Matthieu Gruson 
email: matthieu.gruson@hec.ca
  
Majid Bazrafshan 
  
Jean-François Cordeau 
  
Raf Jans 
  
A Comparison of Formulations for a Three-level Lot Sizing and Replenishment Problem with a Distribution Structure

Keywords: Production planning and control, lot sizing, replenishment, mixed integer programming formulations, deterministic demand, one-warehouse multi-retailer problem, multi-level

We address a three-level lot sizing and replenishment problem with a distribution structure (3LSPD), which is an extension of the one-warehouse multi-retailer problem (OWMR). We consider one production plant that produces one type of item over a discrete and finite planning horizon. The items produced are used to replenish warehouses and then retailers using direct shipments. Each retailer is linked to a unique warehouse and there are no transfers between warehouses nor between retailers.

We also assume that transportation is uncapacitated. However, we consider the possibility of imposing production capacity constraints at the production plant level. The objective is to minimize the sum of the fixed production and replenishment costs and of the variable inventory holding costs at all three levels. We compare 13 different MIP formulations to solve the problem. All of these formulations are adapted from existing MIP formulations found in the one-warehouse multi-retailer literature, but most formulations are new in the context of the 3LSPD. We run experiments on both balanced and unbalanced networks. Our results indicate that the multi-commodity formulation is well suited for uncapacititated instances and that the echelon stock reformulations are better for capacitated instances. They also show that the richer formulations are not necessarily the best ones and that the unbalanced instances are harder to solve.

Introduction

Over the last decades, lot sizing problems have drawn the attention of many researchers, mainly because of their numerous applications in production, distribution and inventory management problems. Extensions of the basic lot sizing problem (LSP) are often encountered in the context of supply chain planning. Usually, the customers of a company, which have a certain demand, are located in a different area from the production plant where the items are actually produced and where lot sizing decisions are made. This leads to a replenishment problem where the company needs to determine when to replenish its customers so as to minimize the replenishment costs. Companies facing these two operational problems often make decisions in sequence. This leads, however, to solutions that can be far from the optimal solution of an integrated lot sizing and replenishment problem.

The integration of these two operational decisions has proven to be very effective for several industrial cases. Zhang and Song [START_REF] Zhang | Production and distribution planning in Danone waters China division[END_REF] study the case of Danone Waters in China, where the supply chain comprises several factories, distribution centers and local warehouses. They develop a decision support system based on mathematical programming to help managers in their production and distribution process. They report cost savings of at least 3.5% per year thanks to the integration of the two problems. In the same vein, Dhaenens-Flipo and Finke [START_REF] Dhaenens-Flipo | An integrated model for an industrial production-distribution problem[END_REF] study the case of a metal manufacturer which has facilities operating both in Europe and North America and whose transportation and production costs are inter-related. This naturally leads to an integrated problem where the objective is to simultaneously minimize these operational costs. They develop a mathematical model which is solved by means of a general purpose solver. They are able to solve instances of practical size in a short amount of CPU time and their model has been further incorporated in the decision system used at the company. Thanks to this tool, the company was able to reduce its operational costs. In a recent paper, Abdullah et al. [START_REF] Abdullah | Three stage dynamic heuristic for multiple plants capacitated lot sizing with sequence-dependent transient costs[END_REF] study the case of a petrochemical company having a four-level supply chain. Here, the integration combines lot-sizing, scheduling, transportation and warehousing decisions made at the different layers of the supply chain. The authors develop a three-stage heuristic to solve this integrated problem. Their heuristic is able to find solutions of good quality in a short amount of CPU time.

Following this line of research, we address here an integrated three-level lot sizing and replenishment problem with a distribution structure (3LSPD). We consider a general manufacturing company that has one production plant (level zero), several warehouses (level one) and multiple retailers (level two) facing a dynamic and known demand for one item over a discrete and finite time Production plant horizon. Considering only one production plant and one item is in line with industrial practice for companies developing multi-site policies to improve their operational efficiency. With such policies, each production site is focused on one particular item (see Dhaenens-Flipo and Finke [START_REF] Dhaenens-Flipo | An integrated model for an industrial production-distribution problem[END_REF]). The supply chain considered has a distribution structure: the warehouses are all linked to the single plant and all retailers are linked to exactly one warehouse. Figure 1 illustrates the flow of goods in such a distribution network. The objective of the problem is to determine the optimal timing and flows of goods between the different facilities while minimizing the operational and replenishment costs in the whole network.

Retailers Retailers

More specifically, given the set T of time periods, we face an integrated problem where decisions are made at all facilities for each time period. The optimal solution will indicate, for each time period, the optimal quantities to be produced and to be ordered from their predecessor for the production plant and for the warehouses and retailers, respectively, so that the final demand at each retailer is satisfied. The objective is to minimize the sum over all periods t of the fixed setup costs sc p t at the production plant, the fixed replenishment costs sc w t and sc r t of the warehouses and of the retailers, and the unit inventory holding costs hc i t of all facilities i. We do not include any unit production cost at the plant since the total production cost is a constant when all the demand is satisfied and when the unit production cost is constant over time. The same holds for the unit replenishment cost at the warehouses and retailers. Transfers of goods between the warehouses and between the retailers are not allowed. Finally, we only consider uncapacitated direct shipments and do not incorporate any routing in the transportation decisions. This is done in order to have a first step towards the study of the 3LSPD. Note that in a disaggregated context, the problem faced by any facility can be seen as the basic LSP. This basic LSP has attracted a lot of research since the seminal paper of Wagner and Whitin [START_REF] Wagner | Dynamic version of the economic lot size model[END_REF] who proposed a dynamic programming approach to solve the single item uncapacitated lot sizing problem (SI-ULSP). The reader is referred to Brahimi et al. [START_REF] Brahimi | Single-item dynamic lot-sizing problems: An updated survey[END_REF] and to Pochet and Wolsey [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] for a review of the work done on the SI-ULSP and its extensions. We consider both a capacitated and an uncapacitated version of the 3LSPD. In the capacitated version, the capacity constraints are imposed at the production plant level. There are no capacities on the flows between the facilities nor on the inventory level. Note that with the addition of the capacity constraints at the production plant level, the problem faced by the production plant can be seen as a basic capacitated lot sizing problem (CLSP). The reader is referred to Karimi et al. [START_REF] Karimi | The capacitated lot sizing problem: a review of models and algorithms[END_REF] for a review of models and algorithms used to solve the CLSP, and to Jans and Degraeve [START_REF] Jans | Modeling industrial lot sizing problems: a review[END_REF] for a review of industrial applications.

The 3LSPD we study is an extension of the one-warehouse multi-retailer problem (OWMR).

In the OWMR, a central warehouse replenishes several retailers that face a dynamic demand for one or several items over a discrete and finite time horizon. The objective of the problem is to jointly determine the optimal timing and quantities that are shipped between the warehouse and the retailers to minimize the sum of setup costs and inventory holding costs for the whole system. This problem has been shown to be NP -hard by Arkin et al. [START_REF] Arkin | Computational complexity of uncapacitated multi-echelon production planning problems[END_REF] and appears as a substructure in the production routing problem (PRP, Adulyasak et al. [START_REF] Adulyasak | The production routing problem: A review of formulations and solution algorithms[END_REF]).

The motivation to consider MIP formulations for the 3LSPD is twofold. First we want to work on modelling by developing or extending MIP formulations that are able to efficiently solve instances of practical size. A similar motivation can be found in the works of Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] and Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] who compare several MIP formulations for the one-warehouse multi-retailer problem (OWMR). Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] compare four MIP formulations and Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] compare eight different MIP formulations for the OWMR. They provide results concerning the LP bounds of each formulation and numerical experiments are performed. Our second aim is to verify if the theoretical and computational results obtained on the two-level OWMR still stand for our three-level problem.

Our paper makes two main contributions. First, we fill a gap by adapting several MIP formulations that have been proposed in the context of the two-level OWMR (Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF],

Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF]) to the 3LSPD. To the best of our knowledge, this is the first attempt to provide strong formulations for the 3LSPD that can solve instances of large scale. We also analyze the relationships between the linear relaxations of these formulations. Second, we report the results of extensive numerical experiments using a general-purpose solver to assess the strengths and weaknesses of the different formulations. Indeed, we perform experiments for different structures of the main parameters (fixed or dynamic demand, fixed or dynamic setup costs) and for two distribution structures of the supply chain network. In one case we consider a balanced distribution network in which each warehouse is responsible for the same number of retailers. In the other case, we consider an unbalanced distribution network where 20% of the warehouses replenish 80% of the retailers.

