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Abstract

We analyze the transient behavior of the M/M/1+D queue. Considering an Erlang distribution

for customers’ waiting time, we approximate the real system by a Markov chain. We obtain the

Laplace Transform of the transient probabilities in the approximated model and the Laplace

transform of the main performance measures for the real system. We next analyze the busy

period of this queue. One interesting insight is that the busy period of the unstable M/M/s

queue has a finite coefficient of variation.

Keywords: Transient analysis; performance evaluation; deterministic rejection; queueing model;

Erlang approximation

1 Introduction

Most results in the queuing theory and its applications are for the stationary regime. They charac-

terize the system when the time from initialization becomes very large which renders the impact of

the initial conditions negligible. The popularity of the stationary analysis comes from its simplicity.

By solving a set balance equations, the stationary performance measures of many classical queues

(M/M/1, M/G/1, M/M/c, ...) are known explicitly and have relatively simple forms. In practice,

the analysis of the stationary regime makes sense in some contexts. For instance in call centers, it

is appropriate to assume that a system with constant parameters achieves a steady-state quickly

within short-half hour or hour-intervals [18, 16].

Nevertheless, the stationary analyses are inappropriate in many situations if the time from

initialization is not large enough. This is particularly the case when there is a definite closing time

and when the service times are long. For instance, the number of patients seen by a physician

during a working period is not sufficient to assume that a stationary regime is achieved. Even in

call centers, the recent improvements in customers identification via data analysis reduce the value

of the stationary analysis where customers are seen as a uniform flow. Therefore, the transient
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analysis is highly valuable for a better understanding of queueing systems. However, due to the

complexity of the transient regime, available results are usually restricted.

In this article, we analyze a single-server queue with a deterministic rejection time starting

initially empty in the transient regime. This corresponds to Web applications where a timeout

threshold is set by administrators [40] or call centers where customers are invited to be called back

later at a given waiting time [30, 29]. This queue is referred to as the M/M/1+D queue. Queues

with deterministic reneging times have been studied in the stationary regime (e.g., see [41] for the

M/G/1 queue or [24] for the M/PH/1 queue). However, to the best of our knowledge, the transient

analysis of the M/M/1+D hasn’t yet been done. Note that our results can lead to the transient

performance measures in the multi-server case or with different initial conditions. These extensions

are presented in the Online Supplement.

The difficulty for the analysis of this queue is the presence of a non-exponential duration;

the rejection time. The system therefore cannot be modeled by a simple Markov chain where a

state of the system corresponds to the number of customers. To overcome this difficulty, we first

approximate the waiting time of the first customer in line in the queue by an Erlang distribution

as in [26] and [31]. This allows us to represent the system evolution by a Markov chain. As

the parameters of the Erlang distribution tend to infinity, the approximated model converges to

the real one. After writing the balance equations, we introduce the z-transform of the transient

probabilities. We next obtain an explicit solution for the Laplace transform of this function which in

turn allows us to derive the Laplace transform of the relevant performance measures; the probability

of an empty system, the probability of rejection, the expected waiting time and the probability of

waiting more than a given threshold. Finally, with a similar approach, we analyze the busy period

of the M/M/1+D queue. We deduce from this analysis that the busy period of the unstable M/M/1

queue has a finite coefficient of variation.

Structure of the article. The remainder of this paper is structured as follows. We conclude

this section with a literature survey. Section 2 explains the system modeling. Section 3 determines

the explicit Laplace transform of the transient probabilities. Section 4 computes the performance

measures of the real system. Section 5 illustrates the applicability of our results. Finally, Section

6 investigates the busy period of the M/M/1+D queue. In the Online Supplement, we present the

multi-server case, the performance measures under different initial conditions and detailed proofs
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for the main results.

