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Abstract

Commercial Unmanned Areal Vehicles (UAV) are taking a flight: it has never
been more accessible to own an UAV and as easy to operate one , e.g. a drone.
For coastal monitoring these advances open a new world of monitoring such as
inter-tidal beach topography through Structure for Motion. This paper aims
to 1) show the potential of the UAV-based depth inversion with 2) limited
georeferencing resources for rectification, comparing traditional field-based
GCPs and fully remote standalone methods (few local GCPs and Google
Earth derived GCPs) and a 3) novel automated error reduction inclusion for
the breakpoint location. Unlike with shore-based cameras, image stabilisa-
tion is key airborne bathymetry estimation. At places that are hard to reach
it is not always possible to get ground control points. We discuss the use of
Google Earth to obtain ground control points. In all video-derived bathyme-
tries obtained in this work, great overestimation of the depth is found around
wave breaking which is often linked to a phase shift in pixel intensity (dark
wave front to white foam). A new method to overcome phase shift issues
around breaking is presented that results in a significant error reduction of
58% around the break point.
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1. Introduction1

Beaches morphology can be completely reshaped at the scale of a single2

storm but there is until now no easy technique to estimate bathymetry in the3

nearshore. At the same time, the need for an updated coastal bathymetry4

at socio-environmental hotspots (e.g. low lying exposed urban areas) is in-5

creasing with the development of integrated coastal management and risk6

assessment and engineering projects (e.g. dikes, harbours, nourishment, [1]).7

In particular, more and more research focuses on the assessment and short8

term prediction of storm impact which can induce large changes over short9

periods [2, 3, 4]. While shore-based video permanent cameras now provide10

reasonable continuous quantitative description of morphodynamics [5], their11

use is often limited to accessible areas (e.g. urban areas- high-rise building12

close to shore). Recently, UAVs have developed and offer a new potential of13

flexibility with easy, punctual measurements with limited logistics. In this14

sense, they are complementary to video-camera stations and/or conventional15

field measurements.16

Recent technological advances, improved usability and declining material17

cost for UAVs creates a new era of nearshore remote sensing monitoring18

tools. Increasingly, topographies are obtained using Structure for Motion19

(SfM) with accuracies in the order of centimetres. Given the flexibility and20

easy usability (user friendly) of UAVs, the next step forward is to provide21

bathymetric information in addition to Structure for Motion topography,22

creating a continuum between land and sea. Efforts have been made to extend23

video-based bathymetry estimations fixed at shore, to airborne applications24

[6].25

Commonly, wave physics-based video-derived bathymetries are estimated26

using either wave dissipation patterns in combination with numerical models27

or wave propagation. The latter is used here and utilises the mathematical28

dispersion relation between wave celerity and depth, either in a linear or29

non-linear form. For the linear dispersion relation it requires two of the30

five variables (c, T , L, k, ω) to solve the problem set, for the non-linear31

dispersion relation wave amplitude (or height) should be known. One can32

choose to stay in the time domain [7] or convert to spectral domain [8, 9, 10].33

Shore-based systems are typically capable of estimating bathymetry O(10’s34

cm) accurately [10, 11].35

In this paper, we provide a bathymetry derived from an UAVs using a36

spectral method described in Holman et al. [10]. The estimate is compared37
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with echosounder survey conducted in Saint Louis beach, Senegal (West38

Africa) in 2016 within the framework of the COASTVAR experiment. A39

method to rectify images without the need of locally measured ground con-40

trol points is introduced. The correction for drone movements is discussed41

as well as a simple image pre-processing method that can improve classical42

optical modulation transfer function (MTF) issues linked to the breakpoint43

signal common to optical video methods in the nearshore.44

2. Methodology45

2.1. Study site and data collection46

The city of Saint Louis is located in Northern part of Senegal, in the West47

of Africa. It is situated on the 10-km long, Langue de Barbarie, sandspit at48

the mouth of the Senegal river. The city is classified as a world heritage his-49

