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Abstract

A heterogeneous wireless environment is composed of different radio access tech-
nologies (RATs) including IEEE standards (e.g., Wi-Fi) and 3GPP (e.g., 2G,
3G, 4G, 5G), each with different coverage and different capacity to cater for
diverse service requirements. In such an environment, multiple access networks
could be available for a mobile user. Each user can run multiple applications
that have particular Quality of Service (QoS) requirements. Hence, it would be
beneficial for a multi-interface terminal to simultaneously use two or more inter-
faces to gain in performance. However, using multiple networks simultaneously
may consume more energy than using only one interface. Therefore, energy
consumption should be considered as a criterion in the Flow/Interface Asso-
ciation (FIA). This paper presents a novel method called Smart Tabu Search
(STS) that takes into account network conditions, the monetary cost of the
network, QoS requirements of the applications, user preferences, and energy
consumption of the mobile device to select the optimal FIA that achieves the
best trade-off among all the considered criteria. We validate our proposal using
both simulations and testbed experiments.
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Nomenclature

2G Second Generation Cellular Technology

3G Third Generation Cellular Technology

3GPP Third Generation Partnership Project

4G Fourth Generation Cellular Technology

5G Fifth Generation Cellular Technology

CF Clever Diversification

ECG Electrocardiogram

FIA Flow/Interface Association

GAP Generalized Assignment Problem

HWN Heterogeneous Wireless Network

LTE/LTE-A Long Term Evolution/LTE-Advanced

MADM Multi-Attribute Decision Making

MDP Markov Decision Process

NIS Network Interface Selection

OTS TS with Oriented Diversification

P% Global optimum probability

RAT Radio Access Technology

SA Simulated Annealing

SCTP Stream Control Transmission Protocol

STS Smart Tabu Search

TOPSIS Technique for Order Preference by Similarity to Ideal Solution

TS Tabu Search

UD Utility Deficit

UMTS Universal Mobile Telecommunications System

WiMAX Worldwide Interoperability for Microwave Access
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1. Introduction

The wireless communication networks are different in terms of coverage, cost,
and capacities to cater for diverse service needs. Mobile terminals with multiple
access interfaces are expected to be always best connected [1], where the multi-
interface terminal ranks the Radio Access Technologies (RATs) and selects the
one that maximizes its interests and meets the service requirements anywhere
at any time, which is known as Network Interface Selection (NIS) [2].

Once a terminal is equipped with several interfaces, called multi-homed ter-
minal, it becomes possible to use the various available networks by associating
each data flow with its appropriate network, according to multiple criteria such
as network conditions, terminal capacities, user preferences, and application re-
quirements. Associating each application flow with a suitable network interface
is considered as a particular case of the NIS and is called Flow/Interface Associ-
ation (FIA) [3]. Therefore, the FIA allows each multi-homed terminal to spread
its flows among the available network interfaces, instead of connecting to only
one network interface at a time.

On the one hand, each terminal can simultaneously run different types of
applications, which lead to the diverse flows with different Quality of Service
(QoS) requirements in terms of throughput, delay, jitter, and packet loss. On
the other hand, a multi-homed terminal is equipped with several interfaces;
hence, it is possible to simultaneously use various available network interfaces
and not simply to switch from a single network to another one. In this context,
it would be advantageous for the multi-homed terminal to associate each flow
with a specific network interface that meets all its requirements. Many asso-
ciation solutions can be considered as candidate solutions. The objective is to
select the association solution that best maximizes the total terminal utility. In
other words, the objective is to select the association that best satisfies all QoS
requirements of the flows at the least possible cost and efficient use of energy.

In this paper, we tackle the FIA problem, where a multi-homed terminal runs
several applications with different QoS requirements. Each application flow is
associated with an appropriate network interface. The main objective of our
proposed approach is to meet the specific QoS requirements of each flow, while
maximizing the overall utility of the terminal; consequently, the association that
will be selected is the one with the maximum global utility.

The rest of this paper is organized as follows: Section 2 presents the related
work. In Section 3, we discuss about the FIA concept and we present the
model description. Section 4 presents a comparative study of two random search
approaches widely applied to stochastic optimization problems in the context
of the FIA, namely Simulated Annealing (SA) and Tabu Search (TS). The
proposed scheme is described in Section 5. Section 6 presents and discusses
the obtained results of the simulation. The design and implementation of the
testbed are presented in Section 7. In Section 8, we describe the testbed setup,
execution and the obtained testbed results. Finally, Section 9 concludes the
paper and presents the future work.
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2. Related work

In heterogeneous wireless networks (HWNs), the multi-homed mobile ter-
minals rank the network interfaces and select the best one or simultaneously
use the various available network interfaces. To meet the always best connected
requirements, studies on NIS have used different mathematical theories includ-
ing utility function [4, 5], cost function [6], Multiple Attribute Decision Making
(MADM) [7, 2, 8, 9], Markov chain [10, 11, 12, 13], fuzzy logic [14, 15], game
theory [16, 17], and belief functions theory [18].

