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Abstract. The unsteady aerodynamic and aeroelastic behaviour of a 2D wing section with and 

without flap is analysed with Theodorsen theory and Unsteady Vortex Lattice Method (low 

fidelity), Euler (medium fidelity) and Reynolds-Averaged Navier Stokes (high fidelity) 

methods. The aeroelastic studies are carried out for linear cases and non-linear structural 

configurations presenting cubic stiffness and freeplay. The critical flutter speeds as well as the 

limit cycle oscillations present in the non-linear cases are compared. The methods show good 

agreement for the cases studied. 
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1.  Introduction 

 

Aeroelasticity remains today a subject of great interest in aircraft design and analysis. It 

includes the study of static aeroelastic effects and the analysis of more complex problems 

which appear when dynamic systems are considered. Moreover, aeroelasticity is often 

affected by non-linearities which alter the system’s response; it is the subject of active 

research, as can be found in the review paper by (Afonso, 2017). These non-linearities have 

two different sources: structural elements such as freeplay or cubic stiffness (Breitbach, 1978) 

can appear alone or simultaneously in any of the degrees of freedom (DOF) of the airfoil 

(Malher, 2016) and aerodynamic effects which are mainly due to either transonic effects 

(Jeffrey P. Thomas, 2002) or to dynamic flow separation due to large deflections in wings, 

known as stall flutter (Malher, 2016). The present paper focuses on the two structural non-

linearities mentioned, i.e. freeplay and cubic stiffness. 

An important phenomenon encountered in dynamic aeroelasticity is flutter. If there are no 

sources of non-linearities the system can only experience classic flutter which is defined as 

self-excited vibration of the structure due to energy extraction of the incident airflow resulting 

in negative damping and, therefore, a divergent evolution of the amplitude of vibration. One 

of the causes of this phenomenon is the coalescence of two structural modes: pitch and 

plunge, which reach the same vibration frequency. Other causes of flutter include transonic 

effects which cause “dip-flutter”, flow separation leading to stall flutter or instabilities in the 

flow above or below the structure which may result, for example, in buffet or galloping. If the 

speed becomes higher than the flutter speed, the amplitude of the movement grows 
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exponentially causing structural failure (Bisplinghoff, 1996). A thorough analysis of these 

aeroelastic problems is presented in (Progress in Computational Flow-Structure Interaction - 

Results of the Project UNSI, supported by the European Union 1998 – 2000, 2003) and in 

(Lee, Price, & Wong, 1999) which also developed many of the flutter prediction 

computational methods currently used in the current aeronautics industry. 

The presence of non-linearities can change drastically the observed behaviour as other 

phenomena, such as limit cycle oscillations (LCOs), can appear in the system’s response. 

During a LCO, the vibration reaches a stable amplitude which remains constant unless the 

wind speed changes. LCOs can be observed in subcritical or in supercritical regime once 

flutter speed is passed (Thomas, 2002). It has been found that when non-linearities govern the 

system behaviour, initial conditions may cause the system response to change between two or 

more possible stable outcomes (Strogatz, 1994). These non-linearities can mainly have two 

different sources: structural or aerodynamic. Structural non-linearity can be caused by many 

different elements. Moving parts can have friction or gaps (Y. Zhao, 2004) between them or a 

nonlinear stiffness, such as a cubic stiffness, (Conner, Tang, Dowell, & Virgin, 1997) 

(Breitbach, 1978) (Kholodar, 2013), as will be shown further to be our case. Irregular surfaces 

with, for example, rivets, are also a common source of nonlinearity. These elements are often 

classified as concentrated (the freeplay) or distributed (the rivets) nonlinearities. The focus of 

this work will be in concentrated structural non-linearities. As for aerodynamic non-

linearities, they are mainly due to either transonic effects (Dowell, Edwards, & Strganac, 

2003) or to flow separation due to viscous effects, for instance, large deflections in wings, or 

perturbing elements on the aircraft (Arévalo, 2008). 

