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We analyze the transient behavior of the M/M/1+D queue. Considering an Erlang distribution for customers' waiting time, we approximate the real system by a Markov chain. We obtain the Laplace Transform of the transient probabilities in the approximated model and the Laplace transform of the main performance measures for the real system. We next analyze the busy period of this queue. One interesting insight is that the busy period of the unstable M/M/s queue has a finite coefficient of variation.

Introduction

Most results in the queuing theory and its applications are for the stationary regime. They characterize the system when the time from initialization becomes very large which renders the impact of the initial conditions negligible. The popularity of the stationary analysis comes from its simplicity.

By solving a set balance equations, the stationary performance measures of many classical queues (M/M/1, M/G/1, M/M/c, ...) are known explicitly and have relatively simple forms. In practice, the analysis of the stationary regime makes sense in some contexts. For instance in call centers, it is appropriate to assume that a system with constant parameters achieves a steady-state quickly within short-half hour or hour-intervals [START_REF] Green | Improving the SIPP approach for staffing service systems that have cyclic demands[END_REF][START_REF] Gans | Telephone call centers: Tutorial, review, and research prospects[END_REF].

Nevertheless, the stationary analyses are inappropriate in many situations if the time from initialization is not large enough. This is particularly the case when there is a definite closing time and when the service times are long. For instance, the number of patients seen by a physician during a working period is not sufficient to assume that a stationary regime is achieved. Even in call centers, the recent improvements in customers identification via data analysis reduce the value of the stationary analysis where customers are seen as a uniform flow. Therefore, the transient analysis is highly valuable for a better understanding of queueing systems. However, due to the complexity of the transient regime, available results are usually restricted.

In this article, we analyze a single-server queue with a deterministic rejection time starting initially empty in the transient regime. This corresponds to Web applications where a timeout threshold is set by administrators [START_REF] Xiong | An approximation for multi-server queues with deterministic reneging times[END_REF] or call centers where customers are invited to be called back later at a given waiting time [START_REF] Legros | Optimal scheduling in call centers with a callback option[END_REF][START_REF] Legros | Call centers with a postponed callback offer[END_REF]. This queue is referred to as the M/M/1+D queue. Queues with deterministic reneging times have been studied in the stationary regime (e.g., see [START_REF] Xiong | M/G/1 queue with deterministic reneging times[END_REF] for the M/G/1 queue or [START_REF] Kim | M/PH/1 queue with deterministic impatience time[END_REF] for the M/PH/1 queue). However, to the best of our knowledge, the transient analysis of the M/M/1+D hasn't yet been done. Note that our results can lead to the transient performance measures in the multi-server case or with different initial conditions. These extensions are presented in the Online Supplement.

The difficulty for the analysis of this queue is the presence of a non-exponential duration; the rejection time. The system therefore cannot be modeled by a simple Markov chain where a state of the system corresponds to the number of customers. To overcome this difficulty, we first approximate the waiting time of the first customer in line in the queue by an Erlang distribution as in [START_REF] Koole | First in line waiting times as a tool for analysing queueing systems[END_REF] and [START_REF] Legros | A uniformization approach for the dynamic control of queueing systems with abandonments[END_REF]. This allows us to represent the system evolution by a Markov chain. As the parameters of the Erlang distribution tend to infinity, the approximated model converges to the real one. After writing the balance equations, we introduce the z-transform of the transient probabilities. We next obtain an explicit solution for the Laplace transform of this function which in turn allows us to derive the Laplace transform of the relevant performance measures; the probability of an empty system, the probability of rejection, the expected waiting time and the probability of waiting more than a given threshold. Finally, with a similar approach, we analyze the busy period of the M/M/1+D queue. We deduce from this analysis that the busy period of the unstable M/M/1 queue has a finite coefficient of variation.