Authors in [5] used a utility function for NIS, where the main idea is to
evaluate the utilities of all criteria and combine them to obtain one total utility
for each candidate network, and the one with the highest overall utility value
is selected as the best one. In [6], a cost function is used to measure the cost
caused by the use of each candidate network, and the one with the lowest cost
is considered the best one. Normally, the cost of an alternative can be seen as
the inverse of its utility, where the form of this inversion depends on the way
the attributes were combined.

In [2], the authors used Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS), a MADM approach for the NIS problem and considered a
set of attributes in the decision making process. The value of each attribute is
normalized and assigned a weight, the best and the worst values are found for
each attribute, and then a score function is computed based on the distances for
both best and worst cases. The network with the highest score value is selected.
The proposed approach efficiently tackles the rank reversal problem in TOPSIS
by using new normalization techniques. Authors in [9] combined TOPSIS with
the utility function to tackle the rank reversal problem and enhance the ranking
quality by considering the application’s and/or the user’s requirements. TOPSIS
was used to rank the candidate networks based on their scores with the highest
being the best, and the utility function was used to compute the normalized
value of each parameter.

In Markov chains, such as Markov Decision Process (MDP)-based schemes
[11, 12, 13] the objective is to maximize the expected total reward of a connection
to optimize the NIS decisions. The algorithms use two types of functions: a link
reward function and a cost function. The Link reward function is associated
with the QoS provided by the selected network to the mobile connection, and
the cost function is associated with the rerouting operation and signaling load
incurred when a vertical handover occurs.

Authors in [14] proposed a fuzzy logic based-scheme for the NIS problem
without combining it with any other theories and is adaptable to the changes of
network and traffic, and integrates the uncertain and conflicting metrics to make
a perceivable decision inexpensively. Many approaches have been proposed to
solve the NIS problem using fuzzy logic with different ways. Some approaches
use the fuzzy logic as the core of the NIS system [14], and others use it as the
fuzzy MADM [15], while some use it with recursion procedure [19].

The authors in [17] modeled the NIS problem into a non-cooperative game
belonging to the class of congestion games between selfish users. In this game,
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the users take their actions on selecting one network among the available ones.
The cost of each user depends on the congestion of the selected network. This
game becomes a problem in which all the users try to choose the network with
minimum cost.

In [18], a belief function theory (BFT) was used for NIS problem. All can-
didate networks are judged with different masses (degrees of belief), where the
belief reflects the satisfactory extents for each candidate network from the view-
point of this specific parameter. In the case of multi-criteria, one network will
have multiple judgments. To obtain one judgment that reflects a comprehensive
satisfactory rate for that network, all the masses are combined together using
conflict-aware combination rules. The candidate network with the highest com-
bined mass is selected as the best one.

The most of the NIS approaches in the literature do not consider the pos-
sibility of using two or more network interfaces simultaneously. In [3], a meta-
heuristic approach based on TS that considers the possibility of a mobile termi-
nal to use multiple network interfaces simultaneously, considering the problem
as an optimization problem, has been proposed. Using the simulation, the au-
thors exhibit that the standard algorithm has poor performance to find the
global optimal solution. Further analysis shows that the algorithm repeatedly
gets entrapped in the local optimum which prevents it from exploring other so-
lutions. The random diversification, used in the standard Tabu implementation,
is defined as the source of the problem, and a new method named ”Oriented
diversification” is proposed to remedy the issue. This method looks up the Tabu
list for an application that has not been tested on one of the available networks
and forces that selection in the newly generated association, thus preventing the
diversification step from producing an association that is previously explored by
the algorithm and overcome the entrapment issue. Comparisons through sim-
ulation show a significant improvement in terms of results and computational
time in favor of the proposed algorithm.

This paper contributes to the body of knowledge in this area by proposing a
novel method that takes into account network conditions, the monetary cost of
the network, QoS requirements of the application, user preferences, and energy
consumption of the mobile device to select the optimal FIA which achieves the
best trade-off among all the considered criteria.

3. Flow/Interface Association

Once a terminal is equipped with several interfaces, it becomes possible to
use two or more interfaces simultaneously. The terminal in a zone covered by
HWNs can discover different RATs with different characteristics (e.g., UMTS,
LTE, WiFi, WiMAX, etc.). The characteristics of RATs such as the WiMAX
and UMTS are dynamic, which will affect their ability to support a service
optimally. The wireless network technologies are developed to fulfill the spe-
cific requirements of applications, for example LTE-A is developed to fulfill the
multimedia services such as VoIP, HD video streaming, interactive video gam-
ing, etc.). In case the multi-interface terminal runs several applications at the
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same time, heterogeneous data flows with different requirements in terms of QoS
need to be fulfilled. In this case, it would be advantageous to provide each data
flow with an appropriate network interface that meets its requirements while
maximizing the global terminal utility.