The results obtained highlight the importance of properly choosing a formulation depending on the characteristics of the problem.

The remainder of this paper is organized as follows. First, we survey the work related to our study in Section 2. We then present thirteen different MIP formulations for the problem in Section 3. These MIP formulations can be divided into three groups of formulations: the classical formulation, which uses the standard MIP formulation of the basic LSP, the echelon stock based formulations, inspired from the echelon stock concept for the multi-level LSP, and the richer formulations, containing more information in the decision variables, inspired from the work on the polyhedral structure of the solutions of both the SI-ULSP and the two-level lot sizing problems.

Section 4 presents computational results to determine the strengths and weaknesses of the different formulations that we propose, and to analyze the impact of the different parameters. This is followed by the conclusion in Section 5.

Literature review

When reviewing the literature on the three-level LSP (3L-LSP), one can find several supply chain structures depending on the type of decisions made at each level and the configuration of the links between the different levels. The following section only reviews the literature for which the supply chain structure is the same as in our problem: one production plant, several warehouses and several retailers. When not explicitely mentionned, the supply network structure considered in the papers reviewed in this section is a distribution structure as in our problem.

Only a few papers address a three-level lot sizing problem with a number of facilities per level which is the same as in our problem. The ones that we found all address extensions of the 3LSPD considered in this paper. Gebennini, Gamberini and Manzini [START_REF] Gebennini | An integrated production -distribution model for the dynamic location and allocation problem with safety stock optimization[END_REF] propose a heuristic to solve a problem where they consider safety stocks and allow backorders. The basic model they propose is non-linear because of the safety stock cost but is linearized with an approximation of the objective function. There are also due dates for the deliveries to the customers. The authors design a procedure to solve the approximate problem. Barbarosoglu and Ozgur [START_REF] Barbarasoglu | Hierarchical design of an integrated production and 2-echelon distribution system[END_REF] address the 3L-LSP where each retailer is linked to every warehouse.

They thus do not have a distribution structure in their network but a general one instead. They also work in a just-in-time (JIT) environment which translates into a constraint that prevents retailers from keeping inventory. The model contains both fixed and unit transportation costs. The authors propose a transportation based MIP model and use Lagrangean relaxation to solve the problem. They relax the constraints linking the production and distribution components to obtain a production subproblem which can be decomposed into knapsack problems, and a distribution subproblem that can be easily solved for each item-customer pair. A customized procedure is then used to build feasible solutions from the solutions obtained in these two sub-problems.

Several extensions relate to applications for industrial cases. Kopanos, Puigjnaer and Georgiadis [START_REF] Kopanos | Simultaneous production and logistics operations planning in semicontinuous food industries[END_REF] address an industrial case in Greece in the food industry. They have a fixed cost per vehicle used for the deliveries between the facilities and there are several transportation modes available. They consider restrictions on the vehicles that can make the deliveries between facilities. They extend their MIP model to consider several production plants and use a general-purpose solver to solve their instances. Haq, Vrat and Kanda [START_REF] Haq | An integrated production-inventory-distribution model for manufacture of urea: a case[END_REF] also use a general-purpose solver to solve an industrial case of urea manufacturing. They propose a MIP model that contains transportation lead time and backlog but these features are discarded in the numerical experiments performed.

Heuristics have also been proposed to solve extensions of the 3LSPD applied to industrial cases.

Lejeune [START_REF] Lejeune | A variable neighborhood decomposition search method for supply chain management planning problems[END_REF] proposes to solve a problem with a fixed cost per truck used and unit transportation costs. The author also considers transportation capacities and time availability of the carriers. A combination of branch-and-bound (B&B) and variable neighborhood search (VNS) is used to solve the problem. A computational experiment using data of a US chemical company indicates that this method outperforms CPLEX. In the same vein, Özdamar and Yazgaç [START_REF] Özdamar | A hierarchical planning approach for a production-distribution system[END_REF] treat the case study of a detergent company in Turkey. They design an algorithm to approximately solve the problem.

The authors consider transportation capacities and propose an aggregate and a disaggregate MIP model. The algorithm is based on an iterative hierarchical approach as well as on a rolling horizon.

Note that in the works mentioned in this section, only three different types of MIP formulation have been used: Haq, Vrat and Kanda [START_REF] Haq | An integrated production-inventory-distribution model for manufacture of urea: a case[END_REF], Lejeune [START_REF] Lejeune | A variable neighborhood decomposition search method for supply chain management planning problems[END_REF], Gebennini, Gamberini and Manzini [START_REF] Gebennini | An integrated production -distribution model for the dynamic location and allocation problem with safety stock optimization[END_REF] and Özdamar and Yazgaç [START_REF] Özdamar | A hierarchical planning approach for a production-distribution system[END_REF] use a classical formulation, Barbarosoglu and Ozgur [START_REF] Barbarasoglu | Hierarchical design of an integrated production and 2-echelon distribution system[END_REF] use a combined classical and transportation formulation, and Kopanos, Puigjnaer and Georgiadis [START_REF] Kopanos | Simultaneous production and logistics operations planning in semicontinuous food industries[END_REF] use a transportation formulation. The classical formulation will be presented in Section 3.1 while the transportation formulation will be given in Section 3.4. The combined transportation and classical formulation is not presented in this paper because of its poor performances compared to other formulations. The interested reader is referred to Gruson et al. [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF].

Formulations

Let G = (F, A) be a graph where F is the set of nodes (facilities in our problem) and A is the set of arcs. Let P = {p} ⊂ F be the set containing the unique production plant, W ⊂ F be the set of warehouses and R ⊂ F be the set of retailers. Following the problem description in Section 1, we have F = P ∪ W ∪ R. Let δ(i) be the set of all direct successors of facility i and δ w (r) be the warehouse linked to the retailer r ∈ R. Let d r t be the demand for retailer r in period t. The notion of the demand faced by any retailer is extended to the warehouses and to the production plant in the following fashion:

d i t =    r∈R d r t if i = p r∈δ(i) d r t if i ∈ W.
Using the notion of the demand faced by any facility, we introduce D i t , the total demand between period t and the end of the time horizon computed as D i t = k≥t d i k . Similarly, we introduce, for any facility i, the demand between periods k and t as d i kt = k≤l≤t d i l . In the following sections, all the MIP formulations are presented in their capacitated version, with C t representing the available capacity in period t.

Classical formulations

We first present a simple MIP formulation that extends the basic MIP formulation for the ULSP as used by Pochet and Wolsey [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF]. We call this formulation the classical formulation (C). This formulation is based on three sets of decisions variables: x i t represents the production quantity in period t if i = p and the quantity ordered from the predecessor if i ∈ W ∪ R, s i t is the inventory held at the end of period t in facility i, and y i t is a boolean setup variable taking value 1 iff x i t > 0. The formulation is as follows:

Min t∈T i∈F sc i t y i t + i∈F hc i t s i t (1) s.t. x i t ≤ D i t y i t ∀ t ∈ T, i ∈ F (2) 
s i t-1 + x i t = j∈δ(i) x j t + s i t ∀ t ∈ T, i ∈ P ∪ W (3) 
s r t-1 + x r t = d r t + s r t ∀ t ∈ T, r ∈ R (4) 
x p t ≤ min{C t , D p t }y p t ∀t ∈ T (5)

x i t , s i t ≥ 0 ∀ t ∈ T, i ∈ F (6) 
y i t ∈ {0, 1} ∀ t ∈ T, i ∈ F. (7) 
The objective function minimizes the sum of the fixed setup and replenishment costs and of the unit inventory holding costs. Constraints (2) are the setup forcing constraints for all facilities.

Constraints (3) are the inventory balance equations for the production plant and the warehouses whereas (4) are the inventory balance equations for the retailers. Constraints (5) are the capacity constraints at the production plant.