Literature review. In the queueing literature, the analyses of queues under a transient regime

have a long history. The M/M/1 queue is the first studied queue [28, 10, 13]. The transient

queue-length distribution is explicitly known in terms of modified Bessel functions of the first

kind. However, the complexity of the involved expression makes it complicated to obtain insights

for this queue. Further investigations have therefore been devoted to a better understanding of

this queue. For instance, [2] and [3] establish a transform factorization that facilitates developing

approximations for the moments of the queue length. Several approaches for the analysis of transient

queues have been considered. We refer to [38] for a review of the main results for the computation

of the performance measures of the M/M/1 queue. The most popular approach has been the

one of of [10] involving generating functions for the partial differential equation. For instance,

[36] apply this approach for the explicit performance measures of the M/M/1 queue with finite

capacity. Another approach involves level crossings arguments and Volterra integral equations as

for the analysis of the workload distribution [12, 11, 32]. The extension from the M/M/1 to the

M/G/1 queue has been extensively studied. [37] is the first to provide integral expressions of the

performance measures for this queue. Later, [4] investigate the moments of this queue. A moment

is characterized in terms of a differential equation involving lower moment functions and the time-

dependent server occupation probability. Different variations of the M/G/1 have been studied. [17]

determine an analytical expression of the probability distribution of the M/D/1/N queue initialized

at an arbitrary deterministic state. [19] consider a particular M/G/1 queue with an Erlang service

time distribution. [39] consider the M/G/1 retrial queue with disasters and service failures. [23]

tackle the finite buffer M/G/1 queue with server vacations. In addition, the M/G/1 queue has

been considered under a processor sharing discipline [25, 21]. For the multi-server setting, [22]

evaluate the transient behavior of the M/M/s queue and show the implications of this analysis for

simulations. Later, [33] obtain a solution for the M/M/s queue from which the stationary behavior

can be easily derived. Including abandonment or rejection renders the performance evaluation

difficult. Therefore, most studies of such queues have been done under stationary assumptions

[35, 8, 9]. Considering the transient analysis, we mention [6] for the performance measures of the

M/M/s+M queue and [7] for the study of its busy period.
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2 Model description

We consider a single server queue with infinite capacity, starting initially empty, a first-come-first-

served (FCFS) discipline, an exponential service time with service rate µ and a Poisson arrival

process with rate λ. In addition, we assume that a customer is automatically rejected if her actual

waiting time reaches the deterministic threshold τ .

The non-exponential duration for the rejection time does not allow us to directly represent

the evolution of the queue by a Markov chain. To overcome this difficulty, we consider the Erlang

approximation proposed in [26] without abandonment and next extended in [31] with abandonment.

For this model, the waiting time of the first customer in line (FIL) is represented in a discretized

form as states in a continuous time Markov chain. In this way, the waiting time of the FIL is modeled

by a strictly positive integer x which corresponds to a waiting phase. In this approximated model,

the elapsing of time in a given waiting phase x is exponentially distributed with rate γ. Thus, after

a γ-transition the waiting phase of the FIL is increased by 1. In other words, the waiting time of

the FIL is approximated by an Erlang distribution. We also define state x = 0, where the queue is

empty and the server is busy and state x = −1, where the system is empty. In states x = −1 and

x = 0, the approximated Markov chain evolves as for the classical representation of the M/M/1

queue; a λ-transition increases the number of customers in the system by one and a µ-transition

reduces the number of customers in the system by one. The rejection time, τ , is also approximated

by a strictly positive integer, denoted by n, such that a γ-transition from state x = n leads to the

FIL leaving the system. Therefore, n is also the highest possible waiting phase for the FIL (i.e.,

x ≤ n).

When the FIL is removed from the system either due to a service completion or to a rejection

from state x = n, the FCFS discipline results either in the new first in line being in a lower waiting

phase or in the queue being empty. We denote by h the number of waiting phases between the FIL

just before and the FIL just after a service completion or a rejection (0 ≤ h ≤ x). The transition

probability, rx,x−h, from state x > 0 to state x − h can be found in [31] (Table 1, line 4) by

rx,x−h =
(

λ
λ+γ

)(
γ

λ+γ

)h
for 0 ≤ h < x, and by rx,0 =

(
γ

λ+γ

)x
. These expressions are computed

using the exponential distribution of the interarrival time.