Example: A simple scenario is presented in Figure 1, where three appli-
cations (Telepresence, E-mail, and video Streaming) are run in a multi-homed
terminal which is equipped with three network interfaces (LTE, 802.11ac, and
802.11b). In real-time critical application, jitter, packet loss, and low latency
are mandatory. The Telepresence flow will be associated with LTE as it has low
values of these parameters (for simplicity, we did not consider the cost criterion
in this example). For a background application even a network with low perfor-
mance will suffice, then the E-mail flow will be associated with 802.11b. Finally,
the streaming flow will be associated with 802.11ac as it has a high throughput
compared to 802.11b and low energy consumption compared to LTE.

Figure 1: Flow/Interface Association model.

3.1. Model description

The FIA is a generalization of an assignment problem in which there are n
agents and m tasks. Any agent can be assigned to perform any task, incurring
some cost and profit that may vary depending on the agent-task assignment.
Moreover, each agent has a budget and the sum of the costs of the tasks assigned
to it cannot exceed this budget. It is required to find an assignment in which
all the agents do not exceed their budget and the total profit of the assignments
is maximized.

Mathematically a Generalized Assignment Problem (GAP) can be formu-
lated as an integer program:

Max

n∑
i=1

m∑
j=1

pi,jxi,j
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s.t.

m∑
j=1

ci,jxi,j <= ti, where i = 1, ..., n;

n∑
i=1

xi,j = 1, where j = 1, ...,m;

xi,j ∈ {0, 1}, where i = 1, ..., n and j = 1, ...,m;

n Agent: I1...In, m Task: F1...Fm, p: Utility, c: Cost, t: Budget.

A feasible solution is a solution in which for each Agent the total cost of the
assigned Tasks is at most ti. The solution’s utility is the sum of utilities for each
task-agent assignment. The goal is to find a feasible solution with maximum
utility, which is exactly what we are trying to solve in the FIA problem.

Consider n network interfaces and m flows, where I = {Ii, i = 1, 2, ..., n} and
F = {Fi, i = 1, 2, ...,m}. Thus, the set of possible association can be represented
by nm, where A = {Ai, i = 1, 2, ..., nm}.

Each association ai ∈ A allows the set m to be associated to the set n, so
each fj ∈ F is associated to only one ik ∈ I and each ik may take from 0 to m
flows. For example, a solution ai provides the association of f1 to i1, f2 and f3
to i3, ..., and fm to in.

The utility for flow fj associated to interface ik is calculated as follows:

Uai,j = α.Qk,j + β.Ck,j + γ.Ek,j ,

where Qk,j , Ck,j and Ek,j represent the QoS, cost and energy consumption
utilities of assigning fj to ik determined by ai, and α, β and γ are their weights
respectively.

As illustrated in Figure 1, for each association ai, a total utility Ui indicated
by Ui(ai) is calculated as follows:

Ui(ai) =

m∑
j=1

Uai,j
.

The goal is to maximize the overall utility of the terminal, consequently, the
association that will be selected is the one with the maximum global utility.

maxUi(ai) i = 1, ..., nm. (1)

The utility function of an interface represents the satisfaction level of flow(s)
assigned to that network interface. The association solution with the maximum
total utility value can be considered as the best solution only if it is a feasible
solution. The latter means that each network interface should satisfy all the
requirements of the flows associated to it. Otherwise, the solution will not
be feasible (Section 4.1 further explains this part). The GAP/FIA is known
to be NP-hard [20]. Thus, aiming for an exact solution is computationally
taxing and time consuming. Moreover, in the case of mobile terminals, both of
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these resources are very scarce. Therefore, we used Metaheuristic algorithms to
address this problem.

In the following, we provide a simulation-based comparative study of two
random search algorithms, widely applied to stochastic optimization problems,
including SA and TS in the context of this study.

4. Algorithms comparison

We consider two approaches, namely Simulated Annealing from the physical
class, and Tabu Search from the stochastic class. We also consider the Brute-
force algorithm, as a reference in the comparative study, as it is the one that
can find the global optimum. Python 2.7 was used for the implementation and
simulations. The simulation results show the advantages and disadvantages of
the two algorithms in the context of FIA. The motivation of our proposal is
to remedy the shortcomings. It is worth mentioning that we did not consider
genetic algorithms because there is no genetic relationship in our context, where
the genetic algorithm intents to make new generations of the current population
with characteristics related to reproduction. In the FIA context, two association
solutions do not produce a new association solution that receives genetically
their characteristics. Therefore, the genetic algorithm cannot be a solution for
the FIA problem.