Structure of the article. The remainder of this paper is structured as follows. We conclude this section with a literature survey. Section 2 explains the system modeling. Section 3 determines the explicit Laplace transform of the transient probabilities. Section 4 computes the performance measures of the real system. Section 5 illustrates the applicability of our results. Finally, Section 6 investigates the busy period of the M/M/1+D queue. In the Online Supplement, we present the multi-server case, the performance measures under different initial conditions and detailed proofs for the main results.

Literature review. In the queueing literature, the analyses of queues under a transient regime have a long history. The M/M/1 queue is the first studied queue [START_REF] Ledermann | Spectral theory for the differential equations of simple birth and death processes[END_REF][START_REF] Bailey | A continuous time treatment of a simple queue using generating functions[END_REF][START_REF] Champernowne | An elementary method of solution of the queueing problem with a single server and constant parameters[END_REF]. The transient queue-length distribution is explicitly known in terms of modified Bessel functions of the first kind. However, the complexity of the involved expression makes it complicated to obtain insights for this queue. Further investigations have therefore been devoted to a better understanding of this queue. For instance, [START_REF] Abate | Transient behavior of the M/M/1 queue: Starting at the origin[END_REF] and [START_REF] Abate | Transient behavior of the M/M/1 queue via Laplace transforms[END_REF] establish a transform factorization that facilitates developing approximations for the moments of the queue length. Several approaches for the analysis of transient queues have been considered. We refer to [START_REF] Van De Coevering | Computing transient performance measures for the M/M/1 queue[END_REF] for a review of the main results for the computation of the performance measures of the M/M/1 queue. The most popular approach has been the one of of [START_REF] Bailey | A continuous time treatment of a simple queue using generating functions[END_REF] involving generating functions for the partial differential equation. For instance, [START_REF] Sharma | Transient behaviour of an M/M/1/N queue[END_REF] apply this approach for the explicit performance measures of the M/M/1 queue with finite capacity. Another approach involves level crossings arguments and Volterra integral equations as for the analysis of the workload distribution [START_REF] Bekker | Queues with workload-dependent arrival and service rates[END_REF][START_REF] Bekker | Finite-buffer queues with workload-dependent service and arrival rates[END_REF][START_REF] Liu | Explicit solutions for the steady state distributions in M/PH/1 queues with workload dependent balking[END_REF]. The extension from the M/M/1 to the M/G/1 queue has been extensively studied. [START_REF] Takaćs | The time dependence of a single-server queue with poisson input and general service times[END_REF] is the first to provide integral expressions of the performance measures for this queue. Later, [START_REF] Abate | Transient behavior of the M/G/1 workload process[END_REF] investigate the moments of this queue. A moment is characterized in terms of a differential equation involving lower moment functions and the timedependent server occupation probability. Different variations of the M/G/1 have been studied. [START_REF] Garcia | Transient analytical solution of M/D/1/N queues[END_REF] determine an analytical expression of the probability distribution of the M/D/1/N queue initialized at an arbitrary deterministic state. [START_REF] Griffiths | The transient solution to M/Ek/1 queue[END_REF] consider a particular M/G/1 queue with an Erlang service time distribution. [START_REF] Wang | Transient analysis of an M/G/1 retrial queue subject to disasters and server failures[END_REF] consider the M/G/1 retrial queue with disasters and service failures. [START_REF] Kempa | Transient workload distribution in the M/G/1 finite-buffer queue with single and multiple vacations[END_REF] tackle the finite buffer M/G/1 queue with server vacations. In addition, the M/G/1 queue has been considered under a processor sharing discipline [START_REF] Kitaev | The M/G/1 processor-sharing model: transient behavior[END_REF][START_REF] Jean-Marie | On the transient behavior of the processor sharing queue[END_REF]. For the multi-server setting, [START_REF] Kelton | The transient behavior of the M/M/s queue, with implications for steady-state simulation[END_REF] evaluate the transient behavior of the M/M/s queue and show the implications of this analysis for simulations. Later, [START_REF] Parthasarathy | Transient solution to the many-server poisson queue: a simple approach[END_REF] obtain a solution for the M/M/s queue from which the stationary behavior can be easily derived. Including abandonment or rejection renders the performance evaluation difficult. Therefore, most studies of such queues have been done under stationary assumptions [START_REF] Reed | Approximating the GI/GI/1+ GI queue with a nonlinear drift diffusion: Hazard rate scaling in heavy traffic[END_REF][START_REF] Armony | The impact of delay announcements in many-server queues with abandonment[END_REF][START_REF] Atar | The cµ/θ rule for many-server queues with abandonment[END_REF]. Considering the transient analysis, we mention [START_REF] Al-Seedy | Transient solution of the M/M/c queue with balking and reneging[END_REF] for the performance measures of the M/M/s+M queue and [START_REF] Ammar | The busy period of an M/M/1 queue with balking and reneging[END_REF] for the study of its busy period.