We are now in position to give the transition structure of the approximated model. We denote
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the transition rate from state x to state x′ by tx,x′ . For −1 ≤ x, x′ ≤ n, we may write

tx,x′ =



λ, if x′ = x+ 1, x = −1 or, x = 0,

γ, if x′ = x+ 1, 0 < x < n,

µ, if x′ = x− 1, x = 0,

µrx,x−h, if x′ = x− h, 0 < x ≤ n, and 0 ≤ h ≤ x,

γrn,n−h, if x′ = n− h, x = n, and 0 ≤ h ≤ n,

0, otherwise,

which corresponds to arrival, service departure and time elapsed. The transition diagram is given

in Figure 1.
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Figure 1: Transition diagram

The rate γ is the controlled parameter of the Erlang approximation. As γ tends to infinity,

our approximation converges to the exact system (see [26]). The main reason for using the Erlang

distribution is that its limit converges to a deterministic value via the law of large numbers. To

obtain the limit in our model, we choose n and γ such that n
γ

∆
= τ and x and γ such that x

γ
∆
= t if

x represents a given waiting time t (0 ≤ t ≤ τ). Since the Erlang distribution is the least variable

distribution among all phase type distributions [15], the speed of convergence to the exact system

is relatively fast (see for instance Figures 5 and 6 in [31]).

The transition structure defined above determines a Markov chain for which we are interested

in the transient behavior. We denote by πx(t), the transient probability to be in state x at time

t ≥ 0 and assume that the system starts empty; π−1(0) = 1. In order to simplify the notations,

we write πx instead of πx(t) and denote by q the ratio γ
λ+γ . The differential-difference equations
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governing the phase time of the FIL are given in Equation (1) as

∂π−1

∂t
= −λπ−1 + µπ0, (1)

∂π0

∂t
= −(λ+ µ)π0 + λπ−1 + µ

n∑
k=1

qkπk + γqnπn,

∂π1

∂t
= −(γ + µq)π1 + µ

n−1∑
k=1

(1− q)qkπ1+k + γ(1− q)qn−1πn + λπ0,

∂πx
∂t

= −(γ + µq)πx + µ
n−x∑
k=1

(1− q)qkπx+k + γ(1− q)qn−xπn + γπx−1, for, 2 ≤ x ≤ n− 1,

∂πn
∂t

= −(γ + µ)qπn + γπn−1.

3 Laplace Transforms of the transient probabilities πx

In Theorem 1, we provide explicit expressions of the Laplace Transform of the transient probabil-

ities. To prove Theorem 1, we introduce the probability generating function, defined as P (z, t) =
n∑
x=0

πxz
x. This function is related to the πx’s via πx = 1

x!
∂xP (z,t)
∂zx |z=0, for 0 ≤ x ≤ n. Using Equation

(1), we determine the differential equation satisfied by P (z, t). We define the Laplace Transform

(LT) of a function f(z, t) (z ∈ C, t ≥ 0) as follows:

f∗(z, y) =

∫ ∞
0
e−ytf(z, t) dt,

for y ∈ C, with Re (y) > 0. This allows us to express the LT of P (z, t), denoted by P (z, y)∗, as a

function of π∗−1, π∗0, and π∗n. The zeros of the denominator of P (z, y)∗ are next used to express π∗0,

and π∗n as functions of π∗−1. Finally, the first line of Equation (1) leads to the expression of π∗−1.
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Theorem 1 We have

πx∗ =
(y(1− q) + λ(1− z1))π∗0 − (1− q)(1− yπ∗−1)

γ(z2 − z1)zx1
(2)

+
−(y(1− q) + λ(1− z2))π∗0 + (1− q)(1− yπ∗−1)

γ(z2 − z1)zx2
, for 0 < x ≤ n, with

π∗0 =
1

y

λγ[(1− z1)zn1 − (1− z2)zn2 ]

[(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z1]zn1 − [(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z2]zn2
, and

(3)

π∗−1 =
1

y

(
1− λ[(γ(1− z1)− λ)zn1 − (γ(1− z2)− λ)zn2 ]

[(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z1]zn1 − [(γ − λ)(y + λ) + γµ− γ(y + µ+ γ)z2]zn2

)
,

(4)

where

z1 =
1

2γ
[y + γ + q(µ+ γ) +

√
(y + γ + q(µ+ γ))2 − 4γq(y + µ+ γ)], and,

z2 =
1

2γ
[y + γ + q(µ+ γ)−

√
(y + γ + q(µ+ γ))2 − 4γq(y + µ+ γ)].