The classical formulation C has a rather poor linear relaxation which can be improved by using some ideas coming from the ULSP literature. We observe that when we only consider the inventory balance equations (4) and the setup constraints (2) specifically for the retailers, we have a single item lot sizing structure for each retailer since the inventory balance equations (4) only incorporate the independent demand for each retailer. This means that we can use the existing strong reformulations of the ULSP for each of the retailers. These reformulations are not directly applicable at the warehouse or plant level, since at these levels the inventory balance constraints contain dependent demand in the form of decision variables related to the ordering decisions at the direct successors. Despite these improvements, the results we obtained for the classical formulation using a strong formulation at the retailer level are still poor compared to the results obtained with other formulations presented hereafter and therefore, we do not present them. The interested reader is referred to Gruson et al [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF]. Note, however, that these reformulations can be applied at all levels using the echelon stock formulation (see Section 3.2). 175

Echelon stock formulations

Employing the idea of an echelon stock presented in Federgruen and Tzur [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF], the 3LSPD can be decomposed into several independent SI-ULSPs. To do so, the inventory variables of the classical formulation C are replaced with echelon stock variables representing the total inventory at all descendents of a particular facility. This idea has proven successful in the context of the OWMR to derive strong lower bounds within a Lagrangian relaxation scheme (see Federgruen and

Tzur [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF]). We define the echelon stock I i t for facility i in period t as:

I i t =          s i t + w∈W s w t + r∈R s r t if i = p s i t + r∈δ(i) s r t if i ∈ W s i t if i ∈ R.
The echelon stock formulation (ES) is then as follows:

Min t∈T   i∈F sc i t y i t + p∈P hc p t I p t + w∈W (hc w t -hc p t ) I w t + r∈R hc r t -hc δw(r) t I r t   (8) 
s.t. ( 2), ( 5), ( 7)

s.t. I i t-1 + x i t = d i t + I i t ∀ t ∈ T, i ∈ F (9) 
I i t ≥ j∈δ(i) I j t ∀ t ∈ T, i ∈ P ∪ W (10) 
x i t , I i t ≥ 0 ∀ t ∈ T, i ∈ F. (11) 
The objective function ( 8) is written in terms of echelon stock variables. Constraints ( 9) are the inventory balance constraints using the new echelon stock variables. Constraints [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF] are the echelon stock constraints ensuring that the echelon stock at a specific facility is greater than the sum of the echelon stocks at all its direct successors. These constraints come from the non-negativity 180 constraints (6) imposed on the stock variables in the classical formulation C. Note that with the introduction of the echelon stock variables, the problem has an uncapacitated lot sizing structure (in constraints ( 2) and ( 9)) with independent demand at each level. This means that we can apply the known reformulation techniques for the ULSP at each level.

First, we use the network reformulation proposed by Eppen and Martin [START_REF] Eppen | Solving multi-item capacitated lot-sizing problems with variable definition[END_REF] for the SI-CLSP. This reformulation is based on the property of extreme flows in a network as applied by Zangwill [START_REF] Zangwill | A backlogging model and a multi-echelon model of a dynamic economic lot size production system -a network approach[END_REF] to the SI-ULSP. This property, also known as the zero inventory ordering property, states that if there is a positive entering stock at any period in the SI-ULSP, then the flow coming from production is equal to zero. Conversely, if the production is positive at any period, then the entering stock for this period is equal to zero. Although this property does not hold for the capacitated case, Eppen and

Martin [START_REF] Eppen | Solving multi-item capacitated lot-sizing problems with variable definition[END_REF] show that their proposed reformulation is valid for the capacitated case. Both for the SI-ULSP and SI-CLSP this reformulation drastically improves the linear programming relaxation.

In particular, this leads to the integrality property in the case of the SI-ULSP. We define Z i kt to be positive variables representing the proportion of d i kt that is produced in period k for i = p, and to be the proportion of d i kt that is ordered in period k for i ∈ W ∪ R. The echelon stock network formulation (ES-N) is obtained by substituting constraints (2), ( 5) and ( 9) by constraints ( 12), ( 13) and ( 14)-( 16), respectively:

|T | k=t:d i tk >0 Z i tk ≤ y i t ∀ t ∈ T, i ∈ F (12) |T | k=t Z p tk d p tk ≤ min{C t , D p t }y p t ∀t ∈ T ( 13 
) |T | k=1 Z i 1k = 1 ∀ i ∈ F (14) t-1 l=1 Z i l,t-1 = |T | l=t Z i tl ∀ t ≥ 2, i ∈ F ( 15 
)
I i t =   t l=1 |T | k=l d i lk Z i lk   -d i 1t ∀ t ∈ T, i ∈ F. (16) 
Constraints ( 14) are the initial flow constraints for each facility and constraints [START_REF] Karimi | The capacitated lot sizing problem: a review of models and algorithms[END_REF] are the flow conservation constraints. Constraints ( 16) link the flow variables and the echelon stock variables.

Second, one can use the transportation reformulation of the ULSP proposed by Krarup and

Bilde [START_REF] Krarup | Plant location, set covering and economic lot-sizes: An O(mn) algorithm for structured problems[END_REF] to obtain another formulation for the problem. This reformulation, when applied to the SI-ULSP, also has the integrality property. We define X i kt to be the quantity that is produced in period k and used to satisfy d i t for i = p, and to be the quantity that is ordered in period k for i ∈ W ∪R and used to satisfy d i t . The echelon stock transportation formulation (ES-TP) is obtained by substituting constraints (2), ( 5) and ( 9) by constraints ( 17), ( 18) and ( 19)- [START_REF] Melo | Uncapacitated two-level lot-sizing[END_REF], respectively:

X i tk ≤ d i k y i t ∀k ∈ T, t ≤ k ∈ T, i ∈ F (17) |T | k=t X p tk ≤ min{C t , D p t }y p t ∀t ∈ T (18) 
I i t-1 + |T | k=t X i tk = d i t + I i t ∀ t ∈ T, i ∈ F (19) t k=1 X i kt = d i t ∀ t ∈ T, i ∈ F. (20) 
Constraints ( 19) are the inventory balance constraints. These are included in order to correctly calculate the inventory levels. Constraints [START_REF] Melo | Uncapacitated two-level lot-sizing[END_REF] are the demand satisfaction constraints.

Finally, one can also use the polyhedral results for the SI-ULSP to improve the echelon stock formulation at each of the 3 levels. In particular, Barany et al. [START_REF] Barany | Uncapacitated lot-sizing: The convex hull of solutions[END_REF] propose the (l, S) valid inequalities that describe the polyhedron of solutions of the SI-ULSP. Besides, if the SI-ULSP has Wagner-Whitin costs (i.e., pc t + hc t ≥ pc t+1 , ∀ t ∈ T , where pc t is the unit production cost in period t),

Pochet and Wolsey [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] propose the (l, S, W W ) valid inequalities. When adapted to our problem, these (l, S, W W ) inequalities are defined as follows:

I i k-1 ≥ l j=k d i j 1 - j u=k y i u ∀ l ∈ T, k ≤ l ∈ T, i ∈ F. (21) 
These inequalities are added to ES to form the echelon stock-(l, S) formulation (ES-LS). These inequalities are always valid, even if the costs do not satisfy the Wagner-Whitin condition. However, in case the Wagner-Whitin cost condition holds, they are sufficient to describe the convex hull of the SI-ULSP.