Model description

We consider a single server queue with infinite capacity, starting initially empty, a first-come-firstserved (FCFS) discipline, an exponential service time with service rate µ and a Poisson arrival process with rate λ. In addition, we assume that a customer is automatically rejected if her actual waiting time reaches the deterministic threshold τ .

The non-exponential duration for the rejection time does not allow us to directly represent the evolution of the queue by a Markov chain. To overcome this difficulty, we consider the Erlang approximation proposed in [START_REF] Koole | First in line waiting times as a tool for analysing queueing systems[END_REF] without abandonment and next extended in [START_REF] Legros | A uniformization approach for the dynamic control of queueing systems with abandonments[END_REF] with abandonment.

For this model, the waiting time of the first customer in line (FIL) is represented in a discretized form as states in a continuous time Markov chain. In this way, the waiting time of the FIL is modeled by a strictly positive integer x which corresponds to a waiting phase. In this approximated model, the elapsing of time in a given waiting phase x is exponentially distributed with rate γ. Thus, after a γ-transition the waiting phase of the FIL is increased by 1. In other words, the waiting time of the FIL is approximated by an Erlang distribution. We also define state x = 0, where the queue is empty and the server is busy and state x = -1, where the system is empty. In states x = -1 and x = 0, the approximated Markov chain evolves as for the classical representation of the M/M/1 queue; a λ-transition increases the number of customers in the system by one and a µ-transition reduces the number of customers in the system by one. The rejection time, τ , is also approximated by a strictly positive integer, denoted by n, such that a γ-transition from state x = n leads to the FIL leaving the system. Therefore, n is also the highest possible waiting phase for the FIL (i.e.,

x ≤ n).
When the FIL is removed from the system either due to a service completion or to a rejection from state x = n, the FCFS discipline results either in the new first in line being in a lower waiting phase or in the queue being empty. We denote by h the number of waiting phases between the FIL just before and the FIL just after a service completion or a rejection (0 ≤ h ≤ x). The transition probability, r x,x-h , from state x > 0 to state x -h can be found in [START_REF] Legros | A uniformization approach for the dynamic control of queueing systems with abandonments[END_REF] (Table 1 We are now in position to give the transition structure of the approximated model. We denote the transition rate from state x to state x by t x,x . For -1 ≤ x, x ≤ n, we may write

t x,x =                                      λ, if x = x + 1, x = -1 or, x = 0, γ, if x = x + 1, 0 < x < n, µ, if x = x -1, x = 0, µr x,x-h , if x = x -h, 0 < x ≤ n, and 0 ≤ h ≤ x, γr n,n-h , if x = n -h, x = n, and 0 ≤ h ≤ n, 0, otherwise,
which corresponds to arrival, service departure and time elapsed. The transition diagram is given in Figure 1. The rate γ is the controlled parameter of the Erlang approximation. As γ tends to infinity, our approximation converges to the exact system (see [START_REF] Koole | First in line waiting times as a tool for analysing queueing systems[END_REF]). The main reason for using the Erlang distribution is that its limit converges to a deterministic value via the law of large numbers. To obtain the limit in our model, we choose n and γ such that n γ ∆ = τ and x and γ such that
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x γ ∆ = t if
x represents a given waiting time t (0 ≤ t ≤ τ ). Since the Erlang distribution is the least variable distribution among all phase type distributions [START_REF] David | The least variable phase type distribution is erlang[END_REF], the speed of convergence to the exact system is relatively fast (see for instance Figures 5 and6 in [START_REF] Legros | A uniformization approach for the dynamic control of queueing systems with abandonments[END_REF]).

