feature pooling in visual recognition[END_REF] are typical pooling operations. The kernels in the 1st convolutional layer are used to detect low-level features, while the kernels in higher layers are learned to encode more abstract features. With several convolutional and pooling layers, higher-level feature representations could be extracted.

In a deep neural network, as the feature is transmitted step by step within the hidden layer, its mean and standard deviation will change, resulting in a covariate shift phenomenon which is an important reason for the vanishing gradient in neural networks [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF]. Performing batch-normalization is a feasible way to solve this problem. The strategy is to first normalize the features in the hidden layer, then use two linear parameters to amplify the normalized features as new inputs, and the neural network updates its parameters during the learning process.

After convolutional and pooling layers, one or more fully-connected layers which aim to perform high-level reasoning is used. They take all neurons in the previous layer and connect them to every single neuron of the current layer to generate global semantic information. Finally, the last layer of CNN is an output layer. For categorization tasks, softmax operator is used as an output layer.

The function of softmax has mapped the output of the network to (0,1) and the sum of these results is 1. The number of softmax output corresponding to the number of classes. The element of the softmax value is:

/ j i V V i j S e e = ∑ (3) Where i V is th i element in array V , j is the number of element in V .
Softmax element with the highest probability is picked as the prediction target.

Hence, if the number of classes is i , the prediction result of CNN can be expressed by:

1 2 max( , ,..., )
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In general, the main goal of a CNN model is to find the globally optimum parameters for a specific task, which can be achieved by minimizing an appropriate loss function defined on the task. Stochastic gradient descent [START_REF] Bottou | Large-scale machine learning with stochastic gradient descent[END_REF] and Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] are common solutions for optimizing CNN. In this paper, Adam is used as the loss function.

Based on the basic components of CNN which has been described above, a 6-layer CNN model for ESC tasks is established. As shown in Figure 2, the CNN consists of six convolutional layers and a fully connected layer with softmax. Every two layers can be treated as a convolutional block since they use the same parameters.

Their difference is the max-pooling and dropout, which are performed on the second convolutional layer in one convolutional block. The architecture and parameters of the neural network are as follows:

1. The first layer uses 32 kernels with a receptive field of 3 3 × and stride of 2 2 × and batch-normalization is applied. The activation function is Rectified Linear Units (ReLU).

2. The second layer uses the same parameters and activation function as the first layer. Then, batch-normalization is applied followed by a max-pooling layer with the pool stride of 2 2 × to reduce the dimensions of the convolutional feature maps.

3. The third layer uses 64 kernels with a receptive field of 3 3 × and stride of 2 2 × with batch-normalization. ReLU is applied as the activation function.

4. The fourth layer uses the same parameters and activation function as the third layer. Thus, we perform the batch-normalization and the 2 2 × max-pooling processing.

5. The fifth layer uses 128 kernels with a receptive field of 3 3 × and stride of 2 2 × with batch-normalization and consideration of ReLU as activation function.

6. The sixth layer uses the same parameters and activation function as the fifth layer, and the batch-normalization and 2 2 × max-pooling processing is applied on the output of this layer.

7. The seventh layer is a fully connected layer with 1024 hidden units, and the activation function is Sigmoid. The output is 10 or 50 units according to the datasets, followed by the softmax activation function.

We optimize the CNN using a variant of stochastic gradient descent, Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]. The batch size is set to 32, while all weight parameters are subjected to 2 L regularization and learning rate are set to 0.001 with momentum of 0.9. At the training and test stages, the dropout rate is set to 0.5 and 1, respectively.

We use cross-entropy as the loss function, which is generally applied for multi classification tasks. 