Following the model proposed in Federgruen and Tzur [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF], another change can be made to the echelon stock formulation ES. Indeed, one can alternatively write the echelon stock constraints [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF] using the production variables of the ES, ES-N or ES-TP formulation, respectively:

220 t k=1 x i k ≥ j∈δ(i) t k=1 x j k ∀t ∈ T, i ∈ P ∪ W. ( 22 
) t k=1 l≥k d i kl Z i kl ≥ j∈δ(i) t k=1 l≥k d j kl Z j kl ∀t ∈ T, i ∈ P ∪ W. ( 23 
) t k=1 l≥k X i kl ≥ j∈δ(i) t k=1 l≥k X j kl ∀t ∈ T, i ∈ P ∪ W. ( 24 
)
If we substitute ( 10) by ( 22), ( 23) and ( 24 

Network formulation

The following formulation uses the network reformulation as proposed by Eppen and Martin [START_REF] Eppen | Solving multi-item capacitated lot-sizing problems with variable definition[END_REF] for the SI-ULSP to rewrite the variables and constraints of the problem. Such a reformulation has also been applied by Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] and Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] for the OWMR. Both Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] and Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] showed that this reformulation gives a strong linear relaxation for the OWMR compared to numerous other formulations. For any retailer r, let ψ r klst be the proportion of d r st that is produced by the production plant in period k, transported to the warehouse of retailer r in period l and to retailer r in period s. Let also nc r klst be the cost linked to the variable ψ r klst : nc 

s.t. |T | t=1 ψ r 111t = 1 ∀ r ∈ R (26) t-1 k=1 t-1 l=k t-1 s=l ψ i k,l,s,t-1 = t k=1 t l=k |T | s=t ψ i klts ∀ t ≥ 2, r ∈ R (27) t l=k t s=l |T | j=t:d r sj >0 ψ r klsj ≤ y p k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (28) l k=1 t s=l |T | j=t:d r sj >0 ψ r klsj ≤ y δw(r) l ∀ t ∈ T, l ≤ t ∈ T, r ∈ R (29) s k=1 s l=k |T | j=t:d r sj >0 ψ r klsj ≤ y r s ∀ t ∈ T, s ≤ t ∈ T, r ∈ R (30) i∈R |T | l=k |T | s=l |T | t=s ψ i klst d i st ≤ min{C k , D p k }y p k ∀k ∈ T (31) ψ r klst ≥ 0 ∀ k ≤ l ≤ s ≤ t ∈ T, r ∈ R ( (25) 
) 32 
y i t ∈ {0, 1} ∀t ∈ T, i ∈ F. (33) 
Constraints ( 26) are the demand satisfaction constraints written as initial flow constraints. Con-225 straints (27) are the flow conservation constraints. Constraints (28), ( 29) and (30) are the setup forcing constraints for the production plant, the warehouses and the retailers, respectively. Constraints (31) are the capacity constraints at the production plant.

Transportation formulation

In the following formulation, the interactions between the facilities are modeled based on the transportation formulation of Krarup and Bilde [START_REF] Krarup | Plant location, set covering and economic lot-sizes: An O(mn) algorithm for structured problems[END_REF] for the SI-ULSP. Levi et al. [START_REF] Levi | A constant approximation algorithm for the one-warehouse multiretailer problem[END_REF] propose such a transportation formulation for the OWMR. For the OWMR, Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] have proven that its linear relaxation is weaker than the one of the network formulation but their results also indicate that the transportation formulation has a better performance for solving the MIP compared to the N formulation. For any retailer r, let θ r klst be the quantity that is produced by the production plant in period k, transported to the warehouse of retailer r in period l, transported to retailer r in period s and used to satisfy d r t . Let also H r klst be the cost linked to θ r klst : 

H r klst = l-1 j=k hc p j + s-1 j=l hc δw(r) j + t-
= d r t ∀ t ∈ T, r ∈ R (35) t l=k t s=l θ r klst ≤ d r t y p k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (36) l k=1 t s=l θ r klst ≤ d r t y δw(r) l ∀ t ∈ T, l ≤ t ∈ T, r ∈ R (37) s k=1 s l=k θ r klst ≤ d r t y r s ∀ t ∈ T, s ≤ t ∈ T, r ∈ R (38) i∈R |T | l=k |T | s=l |T | t=s θ i klst ≤ min{C k , D p k }y p k ∀k ∈ T (39) θ r klst ≥ 0 ∀ k ≤ l ≤ s ≤ t ∈ T, r ∈ R ( 40 
)
y i t ∈ {0, 1} ∀t ∈ T, i ∈ F. (41) 
Constraints ( 35) are the demand satisfaction constraints. Constraints (36), ( 37) and ( 38) are the 230 setup forcing constraints for the production plant, the warehouses and the retailers, respectively.

Constraints (39) are the capacity constraints at the production plant.

Multi-commodity formulation

The next formulation proposed is based on the distinction of each retailer-period pair (i.e., each d r t is viewed as a distinct commodity). In the context of a two-level lot sizing problem in series, this formulation has proven to be very effective both in terms of the CPU time taken to solve instances and of the strength of the linear programming relaxation bound, see Melo and Wolsey [START_REF] Melo | Uncapacitated two-level lot-sizing[END_REF]. Similar results have been observed by Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] for the OWMR. In particular, this formulation has proven to be very efficient to solve large scale MIP instances for the OWMR despite a linear relaxation which is weaker than the one provided by the N formulation. For this formulation, for any retailer r, let w 0r kt be the amount produced at the production plant in period k to satisfy d r t , let w 1r kt be the amount transported from the production plant to the warehouse of retailer r in period k to satisfy d r t and let w 2r kt be the amount transported from the warehouse of retailer r to retailer r in period k to satisfy d r t . Let also σ 0r kt be the amount stocked at the production plant at the end of period k to satisfy d r t , let σ 1r kt be the amount stocked at the warehouse of retailer r at the end of period k to satisfy d r t and let σ 2r kt be the amount stocked at retailer r at the end of period k to satisfy d r t . In the following formulation, we denote by δ kt the Kronecker delta which takes the value 1 if k = t and 0 otherwise. The multi-commodity formulation (MC) is as follows:

Min t∈T   i∈F sc i t y i t + r∈R k≤t hc p k σ 0r kt + r∈R k≤t hc δw(r) k σ 1r kt + r∈R k≤t hc r k σ 2r kt   (42) σ 0r k-1,t + w 0r kt = w 1r kt + σ 0r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (43) σ 1r k-1,t + w 1r kt = w 2r kt + σ 1r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (44) σ 2r k-1,t + w 2r kt = δ kt d r t + (1 -δ kt )σ 2r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (45) 
w 0r kt ≤ d r t y p k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (46) 
w 1r kt ≤ d r t y δw(r) k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (47) 
w 2r kt ≤ d r t y r k ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (48) r∈R |T | t=k w 0r kt ≤ min{C k , D p k }y p k ∀k ∈ T ( 49 
)
w 0r kt , w 1r kt , w 2r kt , σ 0r kt , σ 1r kt , σ 2r kt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R ( 50 
)
y i t ∈ {0; 1} ∀t ∈ T, i ∈ F. (51) 
Constraints ( 43), ( 44) and ( 45) are the balance constraints for each commodity at the production plant, at the warehouses and at the retailers, respectively. Constraints (46), ( 47) and ( 48) are the 235 setup forcing constraints for the production plant, the warehouses and the retailers, respectively.

Constraints (49) are the capacity constraints at the production plant.

The last formulation combines the idea of an echelon stock presented in Federgruen and Tzur [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF] and the MC formulation. To the best of our knowledge, it is the first time that such a formulation is proposed. We call it the multi-commodity echelon formulation (MCE). To get this formulation, the inventory variables of the MC formulation are replaced with multi-commodity echelon variables E lr kt representing the amount stocked at the end of period k at all predecessors of retailer r which are in level l or more, and which will be used to fulfill the specific demand d r t . We define the multi-commodity echelon variables E lr kt as:

E lr kt =          σ 0r kt + σ 1r kt + σ 2r kt if l = 0 σ 1r kt + σ 2r kt if l = 1 σ 2r kt if l = 2.
The multi-commodity echelon formulation (MCE) is then as follows:

Min t∈T   i∈F sc i t y i t + r∈R k≤t hc p k E 0r kt + r∈R k≤t hc δw(r) k -hc p k E 1r kt + r∈R k≤t hc r k -hc δw(r) k E 2r kt   (52) s.t. (46) -(51) E 0r k-1,t + w 0r kt = δ kt d r t + (1 -δ kt )E 0r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (53) E 1r k-1,t + w 1r kt = δ kt d r t + (1 -δ kt )E 1r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (54) E 2r k-1,t + w 2r kt = δ kt d r t + (1 -δ kt )E 2r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (55) E 0r kt ≥ E 1r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (56) E 1r kt ≥ E 2r kt ∀ t ∈ T, k ≤ t ∈ T, r ∈ R (57) E 0r kt , E 1r kt , E 2r kt ≥ 0 ∀ t ∈ T, k ≤ t ∈ T, r ∈ R. (58) 
Constraints ( 53), ( 54) and ( 55) are the balance constraints for each commodity at the production plant, at the warehouses and at the retailers respectively. Constraints (56) and ( 57) are the echelon constraints ensuring that the multi-echelon stock at a specific facility for a specific commodity is greater than or equal to the sum of the multi-echelon stocks at all its direct successors for the same commodity.