The transition structure defined above determines a Markov chain for which we are interested in the transient behavior. We denote by π x (t), the transient probability to be in state x at time t ≥ 0 and assume that the system starts empty; π -1 (0) = 1. In order to simplify the notations, we write π x instead of π x (t) and denote by q the ratio γ λ+γ . The differential-difference equations governing the phase time of the FIL are given in Equation (1) as

∂π -1 ∂t = -λπ -1 + µπ 0 , (1) 
∂π 0 ∂t = -(λ + µ)π 0 + λπ -1 + µ n k=1 q k π k + γq n π n , ∂π 1 ∂t = -(γ + µq)π 1 + µ n-1 k=1 (1 -q)q k π 1+k + γ(1 -q)q n-1 π n + λπ 0 , ∂π x ∂t = -(γ + µq)π x + µ n-x k=1 (1 -q)q k π x+k + γ(1 -q)q n-x π n + γπ x-1 , for, 2 ≤ x ≤ n -1, ∂π n ∂t = -(γ + µ)qπ n + γπ n-1 .
3 Laplace Transforms of the transient probabilities π x

In Theorem 1, we provide explicit expressions of the Laplace Transform of the transient probabilities. To prove Theorem 1, we introduce the probability generating function, defined as P (z, t) = n x=0 π x z x . This function is related to the π x 's via π x = 1

x! ∂ x P (z,t)

∂z x | z=0 , for 0 ≤ x ≤ n. Using Equation
(1), we determine the differential equation satisfied by P (z, t). We define the Laplace Transform (LT) of a function f (z, t) (z ∈ C, t ≥ 0) as follows:

f * (z, y) = ∞ 0 e -yt f (z, t) dt,
for y ∈ C, with Re (y) > 0. This allows us to express the LT of P (z, t), denoted by P (z, y) * , as a function of π * -1 , π * 0 , and π * n . The zeros of the denominator of P (z, y) * are next used to express π * 0 , and π * n as functions of π * -1 . Finally, the first line of Equation (1) leads to the expression of π * -1 .

Theorem 1 We have

π x * = (y(1 -q) + λ(1 -z 1 ))π * 0 -(1 -q)(1 -yπ * -1 ) γ(z 2 -z 1 )z x 1 (2) + -(y(1 -q) + λ(1 -z 2 ))π * 0 + (1 -q)(1 -yπ * -1 ) γ(z 2 -z 1 )z x 2 , for 0 < x ≤ n, with π * 0 = 1 y λγ[(1 -z 1 )z n 1 -(1 -z 2 )z n 2 ] [(γ -λ)(y + λ) + γµ -γ(y + µ + γ)z 1 ]z n 1 -[(γ -λ)(y + λ) + γµ -γ(y + µ + γ)z 2 ]z n 2 , and (3) 
π * -1 = 1 y 1 - λ[(γ(1 -z 1 ) -λ)z n 1 -(γ(1 -z 2 ) -λ)z n 2 ] [(γ -λ)(y + λ) + γµ -γ(y + µ + γ)z 1 ]z n 1 -[(γ -λ)(y + λ) + γµ -γ(y + µ + γ)z 2 ]z n 2 , (4) 
where

z 1 = 1 2γ [y + γ + q(µ + γ) + (y + γ + q(µ + γ)) 2 -4γq(y + µ + γ)],
and,

z 2 = 1 2γ [y + γ + q(µ + γ) -(y + γ + q(µ + γ)) 2 -4γq(y + µ + γ)].
Proof. In order to derive P (z, t), we multiply the x th differential equation in Equation ( 1) by z x (0 ≤ x ≤ n). We subsequently sum up over all x to obtain a single differential equation leading after some algebra to