toric city and the surrounding area is part of the National Parc of Langue de50

Barbarie, the largest Marine Protected Area in Senegal. The city population51

(mostly composed by fishermen) is increasing at a fast rate, and currently52

faces an intensification of environmental problems due to coastal erosion.53

This stretch of coast is described as drift-aligned shoreline by [12], which is54

mainly driven by one of the strongest alongshore sediment transport rates in55

the world, comprised between 0.5 and 1Mm3 per year.56

This coastal area faces energetic waves, generally from an oblique inci-57

dence angle (annual average wave conditions are Hs = 1.52 m, Tp = 9.23 s,58

Dir = 325 degrees [13]), with more energetic conditions in winter with long59

swells coming from distant North Atlantic. Sediment grain size is interme-60

diate (0.2 mm) and the beach is most of the time barred with a low tide61

terrace and a steep upper part. Tide is diurnal and micro-tidal (between 0.462

and 1.6 for neap to spring conditions, respectively).63

In December of 2016, a field experiment was performed in Saint Louis64

beach, with the aim to quantify the processes responsible for the observed65

erosion. This experiment builds on ongoing efforts to quantify the long-term66

shoreline evolution of this coastal area based on satellite imagery [13, 12, 14].67

The field experiment lasted from the 4th to 13th of December 2016, and68

involved about 30 participants from several countries, and included numer-69

ous instruments, among which several Acoustic Doppler Current Profilers,70

Pressure Transducers, echo-sounding bathymetries, RTK-GPS topographies,71

Structure for Motion topographies, high-detailed LiDAR measurements and72

video capturing of the swash zone. The bathymetry serves as a ground-truth73
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and is measured with a single-beam echosounder by the French Navy (SHOM74

- Naval Hydrographic and Oceanographic Service) outside the surfzone (ac-75

curacy 10-15 cm). Within in the surfzone (subject to heaving breaking) a76

single beam echosounder was used attached to a surfboard to obtain depth77

information. Due to the heavy wave-breaking the accuracy reduces to 10s78

of centimetres, which is similar to jet-ski surveys in these environments. In79

the shallowest part of the nearshore zone, an on-foot D-GPS survey links the80

bathymetry to the topography (accuracy 3-5 cm).81

Figure 1: Geo-location of the field experiment at St. Louis. a) An overview of West-
Africa (WGS84) in which the capital of Senegal (Dakar) is highlighted with the black dot
likewise the red dot indicates the study site (St. Louis), b) Shows an ESA-Sentinel II
image (UTM) covering the regional situation around St. Louis taken on 9 December 2016
11:34 AM local time. The red-dashed lines indicate the zoomed area shown in c). c) shows
the local area around the study site in which the red-dashed line indicates the field of view
of the camera, the red-dot indicates the position of the UAV and the red-box represents
the depth estimation domain.

Drone imagery was also collected every day to estimate beach topography82

with stereoscopy method and bathymetry, measuring waves characteristics83

from stationary flights. Images are collected using a DJI Phanthom 3-pro84

UAV equipped with the standard off-the-shelf camera. As a rule of thumb for85
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shore-based video systems, the camera should be placed as high as possible for86

better results. Bearing this in mind and considering a safe altitude to fly the87

drone, we aimed to fly the drone at 125 m altitude. In-flight, 11 to 12 minute88

videos (depending on the battery life) were recorded at 50 Hz frequency with89

a resolution of 1920 x 1080 pixels. As part of the post-processing videos are90

down-sampled to approximately 3 Hz.91

2.2. UAV related image-processing92

After take-off, the UAV is manoeuvred to a certain position and is sup-93

posed to hover at a stationary position with fixed view angles during the94

video-recording time. In order to assess if the position and orientation of95

the UAV are truly fixed we derived mean pixel intensity image over the du-96

ration of the video-file (Timex). A sharp image indicates limit movement97

and (re)orientation and vice versa for a blurred image result. The Timex-98

image presented in Figure 2a shows a blurred image suggesting inadmissible99

variability, either low-frequency UAV movements such as repositioning or100

high-frequency vibrations. It is interesting to note that these image-related101

variabilities have an amplified effect, O(10s metres), on the real-world posi-102

tioning of the pixels when the image is rectified on a horizontal plane in the103

real-world. These movements on the horizontal plane lead to even greater,104

unacceptable, positioning errors. Hence, in this case image stabilisation is105

required.106

Figure 2: Timex images captured from the UAV-flight. a) Shows the Timex derived from
the raw video data. b) represents a Timex images obtained after stabilisation of the
video-frames.