Summary

The formulations previously introduced are extensions of the MIP formulations proposed for the OWMR. For all the formulations presented, the adaptation of the original decision variables naturally leads to an increase in their number. For the N and TP formulations, this increase translates into an additionnal dimension with the new subscript k in the decision variables ψ r klst and θ r klst to reflect the third level. For all the other formulations, the increase in the number of decision variables is just the result of the increase in the number of facilities due to the added third level. Thus, the increase in the number of decision variables for the N and TP formulations is much higher than for the other formulations when going from a two-level LSP to a three-level LSP.

Table 1 gives a summary of the number of variables (binary and in total) and constraints for each formulation, and the paper from which the formulation has been adapted to our problem.

Recall that these papers present a one-level or two-level problem whereas we consider a three-level problem. Note that, to the best of our knowledge, the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations we propose are completely new. In Table 1, one can see that the richer formulations, i.e., the ones that have more information in the decision variables, are the largest ones.

Analysis of the LP relaxation of formulations

We analyse the strength of the MIP formulations in terms of the objective function value of their LP relaxation, without considering the production capacity constraint [START_REF] Barbarasoglu | Hierarchical design of an integrated production and 2-echelon distribution system[END_REF]. We denote by z X LP 16 

ES-F-N O(|F | × |T |) O(|F | × |T | 2 ) O(|F | × |T |) ES-F-TP O(|F | × |T |) O(|F | × |T | 2 ) O(|F | × |T | 2 ) ES-F-LS O(|F | × |T |) O(|F | × |T |) O(|F | × |T | 2 ) N O(|F | × |T |) O(|R| × |T | 4 ) O(|R| × |T | 2 ) Solyalı and Süral [23] TP O(|F | × |T |) O(|R| × |T | 4 ) O(|R| × |T | 2 ) Levi et al. [19] MC O(|F | × |T |) O(|R| × |T | 2 ) O(|R| × |T | 2 ) Melo and Wolsey [20] MCE O(|F | × |T |) O(|R| × |T | 2 ) O(|R| × |T | 2 )
the objective function value of the LP relaxation of formulation X. The following example is used to illustrate most of the strict dominance relations between the formulations. The strict dominance relation between formulations MC and N cannot be observed empirically on small instances such as the one presented hereafter. However, we have observed it for large instances in our computational 

z C LP = z ES LP = z ES-F LP ≤ z ES-LS LP = z ES-F -LS LP ≤ z ES-N LP = z ES-T P LP = z ES-F -N LP = z ES-F -T P LP ≤ z T P LP = z M C LP = z M CE LP ≤ z N LP (59)
Proof. The reader is referred to Gruson et al. [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF] for detailed proofs.

Numerical experiments

In order to assess the strengths and weaknesses of the different formulations, we conducted computational experiments based on the instances used in Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF]. As we have one more level than in Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF], we slightly adapted these instances. In our instances, the In order to test our formulations, we additionnally define two structures for the distribution network represented in Figure 1. In the first structure, we consider a balanced network where each warehouse has the same number of retailers, except when the number of retailers is not a multiple of the number of warehouses. In the second structure, we consider an unbalanced network where instances for which the MIP is solved to optimality, (2) the CPU time (s) taken to solve the LP relaxation, (3) the CPU time (s) taken to solve the MIP, (4) the objective function value of the LP relaxation, (5) the objective function value of the MIP optimal solution when available, cost of the best solution found otherwise, (6) the number of nodes in the branch-and-cut tree [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] the integrality gap (%) and ( 8) the optimality gap (%).

For a particular instance, if we denote by z X LP the objective function value of the LP relaxation with formulation X and by z * the optimal objective function value of this instance when available (or the best objective function value obtained among all formulations for this instance otherwise), the integrality gap is computed as (z * -z X LP ) / z * . The optimality gap is the percentage gap between the best solution found and the best lower bound given by CPLEX at the end of the CPU time limit.

In the following sections, results will be reported in two tables. The first table illustrates the aggregated results obtained for |T | = 15 while the second table displays the aggregated results obtained for |T | = 30. In each table, each row represents the results obtained for a particular formulation while each column refers to the different indicators previously defined. In the tables, MIP-opt denotes the number of MIP optimal solutions obtained (out of 240 instances in each table); LP-CPU and MIP-CPU represent the CPU time taken to solve the LP and MIP instances, respectively; LP-cost and MIP-cost represent the cost of the LP and MIP optimal solutions (or best solution found at the end of the time limit for the MIP solutions), respectively; I-gap gives the integrality gap and O-gap indicates the optimality gap. In Sections 4.1 and 4.2 we will report the results for the uncapacitated and capacitated instances, respectively. In Section 4.3, we will perform an analysis of the influence of the parameters in our experiments. For more detailed results, the interested reader is referred to Gruson et al. [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF].

Uncapacitated instances

We first report the results for the balanced network in Section 4.1.1, followed by the unbalanced network in Section 4.1.2. For the uncapacitated instances, we performed our experiments on a 3.07 GHz Intel Xeon processor with only one thread. For these instances, CPLEX was able to find a feasible MIP solution for all uncapacitated instances with a balanced network and with an unbalanced network. The LP relaxation values are calculated separately. Note that we do not impose any time limit to solve the LP relaxations. Note also that we performed additional experiments with 2 and 4 threads to solve the instances. The conclusions we draw hereafter for the uncapacitated instances still stand, but the CPU time needed to solve the MIP decreases by a factor ranging between 2 and 4, when multiple threads are used.

Balanced network

In the balanced network, each warehouse is responsible for approximately the same number of retailers (see Table 2). Tables 4 and5 illustrate the performance of the different MIP formulations for |T | = 15 and |T | = 30, respectively. In Table 4, which presents the results for the small instances, one can see that the formulations MC, MCE, N and TP obtain the best performance in general, with all MIP optimal solutions found, the lowest MIP-CPU and a value of the LP relaxation which is very close to the optimal MIP cost. Yet, the LP relaxation for these three formulations is not the same as the MIP optimal cost, as witnessed by the small but positive values for the I-gap. The impact of the strength of the LP relaxation can also be seen on the small number of nodes in the branch-and-cut tree, less than 1 on average. Besides, the MC formulation has the lowest MIP-CPU time among all formulations. However, the CPU time needed to solve the LP relaxation of these formulations is much higher than with the other formulations. Note that for the N formulation, the LP-CPU is higher than the MIP-CPU because of the efficiency of the heuristic used by CPLEX at the root node before going in the branch-and-cut tree. In general, the high performance of these formulations is also expected because of the rich information which is contained in the decision variables used for each formulation.

For the small instances, the C formulation obtains the worst results, mainly because of a poor LP relaxation as shown by the integrality gap reported in Table 4 4. They were able to solve all instances to optimality, which is not the case for the ES and ES-F formulations. This better performance of these six formulations is easily explained by the use of a reformulation of the uncapacitated lot sizing structure found in the ES formulation, and the resulting improved LP bound. The effect of this improved LP bound can also be seen in the number of nodes in the branch-and-cut tree, which is lower than for formulations C, ES and ES-F, and in the low I-gap obtained, around 1.6%.

Table 5 reports the performance of each formulation for the large instances, with |T | = 30. The performance of the richer formulations N, TP, MC and MCE is more contrasted than for the small instances. The number of instances solved to optimality for the N formulation is much lower than for the three other rich formulations. This can be explained by the inability of the N formulation to solve the LP relaxation of the instances in a short time. One can see a similar behavior, but to a lesser extent, for the TP formulation. This difficulty for the formulations N and TP to even solve the LP relaxations of many large instances can be explained by the huge number of variables used in the models when |T | = 30, which is a major drawback of these two formulations. This practical drawback is the price one has to pay for the strong LP relaxation given by these two formulations, as stated by the theoretical results presented in Section 3.7. Finally, the MC formulation still provides the best performances for these large instances, both in terms of CPU time to solve the MIP instances and in terms of number of optimal solutions found within the time limit.