∂(P (z, t) + π -1 ) ∂t = -(1 -z) γ + µ q q -z P (z, t) + (1 -z)µ q q -z P (q, t) + (γ -λ)(1 -z)π 0 (5) + γ (1 -z)(q n+1 -z n+1 ) q -z π n .
From the second line of Equation (1), we get

µP (q, t) = ∂(π 0 + π -1 ) ∂t + (λ + µ)π 0 -γq n π n .
By replacing the expression of P (q, t) in Equation ( 5), we obtain

∂(P (z, t) + π -1 ) ∂t = -(1 -z) γ + µ q q -z P (z, t) + q(1 -z) q -z ∂(π 0 + π -1 ) ∂t (6) 
+ (1 -z)(qµ + λz + γ(q -z)) q -z π 0 -γ z n+1 (1 -z) q -z π n .
Applying the LT to Equation ( 6) and using P (z, 0) = π 0 (0) = 0 and π -1 (0) = 1, we obtain

P (z, y) * = - γ(1 -z)z n+1 π * n + (1 -z)((γ -λ)z -q(y + µ + γ))π * 0 + (1 -q)z(1 -yπ * -1 ) γz 2 -(y + q(µ + γ) + γ)z + q(y + µ + γ) . (7) 
The denominator of P (z, y) * is a quadratic in z. It has two zeros, z 1 and z 2 , as defined in the statement of Theorem 1. Recall that P (z, y) * = n x=0 π * x z x . Therefore, P (z, y) * is a polynomial in z.

So, P (z, y) * has a finite limit as z tends to z 1 or z 2 . Since the denominator of P (z, y) * in Equation ( 7) is equal to zero for z = z 1 or z = z 2 , a necessary condition for having a finite limit for P (z, y) * as z tends to z 1 or z 2 is to also have the limit of the numerator of P (z, y) * in Equation ( 7) equal to zero for z = z 1 and z = z 2 . Therefore, we deduce that

γ(1 -z i )z n+1 i π * n + (1 -z i )(γz 2 i -(y + q(µ + γ) + λ)z i )π * 0 + (1 -q)z i (1 -yπ * -1 ) = 0,
for i = 1, 2. These two equations allow us to derive π * n and π * 0 as functions of π * -1 . One then may write

π * 0 = 1 -yπ * -1 y (1 -z 1 )z n 1 -(1 -z 2 )z n 2 (1 -z 1 -λ/γ)z n 1 -(1 -z 2 -λ/γ)z n 2
, and,

π * n = 1 -yπ * -1 y λ(z 2 -z 1 ) γ[(1 -z 1 -λ/γ)z n 1 -(1 -z 2 -λ/γ)z n 2 ]
.

The LT of the first line of Equation ( 1) is yπ * -1 -1 = -λπ * -1 + µπ * 0 . This equation together with the expression of π * 0 given above leads to π * -1 and π * 0 as given in Theorem 1. There remains to determine the other probabilities (as functions of y) using π * x = 1

x! ∂ x P (z,y) * ∂z x | z=0 . We rewrite P * (z, y)

as

P * (z, y) = - (1 -z)z n+1 (z -z 1 )(z -z 2 ) π * n + γ -λ γ π * 0 + -z 1 (y(1 -q) + λ(1 -z 1 ))π * 0 + (1 -q)z 1 (1 -yπ * -1 ) γ(z -z 1 )(z 2 -z 1 ) + z 2 (y(1 -q) + λ(1 -z 2 ))π * 0 -(1 -q)z 2 (1 -yπ * -1 ) γ(z -z 2 )(z 2 -z 1 )
.