The drone image-stabilising have been performed by applying MatLAB107

image-processing tools, following this sequence of procedures: 1. identify and108
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match distinct features in two consecutive video-frames using the maximum109

correlation between a subset of pixels around a GCP and the new image, 2.110

compute a scaled affine translation-rotation matrix and 3. translate/rotate111

the second image to match the first image. In addition, we added horizon112

tracking because most of the distinct features are located the bottom-right113

extremes of the video-frames which introduces a bias. In this case, MatLAB’s114

imaging-toolbox feature detection routines do not recognise the horizon as115

a distinct feature. To overcome this issue the horizon is identified using116

the methodology presented by Schwendeman and Thomson [15]. For each117

video-frame the horizon is automatically found by deploying an edge-filter118

in combination with a Hough-transform. The found horizon is then fed into119

stage two of the stabilisation process. Figure 2b shows the improved Timex120

image after stabilisation. Compared to Figure 2a, Figure 2b clearly shows121

the estate in the bottom right corner of the image, as well as settlements122

Northwards along the coast. It is interesting to note that after applying the123

image-stabilisation is possible to identify a double bar system in the North124

part of the coast, while previous instabilities disguised it’s existence.125

2.3. Photogrammetric approach126

Video-frame pixels (U, V ) can be linked to a real-world coordinate (x, y, z)127

through a projective transformation, in this case projected on a tide-fixed128

horizontal plane. Here, we use a linear homogeneous projective transfor-129

mation (x′ = Px) between pixels and real-world projection as described in130

Hartley and Zisserman [16] and outlined by Holman et al. [6]. Here x′ are131

the 2D image coordinates U, V and x represents the 3D real-world coordi-132

nates (x, y, z). The homogeneous projective matrix P consists of three factor133

matrices K [6] :134

P = KR
[
I| − C

]
(1)

wherein K is known as the camera matrix and holds camera intrinsics,135

R represents a rotation matrix and
[
I| − C

]
is a 3x3 identity matrix I aug-136

mented by C which contains the camera location in real-world coordinates137

(x, y, z). Matrix K, holding the camera intrinsics is obtained using the138

Caltech Camera Calibration Toolbox (http://www.vision.caltech.edu/139

bouguetj/calib_doc/):140
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K =

fU S U0

0 fV V0
0 0 1

 (2)

in which f represents the focal length in U and V , Skewness (S) and the141

centre of the image (U0, V0). The rotation matrix R contains orientation142

angles such as Azimuth (orientation to North), Tilt (nadir = 0) and Roll. In143

total (1) has 11 variables of which (2) solves 5 and thus this set of equations144

leaves 6 degrees of freedom. To solve this multi-degree of freedom problem145

set, a non-linear fitting is performed so that the 6-free values are found146

minimising it’s squared error. To solve this 6DOF solution at least 3 GCPs147

are required as each GCP provides 2 knowns (U,V pixel coordinates).148

2.4. Camera-movement / GCP tracking149

Holman et al. [6] shows the UAV-movement (x, y, z) and camera-reorientation150

(azimuth, tilt, roll), a similar analysis is performed in this study. Camera151

movements and changing angles in time are obtained by (re-)calculating the152

6-degrees of freedom for every frame using GPS-measured Ground Control153

Points (GCPs). Here, the GCPs targets (crosses) were laid out randomly154

spread over the field of view. The MatLAB imaging-processing toolbox rou-155

tines could often not detect these GCPs as distinct features. Hence, to detect156