Feature extraction

General frequency features

1. Chroma [START_REF] Ewert | Computer Science III University of Bonn[END_REF]: Chroma features are widely used in music analyze and recognition tasks [START_REF] Bartsch | Audio thumbnailing of popular music using chroma-based representations[END_REF][START_REF] Müller | Information retrieval for music and motion[END_REF]. It is referred to as pitch class profiles and present to be very robust to variations in timbre and closely correlate to the musical aspect of harmony. Meanwhile, multiple results derived from research works related to music identification [START_REF] Serra | Chroma binary similarity and local alignment applied to cover song identification[END_REF] and audio matching [START_REF] Müller | Audio Matching via Chroma-Based Statistical Features[END_REF] indicate that chroma is a powerful mid-level feature representation in content-based audio retrieval. The details about chroma features are described as follows: assuming that the equal-tempered scale, the chromas correspond to the ( , ,..., ) T x x x x = is presented to represent the chroma feature, where 1

x correspond to chroma C , 2

x correspond to chroma # C , and so on. For feature extraction, a sound waveform is converted into a sequence of chroma features, and each sequence explains how the short-time energy of the signal is spread over the twelve chroma bands.

2. Tonal centroid features (tonnetz) [START_REF] Harte | Detecting harmonic change in musical audio[END_REF]: Tonnetz, also known as harmonic network is a representation of pitch which is first proposed by Euler [START_REF] Cohn | Introduction to neo-riemannian theory: A survey and a historical perspective[END_REF]. The tonal centroid vector n t of time frame n is the result of multiplication of the chroma vector n c and a transformation matrix T . Then, the n t divided by the 1 L norm of chroma vector to prevent numerical instability and make sure that the tonal centroid vector dimension is always six. The tonal centroid vector is given as:
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where d is the index of which of six dimension of is being evaluated and l is the chroma vector pitch class index.

3. Spectral Contrast: The Spectral Contrast feature represents the strength of spectral peaks, valleys and their differences. The same extraction method presented in (Dan-Ning [START_REF] Jiang | Music type classification by spectral contrast feature[END_REF] is applied to extract spectral contrast features. The sound waves are first segmented into frames of 200ms with overlapping of 100ms. Then, FFT is performed to acquire the spectrum.

Afterwards, the Octave-scale filters is applied to divide the frequency into sub-bands followed by estimating the strength of spectral peaks, valleys and their differences. At last, after the estimation results are translated into the Log domain, Karhunen-loeve transform is used to map the raw spectral contrast feature to an orthogonal space and eliminate the relativity among different dimensions. 

f mel f = + ( 6 
)
where f is the frequency. d). Taking a log calculation on the mel-spectrogram, e). Applying DCT to the mel log power spectrogram to generate the cepstral features:

1 1 ( ) 2 2 ( ) cos M m m m c m MFCC X i M M π =   -   =       ∑ (7)
where m X is the log energy in th m log mel spectrogram, c is the index of the cepstral coefficient. 

Mel and

Gammatone filter based features

1. GFCC: The basilar membrane within the cochlea in the inner ear has high-frequency selectivity. The frequencies are resolved tonotopically, that is, different points on the basilar membrane resonate at different frequencies.

Meanwhile, the frequency response at any point on the membrane is asymmetric Gammatone filterbank is the computational model of simulating such response and proved to be suitable to the experimentally determined response [START_REF] Patterson | An efficient auditory filterbank based on the gammatone function[END_REF]. There are two major differences between GFCC and MFCC. MFCC is based on the mel scale whereas GFCC is based on the ERB scale [START_REF] Glasberg | Derivation of auditory filter shapes from notched-noise data[END_REF]):

( ) 24.7 (4.37 1) 1000

f ERB f = × + (8)
where f is the frequency. The other one is the non-linear rectification step before DCT where MFCC uses log operation and GFCC uses cubic root. The process of GFCC is shown as follows: a). Signals pass through the n-channel gammatone filter banks:

1 2 ( ) cos(2 ) bn c Gamma n n e f n γ π α π φ -- = + (9)
where α is the amplitude, c f is the center frequency, is the phase of the carrier, is the order of the filter, 1.019

( ) b ERB f = × is filter's bandwidth. b). ( )
Gamma n are then down sampled to 100 Hz along the time dimension, this yielded a time-frequency representation ( , )

dc g i m , c
). The cubic root is applied to the ( , )

dc g i m : 1/3 ( ) ( , ) m dc g i g i m = ( 10 
)
where i is the index of channel, m is the index of time. 