The aim of this work is to compare the ability of different numerical methods to capture 

unstable aerodynamics and aeroelastic behaviour. The aerodynamic forces acting on the 

airfoil are computed and, together with the equations of motion, enable the calculation of the 

fluid-structure effects. For the aeroelastic analysis, both the linear and the non-linear cases are 

studied. In the non-linear 2DOF case, cubic stiffness and freeplay gap are applied in the pitch 

restoring force whereas only freeplay in the control surface deflection is applied in the 3DOF 

case. This work follows the work of (Amar, 2017) and includes the use of NLFD (Non-Linear 

Frequency Domain) for the high fidelity solvers as well as with more accurate time-

integration and post-processing techniques. 

 

2. Structural Model 

 

 Two configurations are studied regarding the 2D typical wing section: a 2DOF and a 

3DOF airfoil. The 2DOF are heave h and pitch α and the 3DOF case refers to an airfoil with 

an added control surface that can rotate around its elastic axis β. The airfoil is a NACA0012. 

Figure 1 presents the degrees of freedom for each case and the main geometrical parameters: 

b is the semi chord length, ab and cb are the midchord to elastic axis of the profile and of the 

control surface distance, respectively. Similarly, �∝� and ��� are the centre of gravity to 

elastic axis distance of the airfoil and of the control surface, respectively. 
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(a)                                                                     (b)                     

 

Figure 1. (a) 2DOF and (b) 3DOF typical aeroelastic sections. (Amar, 2017) 
 

The dimensionless aeroelastic equation of motion of an airfoil is: 
 ���� + 
��� + �1 − ����� + ������ = �����                                                                                                (1a) 

 

�� = �1 + �� �∝ ���∝ ��� ��� + �� − ������ ��� + �� − ���� ���
�                                                                                   (1b) 

 

�� = � �� 0 00 ��� 00 0 ���
"                                                                                                                                     (1c) 

 � =  $ℎ/� ∝ '(                                                                                                                                       (1d) 
 �� =  $−) �∝ ��(                                                                                                                                  (1e) 

 

where ��, 
� and �� represent respectively the inertial, damping and stiffness matrices, q is a 

vector containing the degrees of freedom and �� and ��  are vectors containing respectively the 

restoring and aerodynamic forces. � is a switch parameter which has a value of either 1 when 

the system is non-linear and 0 when the system is linear. 

As for the structural damping, matrix 
� is calculated by the method described in 

(Thomson, 1996) where firstly the eigenvalues of the homogeneous linear system are obtained 

which enable the calculation of the natural frequencies and the modal mass matrix. Next, the 

modal mass matrix is obtained and the modal damping matrix is calculated making use of the 

damping ratios ( +) obtained experimentally. 

In order to solve the fluid structure interaction, a loosely coupled iterative scheme is 

selected (see Figure 2), whereby the fluid state (,) and structure state (-) are successively 

updated from iteration . to . + 1. First, the fluid forces /0 are computed at a given time step 

and interpolated back onto the structure. The structure state is then computed and the new 

position, velocity and acceleration (�, ��  and ��  respectively) are thereafter calculated.  The 

process is then repeated for the next iterative time-step.  
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Figure 2: Schema for loosely coupled Fluid-Structure interaction. (Charbel Farhat, 2000) 

 

Non-linearities are introduced in the pitch restoring force in the form of a cubic stiffness 

and a freeplay gap in the 2DOF (Y. Zhao, 2004) (see Figure 3). In the 3DOF case, freeplay is 

introduced in control surface deflection (Conner et al., 1997). The equations are as follows: 

 

��,� = 1 �∝� ∑ 3�,4�5 − 5��46478 , 9� 5 > 5�  �∝� ∑ 3�,4�5 + 5��46478 , 9� 5 < −5�        0,                        <=><                                             (2) 

��,� = 1 ��� ∑ Ω�,4� �' − '��46478 , 9� ' > '�  ��� ∑ Ω�,4� �' + '��46478 , 9� ' < −'�    0,                        <=><                                                                                                  (3) 
 where 5� and '� are half of the freeplay angle in pitch and in control surface deflection, �∝ 

and �� are the reduced radius of gyration defined as �∝/� = DE∝/FGHI  where m is the mass of the 

airfoil, J∝/� are the structural inertias, 3�,4 is the ratio between the KL� non-linear quadratic 

stiffness and the linear stiffness and Ω�,4 is the reduced uncoupled natural frequency at the KL�order. 