In light of the results provided in Tables 4 and5, we can draw the following conclusions about the performance of our formulations on an uncapacitated balanced network: (a) the C formulation is the poorest, mainly because of a bad LP relaxation; (b) applying the echelon stock reformulation to the classical formulation does not have any impact on the LP relaxation value (as we also theoretically proved), but the results nevertheless show a substantial improvement in CPU time, optimality gap and number of instances solved to optimality (the conjecture is that because the echelon stock reformulation exposes the single item lot sizing structure at the three different levels, CPLEX is able to derive better cuts); (c) the echelon stock reformulation can still be improved by explicitly using one of the lot sizing reformulations at each level, i.e., using formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS, with ES-N generally having the best performance among these six formulations; (d) when comparing the various echelon stock reformulations with the traditional echelon stock constraints [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF] to their counterpart using the constraint [START_REF] Pochet | Production Planning by Mixed Integer Programming[END_REF] proposed in Federgruen and Tzur [START_REF] Federgruen | Time-partitioning heuristics: Application to one warehouse, multiitem, multiretailer lot-sizing problems[END_REF], we observe individual differences, but overall no general tendencies appear and the formulations provide fairly similar results; (e) the N and TP formulations have difficulty to solve the LP relaxations of some large instances because of the huge size of the model resulting in an overall substantially weaker performance compared to the best formulation; (f) the MC formulation performs the best for the balanced network; (g) the results we obtained here are in line with the ones obtained by Solyalı and Süral [START_REF] Solyalı | The one-warehouse multi-retailer problem: reformulation, classification, and computational results[END_REF] and Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] for the OWMR.

Unbalanced network

We performed the same experiments as in Section 4.1.1 but considering an unbalanced distribution network. In the unbalanced network, 20% of the warehouses are responsible for 80% of the retailers (see Table 3). Tables 6 and7 illustrate the performance of our formulations for the small and large instances, respectively. In Table 6, one can see that, compared to Table 4 and except for the C formulation, there is an increase in CPU time to solve the instances as MIPs. This increase ranges between 0.16% and 78.5% for the ES formulation and for the ES-F-LS formulation, respectively. Apart from this, all the conclusions drawn in Section 4.1.1 for the small instances with a balanced network still hold for an unbalanced structure of the supply network.

In Table 7, one can see that, except for the C formulation, the performance is worse than in the case of a balanced network. This difficulty is in particular reflected in the number of optimal MIP solutions found, which decreases by a number ranging from 0 for the MC formulation and up to 32 for the ES-LS formulation. This indicates that the unbalanced instances are harder to solve than the balanced instances. This difficulty can be explained by the fact that, in the network, the warehouses that are responsible for many retailers represent a much larger MIP to solve. Compared to the balanced instances, we have thus several big distribution channels to cope with, which makes the instances harder to solve. Note, however, that formulations C, ES and N were able to find more optimal MIP solutions for the unbalanced instances.

In light of the results provided in Tables 6 and7, we can draw the following conclusions about the performance of our formulations on an unbalanced network: (a) the unbalanced instances are generally harder to solve than the balanced instances; (b) the C, N and ES formulations have a 

Capacitated instances

For the capacitated instances, we set the production capacity as a given factor C of the average total demand. The production capacity imposed is thus C t = C i∈R t∈T d i t / |T |. We additionally consider three different values for the capacity factor C : C ∈ {2, 1.75, 1.5}. We performed these experiments on a 6.67 GHz Intel Xeon X5650 Westmere processor with one thread. Because of the bad performance of the formulations C, ES and ES-F in the previous section, and based on preliminary results, we decided not to run experiments using these formulations. For the sake of brevity, we also do not display the results obtained with formulations ES-F-N, ES-F-TP and ES-F-LS as these results were similar to the ones obtained by formulations ES-N, ES-TP and ES-LS. For the capacitated instances, we impose a time limit of 6 hours even to solve the LP instances. Note that we did not get any infeasible instances during our experiments.

The results of this section will be reported in tables having the same columns as the tables in Section 4.1 plus three additional columns indicating the value of the capacity factor, the number of LP optimal solutions found within the time limit and the number of instances for which a MIP solution was found, in columns Capacity, LP-opt and MIP-sol, respectively. For the columns LP-cost and I-gap, we only report the average cost and integrality gap obtained, respectively, over instances for which all formulations have both solved the LP relaxation to optimality and have found a MIP solution within the time limit. In the same vein, for the columns MIP-cost, Nodes and O-gap, we only report the average MIP cost, number of nodes and optimality gap obtained, respectively, over instances for which all formulations have found a MIP solution within the time limit. We first report the results for the balanced network in Section 4.2.1, followed by the unbalanced network in Section 4.2.2. Note also that we performed some additional experiments, for which we present only the general results. Experiments using two and four threads instead of one indicated that the CPU time needed to solve the instances decreases by a factor of up to 4 for the best performing formulations and for small problems (|T | = 15). We also performed additional experiments with time-varying capacity on the balanced network with |T | = 15. The general conclusions on the relative performance of the presented formulations still hold, but the performance of formulations N and TP deteriorated substantially as indicated by the bad quality of the upper bounds found and the fact that none of the instances were solved to optimality within the time limit.

Balanced network

Tables 8 and9 illustrate the performance of the different MIP formulations for the different values of the time horizon. When comparing the results with those obtained for the uncapacitated instances on the balanced network, we can see that they are completely different. Indeed, the richer formulations have more trouble achieving a good performance in terms of CPU time, MIP cost, number of MIP optimal solutions found and optimality gap. On the contrary, the echelon stock formulations have a better performance than the richer formulations on these indicators. This difference in performance is even more pronounced when the capacity level gets tighter. This indicates that the capacity constraint has a major impact on the performance of the formulations.

Despite the properties related to the strength of their LP relaxation for the uncapacitated case, the richer formulations seem to be less adequate to handle capacitated instances.

We also see that the MC formulation does not perform the best for the capacitated instances on the balanced network. The best performance, in terms of MIP-CPU time, number of optimal MC formulation with a balanced network since most of the following conclusions also apply for the other formulations and for the experiments with an unbalanced network. The findings that are specific to this formulation are discussed at the end of this section. All the other results are available in Gruson et al. [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF].

In Table 12, one can see that when |R| increases, the problems gets harder and the CPU time 500 taken to solve both the LP and MIP instances increases. On the contrary, when |W | increases, the CPU time taken to solve the MIP instances decreases. Indeed, with the same number of retailers, if the number of warehouses increases, the supply network has a smaller number of channels linked to each warehouse. This leads to a smaller problem per warehouse and makes the global problem easier to solve, thus reducing the CPU time and the number of nodes. The integrality gap is also lower but less significantly. Table 12 indicates that for the MC formulation, generally the instances with dynamic fixed costs are much easier to solve compared to the instances with a static fixed cost. We further note that the dynamic demand case is generally slightly easier to solve than the static demand case.

Finally, the detailed results provided in Gruson et al. [START_REF] Gruson | A comparison of formulations for a three-level lot sizing and replenishment problem with a distribution structure[END_REF] illustrate the fact that the impact of the setting of the parameters (static or dynamic demand, static or dynamic fixed cost), depends on the kind of formulation used. For the C formulation, apart from the very small instances where |R| = 50 and |T | = 15, the instances with a dynamic fixed cost are harder to solve, thus requiring a higher CPU time. For the ES-N, ES-TP and ES-LS formulations, the instances with a dynamic fixed cost are also harder to solve. On the contrary, for the N, TP and MC formulations, the instances with a static fixed cost are harder to solve in terms of CPU time required. For the ES and ES-F formulations, there is no clear impact of the setting of the parameters on the CPU time required to solve the instances. Note, however, that this result does not question the higher global performance of the MC formulation stated in the previous sections.

Conclusions and future research

We have extended eight MIP formulations proposed in the context of the OWMR and have applied them to the 3LSPD. We also introduced the ES-N, ES-F-N, ES-F-TP, ES-F-LS and MCE formulations that had not been tested before in the context of the OWMR. For our numerical experiments, we have considered two network structures (a balanced one and an unbalanced one)

and have assessed the performance of the formulations proposed using several indicators. We have also considered the possibility of having production capacities at the plant level. The results indicate that, for the uncapacitated case, the unbalanced instances are harder to solve than the balanced instances and lead to a worse performance of all formulations, except for the C formulation. On the contrary, for the capacitated case, the unbalanced instances give better values for our different performance indicators compared to the balanced instances. The MC formulation obtains the best performance on the uncapacitated instances and is able to solve all instances for both network structures. This result is similar to the conclusion of Cunha and Melo [START_REF] Cunha | On reformulations for the one-warehouse multi-retailer problem[END_REF] for the OWMR. The other formulations obtain results that are not entirely satisfactory for the uncapacitated instances.