Proof. In order to derive P (z, t), we multiply the xth differential equation in Equation (1) by zx

(0 ≤ x ≤ n). We subsequently sum up over all x to obtain a single differential equation leading

after some algebra to

∂(P (z, t) + π−1)

∂t
= −(1− z)

[
γ + µ

q

q − z

]
P (z, t) + (1− z)µ q

q − z
P (q, t) + (γ − λ)(1− z)π0 (5)

+ γ
(1− z)(qn+1 − zn+1)

q − z
πn.

From the second line of Equation (1), we get

µP (q, t) =
∂(π0 + π−1)

∂t
+ (λ+ µ)π0 − γqnπn.

By replacing the expression of P (q, t) in Equation (5), we obtain

∂(P (z, t) + π−1)

∂t
= −(1− z)

[
γ + µ

q

q − z

]
P (z, t) +

q(1− z)
q − z

∂(π0 + π−1)

∂t
(6)

+
(1− z)(qµ+ λz + γ(q − z))

q − z
π0 − γ

zn+1(1− z)
q − z

πn.
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Applying the LT to Equation (6) and using P (z, 0) = π0(0) = 0 and π−1(0) = 1, we obtain

P (z, y)∗ = −
γ(1− z)zn+1π∗n + (1− z)((γ − λ)z − q(y + µ+ γ))π∗0 + (1− q)z(1− yπ∗−1)

γz2 − (y + q(µ+ γ) + γ)z + q(y + µ+ γ)
. (7)

The denominator of P (z, y)∗ is a quadratic in z. It has two zeros, z1 and z2, as defined in the

statement of Theorem 1. Recall that P (z, y)∗ =
n∑
x=0

π∗xz
x. Therefore, P (z, y)∗ is a polynomial in z.

So, P (z, y)∗ has a finite limit as z tends to z1 or z2. Since the denominator of P (z, y)∗ in Equation

(7) is equal to zero for z = z1 or z = z2, a necessary condition for having a finite limit for P (z, y)∗

as z tends to z1 or z2 is to also have the limit of the numerator of P (z, y)∗ in Equation (7) equal

to zero for z = z1 and z = z2. Therefore, we deduce that

γ(1− zi)zn+1
i π∗n + (1− zi)(γz2

i − (y + q(µ+ γ) + λ)zi)π
∗
0 + (1− q)zi(1− yπ∗−1) = 0,

for i = 1, 2. These two equations allow us to derive π∗n and π∗0 as functions of π∗−1. One then may

write

π∗0 =
1− yπ∗−1

y

(1− z1)zn1 − (1− z2)zn2
(1− z1 − λ/γ)zn1 − (1− z2 − λ/γ)zn2

, and,

π∗n =
1− yπ∗−1

y

λ(z2 − z1)

γ[(1− z1 − λ/γ)zn1 − (1− z2 − λ/γ)zn2 ]
.

The LT of the first line of Equation (1) is yπ∗−1 − 1 = −λπ∗−1 + µπ∗0. This equation together with

the expression of π∗0 given above leads to π∗−1 and π∗0 as given in Theorem 1. There remains to

determine the other probabilities (as functions of y) using π∗x = 1
x!
∂xP (z,y)∗

∂zx |z=0. We rewrite P ∗(z, y)

as

P ∗(z, y) = − (1− z)zn+1

(z − z1)(z − z2)
π∗n +

γ − λ
γ

π∗0 +
−z1(y(1− q) + λ(1− z1))π∗0 + (1− q)z1(1− yπ∗−1)

γ(z − z1)(z2 − z1)

+
z2(y(1− q) + λ(1− z2))π∗0 − (1− q)z2(1− yπ∗−1)

γ(z − z2)(z2 − z1)
.