 

 
(a)                                       (b)      

 

Figure 3. Non-linear pitch stiffness: (a) cubic stiffness with freeplay; (b) freeplay. (Y. Zhao, 

2004) 
 

3.  Aerodynamic Models 

 

Different numerical approaches are used to model the aerodynamic forces vector, ��.  

These are described at very high level to highlight their respective modelling and 

computational time differences.  
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3.1 Theodorsen approach 

 

The Theodorsen approach assumes harmonic motion and is valid for thin profiles with 

small deflections immersed in linear incompressible and irrotational flows. Its ability to 

capture LCOs in non-linear cases was demonstrated in (Conner et al., 1997). Contrary to the 

quasi-stationary force approach, Theodorsen takes into account the effects of the wake on the 

profile by imposing the impermeability and the Kutta conditions. The vortices shed are 

assumed to be aligned with the profile resulting in a flat wake. The original formulation is in 

frequency domain (Theodorsen, 1949) and remains convenient as long as the system is linear. 

However, for non-linear cases the equations are more easily solved in time domain and the 

Jones approximation is used (Jones, 1938). 

In the case of the frequency domain approach the Theodorsen complex transfer function 

C(k) is used whereas in time domain, the inverse Fourier transform of this function is used 

which is called Wagner function (Wagner, 1925). The later function enables the calculation of 

an augmented variable which is used to obtain the aerodynamic coefficients as shown in 

(Edwards, 1979). 

 

3.2 UVLM 

 

In the Unsteady Vortex Lattice Method (UVLM), the airfoil and the aileron are discretized 

into panels and the transport of vortices is accounted for by a shedding wake (Katz & Plotkin., 

2001) in the case of the free wake approach. Other options are available for the wake model: a 

rigid wake which captures the oscillating motion of the wake but, unlike the free wake 

approach, does not account for the wake roll-up or a linear wake which assumes a flat wake 

similar to the Theodorsen method (see figure 4). Since the results obtained by all three 

methods, namely free wake, rigid wake and flat wake, were similar for the cases examined in 

our study, only results with the free wake approach are presented. 

Each panel contains a vortex at ¼ of its length and a collocation point at ¾ of the length 

(see figure 3). The vortex points induce a velocity on the rest of the panels and their influence 

is calculated in the collocation points. The Kutta condition is satisfied by imposing the same 

vorticity on the shed wake and on the trailing edge panel. The Neumann boundary condition 

on the airfoil, for the velocity potential, closes the system (Katz & Plotkin., 2001). Some 

limitations remain, as the thin airfoil and potential flow hypothesis still apply. 

The computational implementation of the UVLM code is fully described in (Katz & 

Plotkin., 2001). The algorithm obtains the vorticity at each point (ɣ) by solving a linear 

system of equations: 

 AIC ∗ ɣ = RHS                                                                                                                                                 (4) 

                                                                                                              

where AIC is the Aerodynamic Influence Coefficients matrix which contains the induced 

velocities (vS,T� calculated as: 

 vS,T = ɣU�VWXUI YyT − ySxT − xS\                                                                                                                  (5) 

 

and RHS is a vector containing the reduced inflow velocity, the reduced airfoil velocity and 

the position of the airfoil. 

Once the vorticities are obtained, the pressure coefficient is calculated using the unsteady 

Bernoulli equation: 
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]^,_ = ɣ`,a∆c ∗ �de − fG,_ + ∑ fc,_� ∗ ._ + 8∆L ∑ ɣ_,4 − ɣ_,4g8_G784c78                                       (6) 

 

which enables the calculation of the rest of the aerodynamic coefficients. 

 

   (a) 

(b) 

 

(c) 

 

Figure 4. UVLM airfoil discretization. (a) free wake (b) rigid wake (c) flat wake 

:airfoil vortex point, :airfoil collocation point, :aileron vortex point, : aileron 

collocation point, :wake vortex 

 

3.3 Euler and URANS approaches 

 

Euler and Unsteady Reynolds-Averaged Navier Stokes (URANS) solvers compute the 

aerodynamic forces by solving a set of conservation laws (mass, momentum, energy) at 

discrete space/time intervals.  While the Euler equations are non-linear, they ignore viscous 

effects.  URANS solvers are as Euler solvers, with the addition of the viscous stresses.  