In particular, for the rich formulations TP and N, the non-satisfactory performances on the large instances, in terms of number of MIP optimal solutions found and CPU time, are due to the huge size of the model. As a consequence, it is already very time-consuming to solve the LP relaxation of these formulations. When we impose capacity restrictions for production at the plant level, the performance of the formulations are reversed: the rich formulations have a worse performance and the echelon formulations have the best performance. Within the rich formulations, for the capacitated instances, our newly introduced MCE formulation generally has the best performance.

In light of the results obtained, we recommend that researchers and decision-makers interested in solving integrated lot sizing and replenishment problems with a distribution structure carefully choose the formulation they will use to model their problem. Despite theoretical advantages, richer formulations are not necessarily the ones who obtain the best performances, both in terms of CPU time taken to solve the problem and of the quality of the solution obtained. On the contrary, this choice should be guided by (1) the structure of the distribution network (balanced or unbalanced),

(2) the presence of production capacity restrictions and (3) the settings of the parameters of the problem.

In future research, we want to introduce transportation capacities to limit the flows between all facilities. We will then use the results of our study and the possible substructures induced by transportation capacities to chose the best formulation possible to solve the problem, either heuristically or using decomposition methods.
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 1 study, for example with |R| = 200 and |T | = 30. 265 Consider an instance of the 3LSPD with T = 4, |W | = 2 and |R| = 4. Each warehouse is responsible for two retailers. The first warehouse is responsible for the first two retailers and the second warehouse is responsible for the other two. We have, for any t ∈ T , sc r1 t = 100, sc r2 t = 200, sc r3 t = 300, sc r4 t = 50 and d r1 = (10, 20, 15, 10), 270 d r2 = (5, 30, 10, 10), d r3 = (45, 20, 20, 10), d r4 = (10, 20, 15, 20). For this instance, the optimal LP solutions values for five of the formulations are z C LP = 3903.56, z ES-LS LP = 6017.25, z ES-N LP = 6096.343, z M C LP = 6750.00 and z N LP = 6750.00. Proposition 1 establishes dominance or equality relations between the linear programming relaxation of the different formulations presented in this section. These theoretical results show the superiority of the richer formulations (MC, MCE, TP and N) with respect to the strength of the linear relaxation but are to be compared with the computational results on the MIP problems obtained during the numerical experiments in Section 4. Proposition 1.

  number of retailers |R| is set equal to 50, 100 or 200. The number of warehouses |W | is set equal to 5, 10, 15 or 20. We used two different horizon lengths: |T | = 15 and 30. The demand at the retailers is generated both in a static and dynamic way from U[5, 100]. In the case of a static demand, we have d r t = d r ∀ t ∈ T, r ∈ R. The fixed costs at all levels are also generated in a static and in a dynamic way. For the production plant, the fixed costs are generated from U[30000, 45000]. For the warehouses, the fixed costs are generated from U[1500, 4500]. For the retailers, the fixed costs are generated from U[5, 100]. All the demands and fixed costs are generated as integer values. The unit inventory holding costs are static and are set to 0.25 for the production plant and 0.5 for the warehouses. For the retailers, the unit inventory holding costs are generated from U[0.5, 1]. The holding costs take continuous values. For each combination of settings, we generate five different instances leading to 480 different instances to be solved for each formulation.

  . The echelon stock based formulations can be divided into two groups with formulations ES and ES-F on one side, and formulations ES-N, ES-TP, ES-LS, ES-F-N, ES-F-TP and ES-F-LS on the other side. The last six formulations are much stronger than the first two formulations, as indicated by the integrality gap reported in Table

Table 1 :

 1 Summary of the sizes of all formulations

Table 4 :

 4 Performance of the formulations for the uncapacitated balanced network -|T | = 15 Formulation LP-cost LP-CPU (s) MIP-cost MIP-CPU (s) Nodes MIP-opt I-gap (%) O-gap (%)

	C	186156	0.03	327484	8291	71832	157	40.94	2.94
	ES	186156	0.02	326906	601	29725	240	40.94	0
	ES-N	320903	0.47	326906	117	4253	240	1.62	0
	ES-TP	320903	1.69	326906	177	2652	240	1.62	0
	ES-LS	320897	1.51	326906	298	1760	240	1.62	0
	ES-F	186156	0.03	326906	875	29628	238	40.94	0
	ES-F-N	320903	0.7	326906	121	3401	240	1.62	0
	ES-F-TP	320903	1.3	326906	214	3673	240	1.62	0
	ES-F-LS	320897	1.12	326906	209	3110	240	1.62	0
	N	326887	121.27	326906	74	0.3	240	4.7×10 -3	0
	TP	326832	80.21	326906	82	0.8	240	0.02	0
	MC	326832	26.45	326906	36	0.7	240	0.02	0
	MCE	326832	37.8	326906	40	0.7	240	0.02	0

Table 5 :

 5 Performance of the formulations for the uncapacitated balanced network -|T | = 30

	Formulation LP-cost LP-CPU (s) MIP-cost MIP-CPU (s) Nodes MIP-opt I-gap (%) O-gap (%)
	C	240367	0.07	664638	21600	35357	0	60.86	24.58
	ES	240367	0.05	645908	15252	91231	84	60.86	4.03
	ES-N	624974	6.77	643306	6070	53463	186	2.77	0.09
	ES-TP	624974	30.3	643714	7744	14847	175	2.77	0.64
	ES-LS	624935	4.09	644312	9035	4786	160	2.77	0.78
	ES-F	240367	0.14	644747	14404	24791	90	60.86	2
	ES-F-N	624974	11.14	643863	6271	32941	181	2.77	0.1
	ES-F-TP	624974	26.5	643385	8174	23708	173	2.77	0.4
	ES-F-LS	624935	5.04	643843	9931	17482	155	2.77	0.76
	N	643057	27969.13	1068367	9209	0.9	188	0.04	16.86
	TP	642779	1901.78	693483	5773.58	2.4	211	0.08	3.62
	MC	642779	826.09	643303	1021.77	5.1	240	0.08	0
	MCE	642779	996.56	643303	1276.72	5.2	240	0.08	0

Table 6 :

 6 Performance of the formulations for the uncapacitated unbalanced network -|T | = 15 Formulation LP-cost LP-CPU (s) MIP-cost MIP-CPU (s) Nodes MIP-opt I-gap (%) O-gap (%)

	C	177633	0.02	310925	5669	21108	197	40.78	0.66
	ES	177633	0.02	310871	602	14711	239	40.78	0
	ES-N	300182	0.55	310871	182	4046	240	2.99	0
	ES-TP	300182	1.68	310871	262	3084	240	2.99	0
	ES-LS	300178	1.6	310871	414	2917	240	2.99	0
	ES-F	177633	0.04	310871	1166	17758	240	40.78	0
	ES-F-N	300182	0.89	310871	187	3731	240	2.99	0
	ES-F-TP	300182	1.92	310871	303	3815	240	2.99	0
	ES-F-LS	300178	1.24	310871	372	3509	240	2.99	0
	N	310832	125.33	310871	112	1	240	0.01	0
	TP	310750	58.37	310871	94	2.7	240	0.03	0
	MC	310750	20.33	310871	40	1.6	240	0.03	0
	MCE	310750	41.06	310871	48	1.6	240	0.03	0

Table 7 :

 7 Performance of the formulations for the uncapacitated unbalanced network -|T | = 30 better performance on the unbalanced instances than on the balanced ones in terms of number of instances solved to optimality; (c) the other formulations have a worse performance on the unbalanced instances compared to the balanced ones; (d) the N and TP formulations have a large O-gap for many large instances; (e) the MC formulation is the best suited for the unbalanced instances since it is able to solve all instances to optimality with the lowest CPU time.