The x th derivative of the term proportional with π * n evaluated in z = 0 is equal to zero for x ≤ n because z i = 0, for i = 1, 2 and the x th derivative of z n+1 at z = 0 is zero for x ≤ n. Using

∂ x (z-z i ) -1 ∂z x | z=0 = -x! z x+1 i
, we deduce the expression of π * x , for 0 < x ≤ n. 2

Performance measures of the real system

The LT of the performance measures for the real system are obtained in Theorem 2 by letting γ tend to infinity. We consider the probability of an empty system (or an idle server), π -1 , the proportion of customers who are rejected, denoted by P R , the expected waiting time, denoted by E(W ), and the probability of waiting longer than a time threshold w, denoted by P (W > w), with 0 < w < τ .

Theorem 2 We have

π * -1 = 1 y 1 - λ y 1 -y 2 e -(y 1 -y 2 )τ y 1 (λ + µ + y) -λµ -(y 2 (λ + µ + y) -λµ)e -(y 1 -y 2 )τ , P * R = e -τ (y 1 -λ) y λ(y 1 -y 2 ) y 1 (λ + µ + y) -λµ -(y 2 (λ + µ + y) -λµ)e -(y 1 -y 2 )τ , E(W ) * = µ y 2 y 1 -(y + µ) -(y 2 -(y + µ))e -(y 1 -y 2 )τ + (τ λy/µ -1)(y 1 -y 2 )e -τ (y 1 -λ) y 1 (λ + µ + y) -λµ -(y 2 (λ + µ + y) -λµ)e -(y 1 -y 2 )τ
, and,

P (W > w) * = -y 1 + y + µ + λ + π * -1 ((y + λ)(y 1 -y -λ) -yµ) (y 1 -λ)(y 1 -y 2 ) (e (λ-y 1 )w -e (λ-y 1 )τ ) - -y 2 + y + µ + λ + π * -1 ((y + λ)(y 2 -y -λ) -yµ) (y 2 -λ)(y 1 -y 2 ) (e (λ-y 2 )w -e (λ-y 2 )τ ) + e -τ (y 1 -λ) y λ(y 1 -y 2 ) y 1 (λ + µ + y) -λµ -(y 2 (λ + µ + y) -λµ)e -(y 1 -y 2 )τ .
Proof. Using a Taylor expansion of z 1 , z 2 and z n i , as γ tends to infinity, we get

z 1 = 1 + 1 2γ y + µ -λ + (y + λ + µ) 2 -4λµ + o(1/γ) = 1 + y 1 -λ γ + o(1/γ), z 2 = 1 + 1 2γ y + µ -λ -(y + λ + µ) 2 -4λµ + o(1/γ) = 1 + y 2 -λ γ + o(1/γ),
and,

z n i = e (y i -λ)τ + o(1/γ), for i = 1, 2.
We observe that y 1 /λ and y 2 /λ are the roots of the denominator of the Laplace transform of the generating function in an M/M/1 queue (e.g., see [START_REF] Gross | Fundamentals of Queueing Theory[END_REF], Equation (2.57), p.99). This directly leads to the expression of π * -1 .

At time t, a customer can be rejected only from state x = n. The probability to be in state n is π n , the number of rejected customers from this state during an interval of time dt is γdt, the number of arrivals during the same interval is λdt. Therefore, the proportion of customers who are rejected from the system can be obtained as

P R = lim γ-→∞ γ λ π n .
Let us now consider the performance related to the waiting time in the queue. The embedded Markov chain at service initiations and rejection times is considered. In this way, we consider the virtual waiting time of a customer who would initiate a service or would be rejected at time t.

Service initiations occur at µ-transitions from states 0 < x ≤ n. Rejections occur at γ-transitions from state x = n. The expected duration of a waiting phase is 1/γ. Therefore, the virtual expected waiting time of served or rejected customers at time t is

E(W ) = lim γ-→∞ µ λ n x=1 x γ π x + γ λ n γ π n = lim γ-→∞ µ λ ∂P (z,t) ∂z | z=1 γ + γ λ n γ π n .
We therefore deduce the LT of the expected waiting time from

E(W ) * = lim γ-→∞ µ λγ ∂P * (z, y) ∂z | z=1 + τ γ λ π * n .
We now consider the probability of waiting more than a time threshold w such that 0 < w < τ irrespective if the customer is rejected or served; P (W > w). We can decompose this probability depending if a customer is served or rejected; P (W > w) = (1 -P R )P (W > w|Service) + P R P (W > w|Rejection).