our GCP-targets, an alternative tracking is to be sought. Although the Mat-157

LAB routines do not find a distinct feature, the GCPs do represent a unique158

combination of pixel values which we presume to be transferable between159

video-frames. Meaning that if a pattern is identified in one video-frame it is160

likely to be found in a subsequent video-frame. To do so, a 2D-correlation161

analysis is applied, and the same patterns are recognised in different frames162

as shown in Figure 3.163

Commonly, GCP locations are picked for a (first or representative) video-164

frame with the best possible accuracy on which the geometry is constructed,165

like the red-dots in Figure 3a. An area around the GCPs, in this case 30x20166

pixels, is stored as a template for feature matching in subsequent video-167

frames (green square in Figure 3a). For each video-frame the templates are168

used to find the pixel position of the GCPs through a 2D correlation analysis169

(maximum correlation). The newly obtained GCP-positions in the video-170

frame are then used to recalculate the 6 degrees of freedom: x, y, z, azimuth,171

tilt and roll.172
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Figure 3: Example of Ground Control Point (GCP) tracking. a) shows the first frame
of the video in which the red dots represent the GCPs as picked and the green squares
are the template area. b) shows an arbitrary video-frame with automatically found GCPs
positions (red dots).

2.5. Depth estimation173

Since the 1940s efforts have been made to estimate bathymetry remotely174

using optical imagery, with the imagery obtained from land-based, airborne175

or spaceborne monitoring systems. Commonly, near-shore depths are es-176

timated using the mathematical relation between wave celerity and depth177

which is valid in intermediate to shallow water depths, as presented in (3).178

c2 =
σ2

k2
=
g

k
tanh (kh) + ~U2 • k2 (3)

wherein c is wave celerity, σ is angular wave frequency, k represents the179

wave number, g is the gravitational acceleration, h is depth and ~U represents180

the mean current. To solve (3) for depth, one needs to measured two of free181

variables in spectral domain (c, k, ω) [8, 10, 11], or (c, L, T ) in the temporal182

domain [7]. Here, we work in the spectral domain and apply depth inver-183

sion with non-gridded pixel positions (floating pixels) following [11] using184

the first two out of three phases of cBathy. To solve the linear dispersion185

relation cBathy seeks for wave frequency and wave number pairs. In phase186

I, frequencies are selected based on a local coherency criterion (N-most co-187

herent frequencies are taken). For the selected frequencies a phase ramp is188

estimated to find wave-number (k). cBathy ’s phase II then combines the189

selected frequencies so that an optimal fit with the linear dispersion relation190

is found, resulting in a single, combined depth estimate. It is important191

to note that not executing Phase III (Kalman Filtering), reduces robustness192
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[10, 11]. However, the strength of the Kalman filter depends on the multitude193

of available estimated bathymetries; generally the more data the stronger the194

Kalman results and in this study have few video-recordings.195

3. Results196

3.1. UAV movement and (re)orientation197

Holman et al. [6] showed that over a set of 10 flights the mean standard198

deviation of their UAV movement in x, y, z was respectively 0.17 m, 0.24199

m, and 0.53 m and similarly the mean standard deviation of the azimuth,200

tilt and roll angles was respectively 0.38◦, 0.2◦ and 0.26◦. With these values,201

Holman et al. [6] justifies the assumption of a fixed camera position. Here we202

assess the movements and (re)orientation of the camera following the GCP-203

tracking presented in Section 2.4. Figure 4 shows the results for the total204

number of 2048 video-frames.205

Figure 4: UAV movements (x, y, z) and (re)orientation (azimuth, tilt, roll) are respectively
presetned in a-f for a full video of 2048 frames. The red lines indicate the mean and
standard deviation per variable. The blue line represents values obtained by the UAV
(constant for the total flight duration).