Acoustic features aggregation schemes

According to the pre-settings of Librosa, the dimension of Chroma, Spectral The same feature extraction method presented in (Piczak, 2015a) is performed in this work to extract six basic acoustic features. All sound clips are converted to the monophonic wave files with 22050 Hz , and then divided into 41 frames with an overlap of 50% (each frame approximately 23 ms). The gammatone filterbank based features are extracted based on the method proposed by [START_REF] Slaney | Auditory toolbox: A MATLAB Toolbox for auditory modeling work[END_REF].

Twenty-dimensional MFCC and GFCC with their first and second order derivatives are extracted, resulting in 60-dimensional vectors for both cepstral coefficient features. 

Database

The UrbanSound8K [START_REF] Salamon | A Dataset and Taxonomy for Urban Sound Research[END_REF] dataset includes 8732 labelled urban sounds (the length is less than or equal to 4 seconds) collected from the real-world, totalling 9.7 hours. The dataset is separated into 10 audio event classes: air conditioner (ac), car horn (ch), children playing (cp), dog bark (db), drilling (dr), engine idling (ei), gunshot (gs), jackhammer (jh), siren (si) and street music (sm).

The ESC-50 [START_REF] Piczak | ESC: Dataset for Environmental Sound Classification[END_REF] 

Experiment and analysis

The features mentioned above can be divided into three categories according to their magnitude: 1) basic feature sets (B-fea), 2) two components aggregated features and CST. Since the dimension of CST feature sets are lower than others and the performance of only using CST in ESC tasks is unsatisfactory (which can be seen in Table 2). Therefore, the computational cost of CST will not be illustrated. The 2-fea class including LMC, MC, MelC, GC and GSC, while the 3-fea class including MMelC, MLMC and GGSC. Table 1 presents the number of parameters and the memory cost of CNN with the three categorizes features. The 10-fold cross-validation and 5-fold cross validation are performed on UrbanSound8K and ESC-50 databases respectively to evaluate the performance of the proposed CNN model firstly. It should be noticed that random time delays, time stretching and pitch shifting are performed on the ESC-50 dataset for data augmentation. Table 2 presents a class-wise accuracy comparison of the six basic features on UrbanSound8K dataset. First, we can notice that the features derived from the Mel filter performed better than the Gammatone filter based features. It can be seen that, the performance of MFCC is the best and that the CST is the worst. As mentioned before, the Librosa library pre-setting of Chroma, Spectral Contrast and Tonnetz leads to a low dimensional representation of sound signals, and thus an unsatisfied taxonomical accuracy for the CST feature set. In addition, Table 2 shows that the gunshot events are the most difficult class to classify. Only MFCC with the proposed framework can obtain an acceptable accuracy, 72.4%, whereas the classification accuracy of other features is less than 60%. However, for MFCC, we notice that successive sound (such as children playing, air conditioner, drilling, jackhammer, engine idling, siren and street music) are easier to be classified, and the categorization results of transient sounds (car horn, dog bark and gunshot) are unsatisfactory (accuracy less than 80.0%). Several research works [START_REF] Dai | Acoustic Scene Recognition with Deep Learning[END_REF][START_REF] Li | A comparison of deep learning methods for environmental sound detection[END_REF] point out that the performance of MFCC-based or CNN-based ESC system is considerably lower than their combination for ASR tasks. However, with the proposed 6-layer CNN model, the result of MFCC is 10.2% higher than the accuracy of CNN-based ESC system proposed by (Piczak, 2015a). In addition to the CST, all the other basic features classifications achieve higher accuracy than the method proposed by (Piczak, 2015a). This indicates that the proposed CNN is an efficient model for ESC tasks. The class-wise classification results of the eight aggregate features are shown in Table 3. Each filter-based feature has been aggregated with the CST feature, and the cepstral coefficient features with spectrograms (derived from the same filter) are also combined with the CST feature set. It can be demonstrated from Table 3 that with aggregation schemes, all the features have better classification results for ESC tasks than the previous single scheme. We noticed that, for Mel filter-based features, the Log-Mel Spectrogram performs better than Mel Spectrogram. The taxonomic accuracy of LM-C is 2.5% higher than that of Mel-C, and M-LM-C is 2.8% higher than M-Mel-C. Furthermore, it is clear that the performance of CST combined with both spectrogram and cepstral feature are better than that of CST combined with only spectrogram or cepstral feature.