Turbulence is typically modelled via the eddy viscosity assumption. The aerodynamic solver 

used is NSCODE (A. T. Levesque, 2015), which uses a cell-centered multiblock structured 

approach. In this work, we use an implicit LUSGS (Lower-Upper Symmetric Gauss-Seidel) 

time integration scheme with classical acceleration methods such as multigrid and implicit 

residual smoothing. For turbulent calculations, the Spalart-Allmaras turbulence model 

(Spalart & Allmaras, 1992) is selected.  Different meshes and different time steps were tested 

to ensure mesh and time converged solutions. Three levels of O-meshes with 129x129, 

257x257 and 513x513 cells were used. The results of the intermediate mesh (257x257) are 

considered sufficiently converged and are used in the paper. The presented computations use 

an ALE (Arbitrary Lagrangian Eulerian) formulation. The unsteady Euler model was solved 

with both DTS (Dual-Time Stepping) (Sicot, Gomar, Dufour, & Dugeai, 2014; Yang, Luo, & 

Liu, 2005) and NLFD (Non-Linear Frequency Domain) methods (Simpson & Palacios, 2013). 

For DTS, simulations lasted for 7 complete periods with 500 time steps per period. A 

convergence analysis was performed with 1000 time steps per period, showing time-step 

convergence. Regarding NLFD, spectral convergence analysis was carried out with 3, 5 and 6 

modes and the results shown correspond to the 3 modes analysis. 

 

3.4 Computation time 
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Table 1 presents approximate computation time for each of the methods for approximately 

10 oscillation cycles (3 initial transient cycles) on a single-core of the Intel 3930K CPU. Note 

that regarding our cases, the aerodynamic force calculation determines the total computation 

time since the time taken for the structural equation is comparatively negligible. 

 
Method Computation Time on Intel 3930K CPU 

Theodorsen ~30 seconds 

UVLM ~45 minutes 

Euler DTS ~8 hours 

Euler NLFD (3 modes) ~6 hours  

URANS NLFD (3 modes) ~1 day 

 

Table 1. Approximate computation time for each method.  

 

4.  Unsteady aerodynamics 

 

 As a preliminary step, the potential aerodynamic models are verified for imposed plunge 

and pitch motions of the 2DOF linear airfoil (Figures 4 and 5). The cases chosen are those 

presented in Murua (Murua, 2012) using UVLM and (Yang, 2006) using Euler respectively. 

We emphasise that only the aerodynamic forces are considered in this section and not the 

structure response to these forces. 

For each case, the Mach (M) and Reynolds (Re) numbers are given.  We observe that the 

tests are in low subsonic regime where the incompressibility hypothesis is reasonable. The 

imposed vibration frequency is characterised by the dimensionless reduced frequency � =hi�jk where ω is the oscillating frequency (in rad/s), c is the airfoil chord and le is the incident 

flow speed. The dimensionless amplitude of the movement is given by h/b in the plunge case. 

In the pitch case, the airfoil moves around a position referred to as “mean alpha” with 

amplitude alpha. The low-fidelity methods agree in capturing the aerodynamic coefficient Cl 

at moderate reduced frequency and small oscillations (Figures 5 and 6). Table 2 shows the 

aerodynamic coefficients obtained at 4.93° angle of attack by the different methods for the 

steady flow condition (K=0).  One must be careful interpreting the differences.  Indeed, airfoil 

thickness increases lift-curve slopes whereas viscous forces reduce it which explains the 

differences between Theodorsen and RANS solutions.  The Euler solution has more lift than 

the RANS, and the UVLM lift matches Theodorsen’s, as expected. 
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Figure 5. Plunge motion. M=0.1, Re= 1.18M, K=0.75, h/b=0.1 
 

 Theodorsen UVLM Euler URANS 

Cl 0.54 0.54 0.63 0.57 

 

Table 2. Steady aerodynamic coefficient. M =0.301, Re=3.91M, K=0, Mean alpha=4.93° 
 

       
 

Figure 6.  Pitch motion. M=0.301, Re=3.91M, K=0.198, alpha=4.99°, Mean alpha=4.93 

 

5. Linear Aeroelasticity 

 

The flutter analysis is performed on the dimensionless aeroelastic equation of motion of 

the airfoil (equation 1) using the aerodynamic force calculated with the numerical methods 

already presented. The cases tested are those presented in (Y. Zhao, 2004) using a reduced 

order flat wake UVLM model and in Conner (Conner et al., 1997) experimentally and 

numerically for the 2DOF and 3DOF cases respectively. The parameters used are presented in 

table 3. The structural parameters already shown are present, as well as K = mnHIG  which is the 

mass ratio, o� , o�  and o� ,  are the structural damping ratios for each DOF and �� is the 

normalized mass of the support.  The natural frequencies of each DOF are represented 

by  �,  � and  �. 3�,4  is the cubic stiffness and freeplay parameters will be used further on 

for the nonlinear cases. 