Figure 4a,b show that the UAV has quite a stable horizontal hovering206

position considering the maximum deviation of 0.9 m for ∆X and 0.55 m for207

∆Y . The maximum vertical offset ∆Z is slightly larger ∆Zmax = −1.5 m and208
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Figure 4c shows drift over the video-duration downward. Reorientation of209

the UAV is for all angles within ±1.5 degrees. During the full video the UAV210

rotates horizontally in anti-clockwise direction while keeping the vertical view211

angle stable and rolling the image clockwise. In comparison to the average212

values found in Holman et al. [6], the found standard deviations in this work213

are larger; σx = 0.32 m, σy = 0.24 m, σz = 0.22 m, σazimuth = 0.27◦,214

σtilt = 0.17◦ and σroll = 0.31◦. The found UAV movement and reorientation215

angles makes it unlikely to consider the UAV fixed over the duration of the216

full video. These movements and reorientations primarily lead to the blurred217

image as shown in Figure 2a and amplifies the need for stabilisation, however,218

the direct effect on depth estimation is scrutinised below. Besides the UAV-219

tracking, a single set of position and orientation values measured by the UAV220

can be obtained from the video. These values are presented by the blue solid221

line in Figure 4. Apart from the X position, measured and tracked values for222

the position are within 0.5 meters of the average and the UAV-stored angles223

are all within the tracking-related standard deviation.224

Movements and view-angles should be near-fixed after the image-stabilisation.225

Camera movements and (re)-orientation are tracked after the stabilisation per226

sample (video-frame), shown in Figure 5. The effect of the image-stabilisation227

is particularly reducing the variability of the view-angles. The standard de-228

viations over 2048 frames are reduced in comparison to the earlier found229

values for all angles: σazimuth = 0.10◦, σtilt = 0.07◦ and σroll = 0.09◦. The230

image-stabilisation has a contrary effect on the x, y, z positioning: the stan-231

dard deviations σx, σy, σz increased to respectively, 0.44 m, 0.30 m and232

Figure 5: Tracked artificial movements of the UAV after image-stabilisation. a) represents
the change in x (black), y (blue) and z (red) compared to the found x, y, z for the first
frame while b) shows the resulting orientation angles (Azimuth (black), Tilt (blue) and
Roll (red)) in comparison to the first frame.
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0.24 m. It is important to note that in case of enough altitude (z), stable233

orientation-angles have greater priority than the x, y, z positioning (nonethe-234

less important) to obtain a stable projective solution over 2048 frames. In235

other words, small changes in orientation-angles result in larger projective236

errors than small changes in x, y, z relative to the camera altitude. Consid-237

ering the high altitude of the UAV (125 m) these standard deviations are238

considered acceptable.239

3.2. Video-based bathymetry estimation from UAVs240

Shore-based systems commonly do not perform image-stabilisation be-241

cause they are considered fixed and they don’t vibrate. If one assumes the242

drone to be fixed and without vibrations,one should be able to just apply243

depth inversion routines as suggested in Holman et al. [6]. One would expect244

that small instabilities would be cancelled out. However, Figure 6 shows oth-245

erwise in which c) indicates a significant over estimation in the nearshore and246

seaward the video-derived bathymetry is underestimated. RMS-errors are247

calculated over the whole domain (RMSall), outside the surfzone (RMSos)248

Figure 6: Depth inversion in comparison to the measured bathymetry. a) shows the
measured bathymetry provided by SHOM. b) demonstrates the video-derived bathymetry
from the unstabilised video and c) indicates the difference between the two in which
positive values reflect overestimation of depth and vice versa.
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and for −800m < X < −500 (RMS85). For the unstabilised video we re-249

spectively find: RMSall = 2.35 m, RMSos = 2.80 m and RMS85 = 2.55 m.250

The RMS-errors show unacceptable differences of approximately 30% of the251

local waterdepth outside the surfzone. The red-band around X = −400 m252

correspond to the location of a sand-bar and hence inaccuracies due to wave253

transformation and breaking [7].254

After image-stabilisation we have seen that the variance of the orientation255

angles were reduced significantly in Figure 5. A minimised variance of the256

orientation angles results in a significantly better estimated bathymetry, con-257