Since rejections only occur after τ time units and w < τ , we have P (W > w|Rejection) = 1. Let us now focus on served customers. Consider a customer served from waiting phase x (0 < x ≤ n). This customer has stayed in the queue during x γ-phases. The probability that an Erlang distribution with x phases and rate γ per phase exceeds w is e -γw

x-1 k=0

(γw) k k! . Therefore, (1-P R )P (W > w|Service) = lim γ-→∞ µ λ n x=1 π x e -γw x-1 k=0 (γw) k k! = lim γ-→∞ µe -γw λ n-1 x=0 (γw) x x! n k=x+1 π k .
From Equation (2), we observe that π *

x = A 1 z x 1 -A 2 z x 2 , with A i = (y(1-q)+λ(1-z i ))π * 0 -(1-q)(1-yπ * -1 ) γ(z 2 -z 1 ) , for i = 1, 2. Moreover, n k=x+1 1 z k i = z -x i -z -n i z i -1 , for i = 1, 2. This leads to ((1 -P R )P (W > w|Service)) * = lim γ-→∞ µe -γw λ 2 i=1 (-1) i+1 A i z i -1 n-1 x=0 (γw/z i ) x x! -z -n i (γw) x x! .
By letting γ tend to infinity, we obtain P (W > w) * .

5 Comments and Numerical Illustration

The transient performance measures can be computed using a Laplace transform inversion. We use the speed up version of the Gaver-Stehfes algorithm presented in [START_REF] Cohen | Numerical methods for Laplace transform inversion[END_REF], page 144, equation (7.7),

where a given function f (t) is approximated by

ln(2) t N n=1 K n • f * n ln(2) t ,
where N is even and

K n = (-1) n+ N 2 min(n,N/2) k=[ n+1 2 ] k N/2 (2k)! (N/2 -k)!k!(k -1)!(n -k)!(2k -n)! .
One difficulty to apply this formula in practice is to determine a sufficiently high value for N and a sufficiently high number of digits for the values of K n in order to obtain a sufficiently accurate value for the function to invert. [START_REF] Abate | Multi-precision Laplace transform inversion[END_REF] investigated numerically the precision produced as a function of the parameter N . From extensive experimentation, they conclude that about 0.45×N significant digits are sufficient to obtain a relative error of the order of 10 -0.45N . However, their result depends on the transform. In our case, the complexity of the formulas requires higher values for N in particular in the zone where the elapsed time since the origin is close to the rejection threshold. Alternative methods for numerical Laplace transform inversion can be found in [START_REF] Abate | A unified framework for numerically inverting Laplace transforms[END_REF].

In Figure 2, we derive the main performance measures as a function of the time elapsed since the origin. From this and other numerical experiments, we observe that the M/M/1+D queue reaches a close to stationary behavior quicker than the corresponding M/M/1 queue. The justification of this observation is related to the reduction of the waiting time variability with a low rejection threshold.

The Laplace transforms of the performance measures allow us to compute their stationary expressions using the Final Value Theorem (e.g., see [START_REF] Cohen | Numerical methods for Laplace transform inversion[END_REF], Theorem 2.6, pages [START_REF] Xiong | An approximation for multi-server queues with deterministic reneging times[END_REF][START_REF] Xiong | M/G/1 queue with deterministic reneging times[END_REF]. These are obtained by computing the limit as y tends to 0 of the product of y with the LT of the wanted performance measure. This leads to π , and P (W > w) ∞ = a(e -w(µ-λ) -ae -τ (µ-λ) )

∞ -1 = 1-a 1-a 2 e -τ (µ-λ) , P ∞ R = a(1-a)e -τ (µ-λ) 1-a 2 e -τ (µ-λ) , E ( 
1-a 2 e -τ (µ-λ)

, where a = λ/µ.