The M-LM-C is 1.1% higher than LM-C and 3.9% higher than M-C. The G-GS-C is 1.8% higher than G-C and 1.0% higher than GS-C. Moreover, we could also notice that the performance of CST aggregated with features derived from Mel filter are better than the CST combined with Gammatone filter-based features. For the strategies of CST combined with Spectrogram, the classification accuracy of LM-C

and Mel-C is 92.3%, and 93.4%, which is 6.9% and 7% higher than the accuracy of GS-C. For the CST aggregated with cepstral features, the taxonomic result of M-C reaches 89.5%, which is 4.9% higher than the 84.6% of G-C.

The highest classification result is achieved by the MFCC-LM-CST (93.4%) feature combination, and each class has outstanding classification results as well.

Except for the classes of gunshot, the classification accuracy of all the other categories are higher than or equal to 90%. However, the categorization of gunshot still achieves an acceptable accuracy (83.1%). The categorization results for four classes (air conditioner, children playing, engine idling and siren) are higher than 95%.

Moreover, only M-LM-C reaches 90% on the car horn taxonomy. The confusion matrix of M-LM-C with proposed CNN evaluated on the UrbanSound8K dataset is shown in Figure 6.

Since the ESC-50 dataset has fifty classes, it is inconvenient to show the class-wise precision of all the feature combinations. Therefore, in Figure 7, we only reveal the best detailed taxonomy results obtained by M-LM-C. With the ESC-50 dataset, the proposed framework can reach 85.6% for M-LM-C feature sets, which is 20.7% higher than the 64.9% of the (Piczak, 2015a) model.

Moreover, our taxonomy result is higher than the 83.1% of the (S. [START_REF] Li | An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition[END_REF] model, which has been the state-of-the-art classification result with the ESC-50 dataset in recent years. Furthermore, the proposed algorithm performance is also higher than human recognition accuracy, 81.3%. The confusion matrix of M-LM-C with proposed CNN evaluated on the ESC-50 dataset is shown in Figure 8.

With the UrbanSound8K dataset, the proposed M-LM-C feature sets reached 93.4%, which is 20.7% higher than the (Piczak, 2015a) model. Moreover, the result derived from the proposed method is also higher than the recent works presented in 5. 

Conclusion

In this paper, we evaluated the performance of several aggregated features for ESC tasks. First, we evaluated six basic acoustic features derived from the frequency domain and two kinds of perceptually motivated acoustic features with the proposed CNN model. The results indicated that features such as MFCC which performed unsatisfactory in other models [START_REF] Dai | Acoustic Scene Recognition with Deep Learning[END_REF]J. Li et al., 2017) 
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 1 Figure 1. The framework of environmental sound classification. In this paper, we ascertain the aggregate strategies of multiple frequency features and filter-based features for CNN based environment sound taxonomy. Since conventional sound event analysis mainly addresses time-frequency features or cepstral domain features only, and grounded on the fact that sometimes aggregate features from different domain may reduce classification accuracy. Meanwhile, the classification performance of CNN as classifier is sensitive to the hyperparameters. Minor changes in parameters can lead to a large difference in classification results. Hence, features that comprehensively represent environment sounds and an appropriate CNN model should be carefully designed for ESC. Therefore, we first propose a 6-layer CNN model and evaluate its efficiency with six basic acoustic features. Then, eight new feature aggregate schemes, that combined Chroma, Spectral Contrast and Tonnetz (CST) with the six basic features are presented. With the proposed 6-layer CNN model could obtain higher classification accuracy, the proposed combinations: MFCC-LM-CST achieve the state-of-art environment sound