sidering Figure 7a,b, particularly outside the surfzone reduced further away258

from the camera as mentioned in Section 3.1. Figure 7b shows less colouring259

and thus less difference in comparison to Figure 6c. Over the total domain260

the RMS-error remained constant RMSall = 2.35 m but RMSos reduced to261

1.07 m and RMS85 = 0.41 m. Outside the surfzone this means that due to262

image-stabilisation 61% error-reduction is achieved. RMS85 shows a greater,263

84% reduction in RMS-error.264

Figure 7: Depth inversion from the stabilised video a) show the video-derived bathymetry
while b) compares a) to the measured bathymetry as shown in Figure 6a. c) represents
the rectified image with the difference between estimated and measured depth on top.

Although we find an overall improvement and reduction of the RMS-265

error, around the break point an amplified difference between the measured266
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and estimated bathymetry is observed in Figure 7c. On the one hand this267

can be due to inaccurate in-situ measurements (least accurate around/in the268

surfzone) as the major contribution to the overall error occur just seaward269

breaking (the white-foam indicates breaking). On the other hand it could be270

related to the depth-derivation methodology.271

4. Discussion272

4.1. Bathymetry estimation without in-situ GCPs273

Complete autonomous bathymetry estimation, without RTK-GPS mea-274

sured GCPs, would be the ultimate solution in environments that are hard to275

reach. Internally measured values for the 6 degrees of freedom are currently276

not measured accurately enough to get a proper geometry (compared to the277

found UAV position with in-situ GCPs: ∆x = 4.05 m , ∆y = −0.88 m ,278

∆z = 4.5 m, ∆azimuth = −4.5 deg , ∆tilt = −3.62 deg , ∆roll = 0.12 deg).279

Tracking the horizon is shown in Figure 8 to be an effective tool to obtain280

the camera’s roll. The roll is included as a known/constant variable in the281

R-matrix in equation 1). In addition, Google Earth is used to obtain ad-282

dition GCP location information from identifiable points, such as buildings,283

fencing and hedges. The global elevation data that is used in Google Earth284

is composed of several datasets such as radar derived DEMs from NASA’285

Shuttle Radar Topography Mission (SRTM) and LiDAR. In Senegal, there286

is not such a hybrid approach and only SRTM is used. Depending on its ver-287

sion the global SRTM dataset is vertically accurate from 5.6 to 9 m [17]. In288

Africa the SRTM dataset has an accuracy of 5.6 m, which is not sufficiently289

accurate for GCPs. Considering that the beach at St. Louis is relatively290

flat and the accuracy of the SRTM dataset, the vertical elevation is set to291

zero and only the horizontal positioning is used for the 5 Google Earth based292

GCPs.293

A bathymetry estimate using this approach is shown in Figure 9. Overall,294

the estimation using the horizon and Google Earth ground control points295

shows a similar order of accuracy in comparison to results obtained with in-296

situ measured GCPs. RMSall is 1.91 m, RMSos is 1.44 m, RMS85 = 1.14 m.297

The anomaly around the break point (white area in Figure 9c) is also visible298

in the bathymetry estimation in Figure 9a,b. Nontheless, the bathymetry299

estimation around the breaking-point is equally accurate compared to the300

results in Figure 7. Considering that the found error estimations are similar,301

we can suggest that in-situ GCPs are not an absolute necessity.302
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Figure 8: ∆Roll estimation using the GCP-tracking algorithm (dashed-black) and horizon
identification (blue).