	Formulation LP-cost LP-CPU (s) MIP-cost MIP-CPU (s) Nodes MIP-opt I-gap (%) O-gap (%)
	C	231785	0.06	624878	21104	36752	10	60.35	19.39
	ES	231785	0.05	613737	14748	26617	91	60.35	4.89
	ES-N	583375	8	610963	8690	30169	164	4.14	0.37
	ES-TP	583375	29.78	611589	10271	15351	149	4.14	1.36
	ES-LS	583349	6.53	612763	12295	7218	128	4.14	1.63
	ES-F	231785	0.17	613421	14547	14335	90	60.35	2.99
	ES-F-N	583375	20.82	611004	9512	24100	157	4.14	0.45
	ES-F-TP	583375	45.58	611424	10510	18438	147	4.14	1.11
	ES-F-LS	583349	10.48	612275	11767	10525	130	4.14	1.63
	N	610542	11473.94	828581	8019	3.7	204	0.04	9.05
	TP	610109	1700.49	705844	6356	14.7	201	0.1	5.55
	MC	610109	460.85	610908	1364	19.2	240	0.1	0
	MCE	610109	994.48	610908	1476	18.7	239	0.1	0

Table 9 :

 9 Performance of the formulations for the capacitated balanced network -|T | = 30 Tables 10 and 11 illustrate the performance of the different MIP formulations on the unbalanced 475 instances for the different values of the time horizon and capacity level. If we compare the resultswith those obtained for the uncapacitated instances on the unbalanced network, we can see similar differences as the ones observed in Section 4.2.1. The richer formulations also have more trouble obtaining a good performance than on the uncapacitated instances. They have a worse performance than the echelon stock formulations on numerous performance indicators, such as the number of 480 best solutions found, which is generally much higher for the echelon stock formulations. Within the richer formulations, the MCE formulation still has the best performance on average. Note finally that, compared to the balanced structure, the unbalanced structure of the supply network combined

	Capacity										
		Formulation LP-cost LP-CPU (s) LP-opt MIP-cost MIP-CPU (s) Nodes MIP-opt MIP-sol I-gap (%) O-gap (%)
	factor										
		ES-N	907807	18.72	240	922301	21544	113942	2	1.5	0.9
		ES-TP	907807	24.31	240	923143	21576	26371	1	1.5	1.05
		ES-LS	907778	7.91	240	923508	21538	27768	2	1.5	0.98
	2.0	N	913381	7689.24	191	1112999	21706	94	0	0.89	14.28
		TP	913184	8999.21	193	1288961	21867	66	0	0.91	21.71
		MC	913184	2626.04	240	934216	21601	1441	0	0.91	1.43
		MCE	913184	2522.05	240	928742	21603	1622	0	0.91	1.43
		ES-N	1014806	17.06	240	1056456	21600	42768	0	3.79	3.39
		ES-TP	1014806	21.94	240	1055172	21563	28240	2	3.79	0.95
		ES-LS	1014785	8.75	240	1055736	20914	36048	13	3.79	0.59
	1.75	N	1019421	6634.88	202	1273297	21673	56	0	3.35	17.42
		TP	1019195	7936.58	203	1321777	21737	44	0	3.37	19.58
		MC	1019195	2460.44	240	1063381	21602	1281	0	3.37	4.04
		MCE	1019195	2196.98	240	1063581	21473	2136	6	3.37	2.75
		ES-N	1149701	18.96	240	1172770	21562	68917	1	1.74	1.39
		ES-TP	1149701	25.97	240	1174267	21588	26223	1	1.74	1.43
		ES-LS	1149660	10.5	240	1175080	21500	32601	2	1.74	1.3
	1.5	N	1160244	5867.03	218	1300323	21701	208	0	0.91	9.07
		TP	1160088	6773.7	222	1298666	21782	182	0	0.92	8.97
		MC	1160088	2257.01	240	1199898	21600	1940	0	0.92	2.74
		MCE	1160088	1947.3	240	1191768	21600	1825	0	0.92	2.28
		4.2.2. Unbalanced network							
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 11 Performance of the formulations for the capacitated unbalanced network -|T | = 30 Table 12 reports the performance of the MC formulation for all experiments with a balanced uncapacitated network and with |T | = 30. The first two columns indicate the parameter that varies and the respective values taken by the parameter. We only report here the results for the

	Capacity										
		Formulation LP-cost LP-CPU (s) LP-opt MIP-cost MIP-CPU (s) Nodes MIP-opt MIP-sol I-gap (%) O-gap (%)
	factor										
		ES-N	886871	13.45	240	908524	19921	62720	27	2.24	1
		ES-TP	886871	16.8	240	909227	20267	30783	22	2.24	1.24
		ES-LS	886856	9.8	240	910133	20163	22140	24	2.24	1.24
	2.0	N	897248	6767.62	200	1095597	21673	108	0	1.14	14.13
		TP	897096	8348.99	203	1077364	21706	124	0	1.15	12.51
		MC	897096	2226.9	240	919258	21481	1558	3	1.15	1.92
		MCE	897096	1806.59	240	919104	21523	1994	4	1.15	1.86
		ES-N	983612	17.08	240	1029626	21465	32601	2	4.34	3.56
		ES-TP	983612	18.61	240	1028846	20596	25641	18	4.34	1.09
		ES-LS	983594	10.65	240	1029850	20653	29067	16	4.34	1.12
	1.75	N	993223	6127.87	212	1197855	21691	98	0	3.43	14.45
		TP	993072	7664.68	208	1182565	21788	116	0	3.45	13.25
		MC	993072	2052.43	240	1041875	21600	1604	0	3.45	4.34
		MCE	993072	1608.27	240	1037816	21229	2236	10	3.45	2.58
		ES-N	1078552	18.64	240	1104468	20795	45636	14	2.17	1.31
		ES-TP	1078552	21.21	240	1105210	20908	31171	10	2.17	1.4
		ES-LS	1078537	12.15	240	1105338	20800	25449	13	2.17	1.28
	1.5	N	1091771	5397.68	218	1260172	21811	173	0	1.04	11.44
		TP	1076552	6687.1	217	1268325	21839	142	0	2.11	11.96
		MC	1091655	1982.83	240	1120214	21526	2426	2	1.05	2.15
		MCE	1091655	1472.36	240	1114113	21552	3599	1	1.05	1.64
		4.3. Influence of the parameters							
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Table 12 :

 12 Performances of the MC formulation for the uncapacitated balanced network -|T | = 30 Parameter Value LP-cost LP-CPU (s) MIP-cost MIP-CPU (s) Nodes MIP-opt I-gap (%) O-gap (%)

		50	423630	60.36	423765	88.07	1.9	80	0.04	0
	|R|	100	609655	414.54	610096	643.15	4.5	80	0.08	0
		200	895053	2003.37	896048	2334.08	8.8	80	0.12	0
		5	540034	587.33	541416	1451.26	14.8	60	0.23	0
		10	621960	912.23	622489	1095.86	3.5	60	0.07	0
	|W |									
		15	678045	1023.23	678196	827.76	1.5	60	0.02	0
		20	731078	781.58	731111	712.18	0.5	60	0	0
		SF	658846	1040.45	659632	1508.85	8.6	120	0.12	0
	Costs									
		DF	626713	611.74	626974	534.68	1.6	120	0.04	0
		SD	644294	840.35	644921	1077.51	6.4	120	0.1	0
	Demand									
		DD	641265	811.84	641685	966.03	3.7	120	0.06	0
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80% of the retailers are assigned to 20% of the warehouses. For each pair (|W |, |R|), Tables 2 and3 give the number of retailers assigned to each warehouse for the balanced and unbalanced networks, 300 respectively. Each structure is tested on the 480 instances we generated. 

For the experiments, we used the CPLEX 12.6.1.0 C++ library and turned off CPLEX's parallel mode. We set the CPLEX MIP tolerance parameter to 10 -6 . All the other CPLEX parameters are set to their default value. The computation time limit imposed is 6 hours.

We compare the formulations with respect to different indicators which are (1) the number of 305 This difficulty is also apparent by observing that the number of MIP solutions found is not equal to the number of instances present in the data set used for the experiments. Finally, note that in Table 9, for formulations N, TP, MC and MCE, the values obtained for O-gap is higher than 470 the values obtained for I-gap. Since the I-gap is calculated relative to the optimal or best solution found among all formulations this indicates that these formulations have a good LP relaxation but are unable to provide a MIP solution with a low objective function value. with the production capacity restriction results in general in better values for the number of MIP solutions found and for the number of MIP optimal solutions found.