The xth derivative of the term proportional with π∗n evaluated in z = 0 is equal to zero for x ≤ n

because zi 6= 0, for i = 1, 2 and the xth derivative of zn+1 at z = 0 is zero for x ≤ n. Using

∂x(z−zi)−1

∂zx |z=0 = − x!
zx+1
i

, we deduce the expression of π∗x, for 0 < x ≤ n. 2
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4 Performance measures of the real system

The LT of the performance measures for the real system are obtained in Theorem 2 by letting

γ tend to infinity. We consider the probability of an empty system (or an idle server), π−1, the

proportion of customers who are rejected, denoted by PR, the expected waiting time, denoted by

E(W ), and the probability of waiting longer than a time threshold w, denoted by P (W > w), with

0 < w < τ .

Theorem 2 We have

π∗−1 =
1

y

(
1−

λ
(
y1 − y2e

−(y1−y2)τ
)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ

)
,

P ∗R =
e−τ(y1−λ)

y

λ(y1 − y2)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
,

E(W )∗ =
µ

y2

y1 − (y + µ)− (y2 − (y + µ))e−(y1−y2)τ + (τλy/µ− 1)(y1 − y2)e−τ(y1−λ)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
, and,

P (W > w)∗ =
−y1 + y + µ+ λ+ π∗−1((y + λ)(y1 − y − λ)− yµ)

(y1 − λ)(y1 − y2)
(e(λ−y1)w − e(λ−y1)τ )

−
−y2 + y + µ+ λ+ π∗−1((y + λ)(y2 − y − λ)− yµ)

(y2 − λ)(y1 − y2)
(e(λ−y2)w − e(λ−y2)τ )

+
e−τ(y1−λ)

y

λ(y1 − y2)

y1(λ+ µ+ y)− λµ− (y2(λ+ µ+ y)− λµ)e−(y1−y2)τ
.

Proof. Using a Taylor expansion of z1, z2 and zni , as γ tends to infinity, we get

z1 = 1 +
1

2γ

(
y + µ− λ+

√
(y + λ+ µ)2 − 4λµ

)
+ o(1/γ) = 1 +

y1 − λ
γ

+ o(1/γ),

z2 = 1 +
1

2γ

(
y + µ− λ−

√
(y + λ+ µ)2 − 4λµ

)
+ o(1/γ) = 1 +

y2 − λ
γ

+ o(1/γ), and,

zni = e(yi−λ)τ + o(1/γ), for i = 1, 2.

We observe that y1/λ and y2/λ are the roots of the denominator of the Laplace transform of the

generating function in an M/M/1 queue (e.g., see [20], Equation (2.57), p.99). This directly leads

to the expression of π∗−1.

At time t, a customer can be rejected only from state x = n. The probability to be in state

n is πn, the number of rejected customers from this state during an interval of time dt is γdt, the

number of arrivals during the same interval is λdt. Therefore, the proportion of customers who are

rejected from the system can be obtained as PR = lim
γ−→∞

γ
λπn.
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Let us now consider the performance related to the waiting time in the queue. The embedded

Markov chain at service initiations and rejection times is considered. In this way, we consider the

virtual waiting time of a customer who would initiate a service or would be rejected at time t.

Service initiations occur at µ-transitions from states 0 < x ≤ n. Rejections occur at γ-transitions

from state x = n. The expected duration of a waiting phase is 1/γ. Therefore, the virtual expected

waiting time of served or rejected customers at time t is

E(W ) = lim
γ−→∞

(
µ

λ

n∑
x=1

x

γ
πx +

γ

λ

n

γ
πn

)
= lim

γ−→∞

(
µ

λ

∂P (z,t)
∂z |z=1

γ
+
γ

λ

n

γ
πn

)
.