Due to the fact that UVLM is in time domain, an extra step is required in order to obtain 

the results presented. A Fast-Fourier Transform is used to obtain frequency content of the 

time domain solutions. FFT does not allow the damping to be calculated so a combination of 

curve fitting and logarithmic decrement techniques are used to capture the damping shown in 

Figures 8 and 10. In these graphs, although there could be as many damping branches as 

DOFs, only the branch which becomes negative at the flutter point is included for clarity. 

 
 2DOF 3DOF 

k 1/100 0.03984 

a -0.5 -0.5 

c n/a 0.5 s∝   0.25 0.434 
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st n/a 0.01996 u∝ 0.5 0.7321 ut n/a 0.11397 vw/vx 0.2 0.8078 vt/vx n/a 2.0746  +∝ 0 0.01626  +w 0 0.0115  +t n/a 0.0113 

freeplay 0.5° (∝� 2.12° ('� yx,z 3 0 {w 0 1.163627 

 

Table 3. Values of parameters for test cases. 

 
 

Figure 7.  Dimensionless oscillation frequency against dimensionless wind speed for 2DOF 

linear case. 

 

 
 

Figure 8. Damping against dimensionless wind speed for the 2DOF linear case. 

 

 Theodorsen UVLM Euler Zhao V-g Zhao LUVLM 

Uf 6.29 6.27 6.29 6.29 6.29 

 

Table 4. Comparison of dimensionless flutter velocities for the 2DOF linear case. 
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Figure 9. Dimensionless oscillation frequency against dimensionless wind speed for 3DOF 

linear case. 

 

 
 

Figure 10. Damping against dimensionless wind speed for the 3DOF linear case. 

 

 Theodorsen UVLM Conner Theo Conner Exp. 

Uf 3.57 3.61 3.57 3.08 

 
Table 5. Comparison of linear flutter velocities for the 3DOF linear case. 

 
Figures 7 to 10 show good agreement between Theodorsen, UVLM and Euler or RANS in 

capturing linear aeroelastic behaviour. These results are compared with (Y. Zhao, 2004) for 

2DOF and (Conner et al., 1997) for 3DOF. The values of the flutter speed are obtained, 

observed as the wind speed at which the damping ratio changes sign in the damping diagrams, 

and provided in table 4 for 2DOF and in table 5 for 3DOF cases. In these cases, a modal 

coalescence in the frequency diagrams can be observed at a close wind speed. Figures 8 and 
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10 show reasonably good agreement for the methods presented for all wind speeds but it is 

seen that the approaches become closer to each other as the system is in the close vicinity to 

flutter as the system goes from being damped to undamped. This important change of 

behaviour is thought to be more simply captured than the exact values of positive damping 

which are not obtained as directly as the modal frequencies for time domain methods and 

have to be extracted by different means which may give rise to a certain level of uncertainty. 

 

6. Non-Linear Aeroelasticity 
 

      For non-linear analysis, the same parameters shown in table 3 are used but now include 

the following parametres: freeplay, 3�,4 (the non-linear stiffness power) and ��. Regarding 

the nonlinear restoring forces, cubic and freeplay non-linearities are introduced in the pitch 

DOF for the 2DOF case (figure 11), and freeplay is introduced in the aileron deflection for the 

3DOF case (figure 12). The rest of restoring forces in the structural models are kept linear. As 

for the initial conditions, the 2DOF case (figure 11) is started with an initial 5 of 3° and the 