  . (Dan-Ning Jiang, Lie Lu, Hong-Jiang Zhang, Jian-Hua Tao, & Lian-Hong Cai, 2002) proposed the Octave-based Spectral Contrast features for music recognition. The experimental results indicated that these feature are more efficient than MFCC for music signal classification tasks. (Xing et al., 2017) aggregated Chroma, Mel Spectrogram, MFCC, Spectral Contrast, Tonnetz and Tempogram to compose a hyper-images for CNN based music recognition. (Ghosal & Kolekar, 2018) combined MFCC with delta and double delta coefficients, Mel Spectrogram with first and second order derivation, Chroma, Constant Q Chroma, Short Time Fourier Transform, Tonnetz and Tempogram for CNN-LSTM based music
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 26 Figure 2. 6-layer CNN architecture.

  B that consists of the twelve pitch spelling attributes as used in Western music notation. Then, a twelve-dimensional vector 1 2 12
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 3 Figure 3. The Spectrograms of Chroma Tonnetz and Spectral Contrast.

  filter-based features 1. MFCC: The mel filterbank mimics the human auditory system's response more closely than the linearly-spaced frequency bands used in the normal cepstral. This characteristic makes the acoustic feature extracted based on such filterbank could be a better representation of sound. The MFCC generation process includes: a). Signal Pre-processing, b). Fourier transform is performed to obtain the signal spectrogram, c). Mapping of the spectrogram into mel-spectrogram through the triangular overlapping windows which center frequencies are distributed on the mel scale[START_REF] Serizel | Acoustic Features for Environmental Sound Analysis[END_REF]:

  Log-Mel Spectrograms: the same parameters for MFCC processing are used to compute the Mel and Log-Mel Spectrograms. The Mel Spectrogram is the result of step c of the MFCC computation. The Log-Mel Spectrogram is the Mel log power spectrogram before the DCT step during the computation of MFCC.

Figure 4 .

 4 Figure 4. Log-Mel Spectrogram, Mel Spectrogram and Gammatone Spectrogram.2. Gammatone Spectrogram: It is the time-frequency representation of sound signals derived from the process of GFCC step 2. The Log-Mel, Mel and Gammatone Spectrograms are shown in Figure 4.

  adequately characterize the environmental sounds for the neural networks-based classification tasks. Therefore, these features can be combined as an integrated feature set at first, called CST. Then, the CST is aggregated with the other features described above in a linear way, and all of the combined Spectrogram, GFCC, Gammatone Spectrogram and CST separately.Let ⊕ denote linear superposition operation. Then, we present eight combination strategies for acoustic features as follows:1. LM-C: Combination of Log-Mel Spectrogram and CST, expressed by

  The channels of Mel Spectrogram, Log-Mel Spectrogram and Gammatone Spectrogram computation are respectively set to 60. Then all the spectrograms are represented as a 41 60 × matrix (corresponding to time and frequency). Meanwhile, the dimension of Chroma, Spectral Contrast and Tonnetz is 7 n × , 6 n × and 12 n × , separately. Hence, the dimension of CST is 41 25 × . The combination strategy of the proposed eight feature sets are linearly. To be specific, each individual feature in the aggregate features is concatenated individually. Therefore, the feature size of LMC, MC, MelC, GC and GSC is 41 85 × . For three acoustic features combination, the first and second order derivations of cepstral coefficient features (MFCC and GFCC) are not used. Hence, the feature size of MMelC, MLMC and GGSC is 41 105 × . Image representations of each combined features are shown in Figure 5.
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 5 Figure 5. The image representations of eight aggregated acoustic features.
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 6 Figure 6. Confusion matrix for the M-LM-C feature with proposed CNN evaluated on the UrbanSound8K dataset.

Figure 7 .

 7 Figure 7. Classification results of M-LM-C on the ESC-50 dataset.

Figure 8 .

 8 Figure 8. Confusion matrix for the M-LM-C with proposed CNN evaluated on the ESC-50 dataset.

Figure 2 .