We therefore deduce the LT of the expected waiting time from

E(W )∗ = lim
γ−→∞

(
µ

λγ

∂P ∗(z, y)

∂z
|z=1 + τ

γ

λ
π∗n

)
.

We now consider the probability of waiting more than a time threshold w such that 0 < w < τ

irrespective if the customer is rejected or served; P (W > w). We can decompose this probability

depending if a customer is served or rejected;

P (W > w) = (1− PR)P (W > w|Service) + PRP (W > w|Rejection).

Since rejections only occur after τ time units and w < τ , we have P (W > w|Rejection) = 1. Let us

now focus on served customers. Consider a customer served from waiting phase x (0 < x ≤ n). This

customer has stayed in the queue during x γ-phases. The probability that an Erlang distribution

with x phases and rate γ per phase exceeds w is e−γw
x−1∑
k=0

(γw)k

k! . Therefore,

(1−PR)P (W > w|Service) = lim
γ−→∞

(
µ

λ

n∑
x=1

πxe
−γw

x−1∑
k=0

(γw)k

k!

)
= lim

γ−→∞

(
µe−γw

λ

n−1∑
x=0

(γw)x

x!

n∑
k=x+1

πk

)
.

From Equation (2), we observe that π∗x = A1
zx1
− A2

zx2
, with Ai =

(y(1−q)+λ(1−zi))π∗0−(1−q)(1−yπ∗−1)

γ(z2−z1) ,

for i = 1, 2. Moreover,
n∑

k=x+1

1
zki

=
z−xi −z

−n
i

zi−1 , for i = 1, 2. This leads to

((1− PR)P (W > w|Service))∗ = lim
γ−→∞

(
µe−γw

λ

2∑
i=1

(−1)i+1 Ai
zi − 1

n−1∑
x=0

(
(γw/zi)

x

x!
− z−ni

(γw)x

x!

))
.
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By letting γ tend to infinity, we obtain P (W > w)∗. 2

5 Comments and Numerical Illustration

The transient performance measures can be computed using a Laplace transform inversion. We

use the speed up version of the Gaver-Stehfes algorithm presented in [14], page 144, equation (7.7),

where a given function f(t) is approximated by

ln(2)

t

N∑
n=1

Kn · f∗
(
n

ln(2)

t

)
,

where N is even and

Kn = (−1)n+N
2

min(n,N/2)∑
k=[n+1

2 ]

kN/2(2k)!

(N/2− k)!k!(k − 1)!(n− k)!(2k − n)!
.

One difficulty to apply this formula in practice is to determine a sufficiently high value for N and a

sufficiently high number of digits for the values of Kn in order to obtain a sufficiently accurate value

for the function to invert. [1] investigated numerically the precision produced as a function of the

parameter N . From extensive experimentation, they conclude that about 0.45×N significant digits

are sufficient to obtain a relative error of the order of 10−0.45N . However, their result depends on

the transform. In our case, the complexity of the formulas requires higher values for N in particular

in the zone where the elapsed time since the origin is close to the rejection threshold. Alternative

methods for numerical Laplace transform inversion can be found in [5].

In Figure 2, we derive the main performance measures as a function of the time elapsed since the

origin. From this and other numerical experiments, we observe that the M/M/1+D queue reaches

a close to stationary behavior quicker than the corresponding M/M/1 queue. The justification

of this observation is related to the reduction of the waiting time variability with a low rejection

threshold.

The Laplace transforms of the performance measures allow us to compute their stationary

expressions using the Final Value Theorem (e.g., see [14], Theorem 2.6, pages 40-41). These

are obtained by computing the limit as y tends to 0 of the product of y with the LT of the

wanted performance measure. This leads to π∞−1 = 1−a
1−a2e−τ(µ−λ) , P∞R = a(1−a)e−τ(µ−λ)

1−a2e−τ(µ−λ) , E(W )∞ =

11
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Figure 2: Numerical results (µ = 1, τ = 1)

1
µ
a(1−(1+aτ(µ−λ))e−τ(µ−λ))

(1−a)(1−a2e−τ(µ−λ)) , and P (W > w)∞ = a(e−w(µ−λ)−ae−τ(µ−λ))
1−a2e−τ(µ−λ) , where a = λ/µ.