3DOF case (figure 12) is started with an initial ' of 2,12° similar to the literature cases chosen 

as due to the nonlinear characteristics of the system, LCO amplitude is dependent on initial 

conditions. 
Below the linear flutter speed, Uf, both Theodorsen and UVLM succeeded in capturing the 

subcritical LCO and were compared with (Y. Zhao, 2004), who used a reduced order linear 

wake UVLM model named LUVLM, in the 2DOF case. Figure 11 presents dα/dt and dh/dt 

against α and h respectively for different dimensionless speeds. 
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a)

b) 

c) 
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d) 

 

e) 
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f) 

 

g) 
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h) 

 

a) U : Theo. : 1.850, UVLM : 1.800,  Zhao LUVLM : 1.900 

b) U : Theo. : 2.007, UVLM : 1.860,  Zhao LUVLM : 1.912 

c) U : Theo. : 2.925, UVLM : 2.990,  Zhao LUVLM : 2.931 

d) U : Theo. : 3.140, UVLM : 3.120,  Zhao LUVLM : 2.944 

e) U : Theo. : 3.420, UVLM : 3.140,  Zhao LUVLM : 3.453 

f) U : Theo. : 3.520, UVLM : 3.150,  Zhao LUVLM : 3.466 

g) U : Theo. : 4.160, UVLM : 4.000,  Zhao LUVLM : 4.076 

h) U : Theo. : 4.150, UVLM : 4.010,  Zhao LUVLM : 4.089 

 

Figure 11. Change of phase trajectory of subcritical LCO for 2DOF airfoil. 
 

Both the Theodorsen and the UVLM codes have captured a subcritical LCO with four 

different double symmetric changes of trajectory (Figure 11), in agreement with Zhao’s work. 

The authors believe that some of the observed deviations between the presented intermediate 

figures may be linked to the difficulty experienced in identifying the matching wind speed 

corresponding to an exact given LCO amplitude due to the fact that the LCO trajectories have 

a high level of variation as the wind speed increases. It is observed that the α trajectory is 

closer in all methods than the h trajectory.  

    For the 3DOF analysis, the literature cases chosen are those presented by (Conner et al., 

1997), who also presented experimental data, and (Kholodar, 2013), who used a Doublet 

Lattice Method (DLM) as well as Theodorsen approach, respectively. 

For the 3 DOF non-linear case, the root mean square (RMS) of each DOF’s amplitude is 

calculated and divided by the freeplay gap to compare the results to those obtained by 

Kholodar (Kholodar, 2013). Figure 12 shows the results as a function of speed divided by the 

linear flutter speed where: �ℎ, 5, '� = |}~��,�,����� .  
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(a)                                                             (b)     

                              
                                             (c) 

 

Figure 12. RMS amplitudes as a function of speed over linear flutter speed for (a) plunge 

DOF, (b) pitch DOF and (c) control surface deflection. 

  

The subcritical LCOs present in the 3DOF system including freeplay are captured as 

observed in Figure 12. For each DOF, motion amplitude varies as linear flutter speed fraction 

increases. Pitch angle and aileron deflection angle both increase with flow velocity with 

different rates, as shown by all models. The heaving amplitude increases and then drops to 

lower amplitude LCO before increasing again as the velocity approaches linear flutter speed. 

 

 

 

7. Conclusion 
 

In this work, four methods are used to analyse unsteady aerodynamics and aeroelasticity 

of a 2D typical wing section: Theodorsen, UVLM, Euler and URANS. The structural models 

are presented, followed by a brief description of the aerodynamic methods that highlights 

their differences. Once a mesh/time step validation is carried out to ensure numerical 

convergence, a pure aerodynamic comparison is performed, showing the agreement between 

the unsteady aerodynamics low fidelity results and those obtained via Euler (medium fidelity) 

and URANS (high fidelity) approaches.  

Regarding the aeroelastic analysis, the linear flutter speed is identified for a 2DOF and a 

3DOF typical section. Non-linearities through freeplay and cubic stiffness in the pitching 

DOF for the 2DOF case and aileron freeplay for the 3DOF are added to the system to evaluate 
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its response. Both Theodorsen and UVLM are able to capture subcritical LCOs similar to 

those identified in the literature. 

The computational times of Theodorsen and UVLM are lower by several orders of 

magnitude than those of URANS or even Euler method. It is concluded that for the cases 

presented, the low-fidelity methods are capable of capturing the same complex phenomena 

than for medium or high fidelity methods, at much reduced computational times. 
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