Busy Period Analysis

A busy period is the time that elapses between two consecutive arrivals finding an empty system.

In this section, we determine the mean and the LT of a busy period in an M/M/1+D queue. These results can be extended to the full busy period of the M/M/s+D queue defined as a period commencing when an arriving customer finds exactly one idle server and ending at the first departure epoch leaving behind exactly one idle server. We use the same state definition as in the previous sections. Let the random variable C x be the time till the system is empty again if the FIL is in state x (1 ≤ x ≤ n) or if only one customer is in the system (x = 0). Since a busy period starts when the first customer after an idle period arrives and it ends when the system is empty again, C 0 is the length of a busy period.

Applying the first step analysis for the discrete-time Markov chain as in [START_REF] Kulkarni | Modeling and analysis of stochastic systems[END_REF] p.162 and [START_REF] Pinsky | An introduction to stochastic modeling[END_REF] p.116, we have the following finite sets of equations based on the transition structure defined in Section 2:

C * 0 (y + µ + λ) = λC * 1 + µ, (8) 
C * x (y + µ + γ) = γC * x+1 + µq x C * 0 + µ(1 -q) x k=1 q x-k C * k , for 1 ≤ x < n, C * n (y + µ + γ) = (µ + γ)q n C * 0 + (µ + γ)(1 -q) n k=1 q n-k C * k ,
In Theorem 3, we give the LT of C 0 , denoted by C * 0 , the expected duration of the busy period, denoted by E(C 0 ) and the variance of the busy period, denoted by V (C 0 ). The proof follows a similar approach as the analysis of Section 3.

Theorem 3

We have

C * 0 = µ λ 1 -
µ(y 2 -µ + (µ -y 1 )e -τ (y 1 -y 2 ) ) y 1 (y 2 -µ) + y 2 (µ y 1 )e -τ (y 1 2 ) + µ + s V (C 0 ) = µ 2 (µ + λ) -2λµ(µ -λ)(2 (λ + µ)τ )e -τ (µ-λ) -λ 2 (µ + λ)e -2τ (µ-λ) µ 2 (µ -λ) 3 .

In Figure 3, we illustrate the impact of the deterministic rejection threshold τ on the expected duration of the busy period and the coefficient of variation of the busy period (i.e., it is the ratio between the standard deviation and the expected duration of the busy period). As expected, these two measures increase with τ . As τ tends to infinity, we obtain the results for the M/M/1 queue.

The expected duration tends to 1 µ-λ if µ > λ and to infinity otherwise (instability). The coefficient of variation tends to In both cases the coefficient of variation is controlled. The uncertainty on the duration of the busy period is maximized when λ = µ. This may explain the relative position of this curve compared to the others. n Highest waiting phase, a and q a = λ µ and q = γ λ+γ .

System state x = -1 If the system is empty, x = 0 If the queue is empty and the server is busy, 0 < x ≤ n If the FIL is in waiting phase x.

Performance measures π x Probability to be in state x (-1 ≤ x ≤ n), P R Proportion of rejected customers, W Waiting time, C x Time till the system is empty again if the FIL is in state x (1 ≤ x ≤ n).

  , line 4) by r x,x-h = λ λ+γ γ λ+γ h for 0 ≤ h < x, and by r x,0 = γ λ+γ x . These expressions are computed using the exponential distribution of the interarrival time.
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 1 Figure 1: Transition diagram
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 2 Figure 2: Numerical results (µ = 1, τ = 1)

  0 ) = µ -λe -τ (µ-λ) µ(µ -λ), and,

  λ+µ |µ-λ| in all cases. This explains the relative position of the curves in Figure(3(b)) and an interesting property for the unstable M/M/1 queue. For low values of τ , the coefficient of variation increases with λ. For larger values of τ , either λ < µ and the system behaves close to a stable M/M/1 queue or λ > µ and most customers are rejected at τ time units.
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Table 1 :

 1 Table of notation Exogenous parameters λ Arrival rate, µ Service rate, γ Elapsing of time rate, τ Rejection time,