 2 In order to prove that the proposed 6-layer CNN with M-LM-C feature set is more effective than other deep architectures in ESC problems, we trained a deep neural network (DNN) and an recurrent neural network (RNN) on the UrbanSound 8K dataset to analyze the influence of different network structures on classification accuracy with M-LM-C feature set. The DNN consists of two dense layers, each dense layer has 512 neurons. The dense layers use tanh and sigmoid as non-linear transforms function, separately. While the output layer uses softmax as non-linear transforms function. DNN is optimized by stochastic gradient descent (SGD) and momentum, and cross-entropy is applied as the loss function. The RNN consists of two Long-Short term memory (LSTM) recurrent units, each LSTM has 256 neurons. Softmax is used for the output layer, cross-entropy is used as the loss function and we optimize the RNN with Adam. 10-fold cross-validation are performed to evaluate the performance of each architecture as well. The taxonomic results on UrbanSound 8K dataset of three neural networks are shown in Table

Figure 9 .

 9 Figure 9. The box plot of the comparison of class-wise classification results obtained by each deep architecture with M-LM-C feature set.

Table 1 .

 1 Number of parameters and cost of memories for the 6-layer CNN with two size features.

			B-fea		2-fea		3-fea
	Layer	param	memory	param	memory	param	memory

Table 2 .

 2 UrbanSound8K class-wise accuracy of six basic acoustic features.

	Class	MFCC	GFCC	LM	GS	Mel	CST
	ac	91.7%	92.7%	93.7%	96.7%	94.1%	69.8%
	ch	62.7%	82.1%	60.5%	79.5%	70.6%	37.6%
	cp	80.8%	73.0%	79.2%	89.2%	86.5%	59.3%
	db	78.2%	68.6%	78.5%	78.1%	85.0%	44.1%
	dr	87.7%	83.2%	89.3%	80.6%	75.4%	60.1%
	ei	93.6%	93.7%	90.2%	91.6%	94.4%	65.5%
	gs	72.4%	52.1%	37.2%	21.1%	26.5%	36.6%
	jh	87.0%	91.0%	92.7%	78.9%	77.3%	56.7%
	si	84.8%	83.9%	95.8%	95.2%	96.9%	63.8%
	sm	89.9%	68.7%	73.2%	75.5%	81.1%	42.8%
	Avg.	82.9%	78.9%	79.0%	78.6%	78.8%	53.6%

Table 3 .

 3 UrbanSound8K class-wise accuracy of eight aggregate acoustic features.

	Class	LM-C	M-C	Mel-C	M-Mel-C M-LM-C	G-C	GS-C	G-GS-C
	ac	96.4%	98.0%	98.8%	97.5%	97.6%	97.7%	97.3%	97.9%
	ch	87.3%	72.9%	85.1%	87.7%	90.0%	65.1%	83.7%	84.7%
	cp	94.3%	92.6%	90.6%	93.0%	95.0%	85.1%	91.7%	88.6%
	db	91.9%	88.0%	90.0%	85.1%	92.9%	83.1%	82.5%	85.8%

  The classification results of ESC-50 database are shown in Figure7. The figure illustrates that M-LM-C with the proposed CNN model can perform well on the

	ESC-50 dataset. For the M-LM-C feature set, 29 classes achieve a categorization
	accuracy higher than or equal to 90%, 11 classes reach 100%, and only 5 classes are
	lower than 60%. In all categories, classes No.11, No.12 and No.37, respectively
	corresponding to rain, sea waves and vacuum cleaner, have unsatisfactory taxonomic
	results. The classification of rain has the worst accuracy, only 5.0% for M-LM-C
	feature. The average classification accuracy for all the 50 classes is 85.6%.
	The proposed CNN based ESC framework using the most efficient feature
	combinations is compared with several existing models proposed by (Aytar, Vondrick,

& Torralba, n.d.; S.