6 Busy Period Analysis

A busy period is the time that elapses between two consecutive arrivals finding an empty system.

In this section, we determine the mean and the LT of a busy period in an M/M/1+D queue. These

results can be extended to the full busy period of the M/M/s+D queue defined as a period com-

mencing when an arriving customer finds exactly one idle server and ending at the first departure

epoch leaving behind exactly one idle server. We use the same state definition as in the previous

sections. Let the random variable Cx be the time till the system is empty again if the FIL is in

state x (1 ≤ x ≤ n) or if only one customer is in the system (x = 0). Since a busy period starts

when the first customer after an idle period arrives and it ends when the system is empty again,

C0 is the length of a busy period.

Applying the first step analysis for the discrete-time Markov chain as in [27] p.162 and [34]

p.116, we have the following finite sets of equations based on the transition structure defined in

12



Section 2:

C∗0 (y + µ+ λ) = λC∗1 + µ, (8)

C∗x(y + µ+ γ) = γC∗x+1 + µqxC∗0 + µ(1− q)
x∑
k=1

qx−kC∗k , for 1 ≤ x < n,

C∗n(y + µ+ γ) = (µ+ γ)qnC∗0 + (µ+ γ)(1− q)
n∑
k=1

qn−kC∗k ,

In Theorem 3, we give the LT of C0, denoted by C∗0 , the expected duration of the busy period,

denoted by E(C0) and the variance of the busy period, denoted by V (C0). The proof follows a

similar approach as the analysis of Section 3.

Theorem 3 We have

C∗0 = µ

[
λ

(
1− µ(y2 − µ+ (µ− y1)e−τ(y1−y2))

y1(y2 − µ) + y2(µ− y1)e−τ(y1−y2)

)
+ µ+ s

]−1

,

E(C0) =
µ− λe−τ(µ−λ)

µ(µ− λ)
, and,

V (C0) =
µ2(µ+ λ)− 2λµ(µ− λ)(2 + (λ+ µ)τ)e−τ(µ−λ) − λ2(µ+ λ)e−2τ(µ−λ)

µ2(µ− λ)3
.

In Figure 3, we illustrate the impact of the deterministic rejection threshold τ on the expected

duration of the busy period and the coefficient of variation of the busy period (i.e., it is the ratio

between the standard deviation and the expected duration of the busy period). As expected, these

two measures increase with τ . As τ tends to infinity, we obtain the results for the M/M/1 queue.

The expected duration tends to 1
µ−λ if µ > λ and to infinity otherwise (instability). The coefficient

of variation tends to
√

λ+µ
|µ−λ| in all cases. This explains the relative position of the curves in Figure

(3(b)) and provides an interesting property for the unstable M/M/1 queue. For low values of τ ,

the coefficient of variation increases with λ. For larger values of τ , either λ < µ and the system

behaves close to a stable M/M/1 queue or λ > µ and most customers are rejected at τ time units.

In both cases the coefficient of variation is controlled. The uncertainty on the duration of the busy

period is maximized when λ = µ. This may explain the relative position of this curve compared to

the others.
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(b) Coefficient of variation of the busy period

Figure 3: Numerical results (µ = 1)
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Notations

In Table 1, we give the notation used throughout the article.
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Table 1: Table of notation

Exogenous parameters

λ Arrival rate,
µ Service rate,
γ Elapsing of time rate,
τ Rejection time,
n Highest waiting phase,

a and q a = λ
µ and q = γ

λ+γ .

System state

x = −1 If the system is empty,
x = 0 If the queue is empty and the server is busy,

0 < x ≤ n If the FIL is in waiting phase x.

Performance measures

πx Probability to be in state x (−1 ≤ x ≤ n),
PR Proportion of rejected customers,
W Waiting time,
Cx Time till the system is empty again if the FIL is

in state x (1 ≤ x ≤ n).
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