4.2. Break point anomaly303

In all the results so far, a clear overestimation of the depth is found304

around the point of wave breaking. This effect is more often observed with305

shore-based systems and is thought be linked to the physical process of wave306

breaking and/or the observational limits of video cameras. The former relates307

to wave non-linearities as waves shoal before breaking and then break over the308

sandbar. The latter, relates to the Modulation Transfer Function (MTF). As309

waves shoal the camera registers a dark incident wave front, while when waves310

break, breaking-induced foam whitens the free surface. As one can imagine311

there is a sudden shift between minimal and maximal pixel intensities.312

These differences in MTF-function are not an issue while computing wave313

phase as long it is spatio-temporally consistent. Hence, as pointed out above,314

problems arise at transition zones such as at the known issue at the break-315

point. Considering the sudden shift between pixel intensities a kind of nor-316

malisation between the phases would remove this anomaly. Considering a317

pure sinusoidal, phase-shifts by π (or multitude of π) can be removed by318

taking the absolute derivative. Here, we propose to take the absolute deriva-319

tive of the time-varying pixel intensities in time. Taking the first derivative320

transforms the signal into a rate of pixel intensity change and the absolute321

makes it insensitive to the dark-to-bright or bright-to-dark transition, so a322

more consistent MTF function with or without breaking.323

Considering the sudden shift between pixel intensities a quasi-normalisation324

between the phases would remove this anomaly. Here, we propose to take the325

absolute derivative of the time-varying pixel intensities in time. For stacks326

with this follows:327
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Figure 9: Depth estimation using the horizon and Google-Earth-picked GCPs

Imx,y,t =

∣∣∣∣dIx,y,tdt

∣∣∣∣ (4)

in which Im represents the new intensity matrix, I is the former intensity328

matrix. Figure 10 shows the effect of (4) on a cross-shore timestack. In the329

timestack (Figure 10a), waves arrive from the left and propagate in time330

(down) to the right (shore). Wave breaking occurs between −600 and −400331

m cross shore. Seawards (< −600 m) the wave signal is predominantly visible332

by the shadowed part (darker lines) while during/after the wave breaking333

process the wave signal has a much brighter pixel intensity. If (4) is applied to334

this timestack, the different wave signals are merged to a single representation335

of incident waves with brighter pseudo-pixel intensities, as shown in Figure336

10b, and the phase shift is no longer present.337

At this stage the implementation into cBathy remains in a testing phase.338

Hence, we feed the original signal and the modified signal simultaneously.339

Equation 4 is applied on the shallowest part of the domain from the wave340

breaking (> −600 m) inshore. Dominant frequencies are determined as in341

Holman et al. [10], but within the breaking zone the wave-phase fitting is342

performed on the modified signal. The result of the depth inversion using343
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the modified time-varying pixel intensities is presented in Figure 11344

From Figure 11b,c it is apparent that around the breaking point error345

are significantly reduced. Over the whole camera footprint domain, RMSall346

reduced from 2.35 to 1.28 m. Around breaking, at the edge of the surfzone,347

the RMSsz was 3.1 m, after applying (4) this error is reduced to 1.3 m.348

Although the errors are more than halved, yet the largest errors are found349

at the wave-breaking region.350

5. Conclusions351

In this paper, we have applied bathymetry estimation to videos obtained352

from UAVs at St. Louis, Senegal. Before applying depth inversion tech-353

niques it is important to stabilise the full-video, to a single chosen frame354

(conveniently this could be the first frame). Traditionally, GCPs are mea-355

sured in-situ with an RTK-GPS. Here we have shown that Google-Earth356

derived GCP-points in combination with horizon-derived roll can provide an357

Figure 10: Effect of (4) spatio-temporal evolution of pixel intensity along an example cross-
shore transect (timestack) at St. Louis. Offshore is on the left and the waves propagate
inshore to the left and down in time. a) represents the timestack, b) is the result when (4)
is applied to a). c) and d) show a close-up of respectively the timestack and the absolute
derivative.
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alternative way to estimate nearshore bathymetry, with a good level of ac-358

curacy. Our results show a strong over estimation seaward of wave breaking359

which is partially due to the Modulation Transfer Function. MTF issues can360

potentially be overcome by taking the absolute derivative in time for the361

pixel intensity. For our dataset, the image stabilisation and the break-point362

anomaly correction together reduce the overall error by over 45%. The break-363

point anomaly correction alone reduces the error around in the surfzone by364

58%.365
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