[START_REF] Li | An Ensemble Stacked Convolutional Neural Network Model for Environmental Event Sound Recognition[END_REF] Piczak, 2015a;[START_REF] Salamon | Deep Convolutional Neural Networks and Data Augmentation for Environmental Sound Classification[END_REF][START_REF] Tokozume | Learning environmental sounds with end-to-end convolutional neural network[END_REF][START_REF] Zhang | Dilated convolution neural network with LeakyReLU for environmental sound classification[END_REF][START_REF] Zhang | Deep Convolutional Neural Network with Mixup for Environmental Sound Classification[END_REF][START_REF] Zhu | Learning Environmental Sounds with Multi-scale Convolutional Neural Network[END_REF]

, the comparison result is presented in Table

4

.

Table 3 .

 3 These results indicate that, the aggregated features (a combination of features developed for music signals and speech signals) have achieved significant enhancement in environmental sound classification. To our knowledge, currently the proposed feature combination strategy is currently one of the most efficient manually selected features for environmental sound taxonomy.

Table 4 .

 4 Comparison of classification accuracy with other models on the evaluated datasets.

				Mean Accuracy
	Model	Feature		
			ESC-50	UrbanSound8K
	(Piczak, 2015a)	LM	64.9%	72.7%
	(Salamon & Bello, 2017)	-	-	73.0%
	(Tokozume & Harada, 2017)	Raw Data	71.0%	78.3%
	(X. Zhang et al., 2017)	Mel	68.1%	81.9%
	(Aytar et al., n.d.)	Raw Data	74.2%	-
	(Z. Zhang et al., 2018)	LM-GS	83.9%	83.7%
	(Zhu et al., 2018)	Raw Data	79.1%	-
	(S. Li et al., 2018).	Raw Data-LM	83.1%	92.2%
	Our Model With M-LM-C	MFCC-LM-CST	85.6%	93.4%
	Human Performance	-	81.3%	-
	One contribution of this paper is the established 6-layer CNN and its parameter
	settings, which is shown in			

Table 5 .

 5 Comparison of classification accuracy of M-LM-C feature set with different models on the evaluated datasets.

		DNN	RNN	CNN
	ac	73.7%	61.5%	97.6%
	ch	84.6%	86.4%	90.0%
	cp	81.7%	96.0%	95.0%
	db	66.5%	72.1%	92.9%
	dr	78.2%	79.3%	91.8%
	ei	83.3%	79.1%	98.4%
	gs	6.7%	25.1%	83.1%
	jh	98.6%	70.8%	93.1%
	si	92.4%	95.2%	99.0%
	sm	83.6%	93.6%	93.4%
	Avg.	74.9%	75.9%	93.4%

Table 5

 5 presents a class-wise accuracy comparison of three different deep architectures on UrbanSound8K dataset. It can be noticed that the classification result of the jackhammer of DNN is 5.5% higher than CNN. The categorization accuracy of children playing and street music derived from RNN is 1.0% and 0.2% higher than CNN respectively. Except for these classes, CNN archives higher classification accuracy than DNN and RNN on other sound classes. The average accuracy derived from CNN is 18.5% and 17.5% higher than DNN and RNN separately. These results indicate that the 6-layer CNN with proposed M-LM-C feature set is more effective than other deep architectures use same feature in ESC tasks.

  could reach 82.9% with our convolutional neural network. This indicates that the proposed CNN is an efficient model for ESC tasks. Then, eight feature aggregate schemes were presented and evaluated on the proposed model, where the best classification accuracy is acquired by the MFCC-Log-Mel Spectrogram-CST feature sets. From the results of taxonomic accuracy on ESC-50 and UrbanSound8K datasets, the proposed approach efficiently decreases the complexity of computation and improve the accuracy of environmental sounds classification. The categorizing accuracy of the proposed aggregate feature M-LM-C feature with CNN can reach 85.6% on ESC-50 and 93.4% on UrbanSound8K, respectively, and is 19.7% and 20.7% higher than the(Piczak, 2015a) model. During this work, we also found that aggregate features still could not precisely taxonomy several classes, such as gunshot and sea waves. Several research works have pointed out that classification accuracy can be further improved by applying decision-level or feature-level fusion methods, which is a focus of future works.
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