4.1. Simulation setup

In the simulation, we consider three classes containing different types of
flows. For each flow, the different QoS settings are defined with specific utility
functions based on the analysis in [21, 22] as follows:

• Class 1 ”Critical” covers Telepresence and PCM VoIP (G.711), and uses
Real-Time.

• Class 2 ”Greedy” comprises P2P, FTP, and Downloading, and uses Scav-
enger.

• Class 3 ”Elastic” includes audio and video streaming, and uses Best Effort.

Four QoS criteria, including Bandwidth in [Mbps], Jitter in [ms], Packet Loss
in [PER], and Latency in [ms] are considered to measure the interface utility,
where their requirements are defined according to the type of the corresponding
class.

The mutil-interface terminal is supplied with I network interfaces, where
(I ≥ 2), and one RAT may cover multiple network interfaces. One network
interface can take F flow(s), where (F ≥ 0). Six wireless communication net-
works are considered in the simulation (WiFi 802.11b, 802.11a, 802.11n, 2G,
3G, and 4G) with six parameters including four QoS parameters (Bandwidth
[Mbps], Packet Loss [PER], Jitter [ms], Latency [ms]), Energy Consumption
[mW/Mbit], and Cost [cent/MB]. For each RAT, the value of each parameter

8



can be obtained from a predefined interval, so the same RAT can be generated
with different specs.

The QoS, energy consumption, and cost variables are weighted according to
user preferences where the sum of the three values (weights) is equal to one. The
variables’ weights represent the relative importance of these variables. The QoS,
energy consumption and cost represent the weights of flow, user and terminal
requirements respectively.

Interfaces that accommodate two or more flows will allocate resources ac-
cording to the combined requirements of flows. If only one interface does not
meet one criterion’s requirements, then the entire association solution is consid-
ered invalid. There are two ways to handle the invalid association solution.

a) The valid and invalid association solutions are both tracked by the algo-
rithm. The utility value may not be appropriate for choosing an asso-
ciation solution since some invalid association solutions may have higher
utility values than the valid ones. This method will provide the user with
two choices, and since two association solutions are maintained, then the
invalid association solution can be chosen only if it has a very high utility
value, but with slightly higher memory footprint and CPU.

b) The number of violations for an interface is computed and used to nor-
malize the utility, so the invalid association solution will always have a
lower value than the valid one. With this approach, the best association
solution can be chosen according to the utility value, but the user is not
involved in the decision making.

4.2. Simulation scenarios

We consider two scenarios in the simulation. First scenario involves six flows
including, audio streaming, video streaming, P2P, Telepresence, and 2x VOIP
and a multi-interface terminal with four network interfaces, including 802.11g,
802.11n, 802.11ac, and LTE. There are 46 (4096) possible association solutions
referred to as nodes. The objective of the algorithms is to find the global
optimum by exploring the preset number of nodes.

In the second scenario, we consider ten flows, including 2x audio streaming,
1x video streaming, 2x P2P, 2x Telepresence, and 2x VOIP and five network in-
terfaces, including 802.11g, 802.11n, 802.11ac, UMTS and LTE. In this scenario
we have 510 (9765625) possible association solutions. We use the Brute-force al-
gorithm as a reference against which the algorithms’ performances are compared
according to three criteria as shown in Table 1

• Global optimum probability (P%) [0, 1]: it represents the probability of
an algorithm to find the global optimum.

• Utility Deficit (UD) [0, 1]: it measures how far are the association solutions
from the global optimum. If no association solution is found then the UD
value is equal to 1, the closer the solution gets to global optimum, the
lower the values of UD gets, until it reaches 0 which means the solution
found is a global optimum.
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• Speedup (SP): it represents the speedup gain of an algorithm compared
to Brute-force search.

All results illustrated below are an average of the execution of the algorithm
N times with the same set of network interfaces but with different specs.

The first scenario is executed 100 times, and the second scenario is executed
25 times. The average running time of both scenarios using the Brute-force
algorithm is 0.5326 seconds and 1776.8030 seconds, respectively.

As a stop criterion, it is possible, for example, to set a maximum number
of iterations without improvement, fix a time limit or define a certain number
of iterations after which the search must stop. However, we chose the number
of nodes allowed to be explored as a stopping criterion, since it is more precise
than the number of iterations, as during each iteration, different algorithms will
explore a different number of solutions.

4.3. Simulation results

Table 1: Scenario 1–Tabu Search & Simulated Annealing Results

Nodes Tabu Search Simulated Annealing
P% UD SP P% UD SP

10 0.0 0.93167 109.8 0.0 0.93167 110.8
100 0.04 0.31232 18.8 0.01 0.55582 19.1
200 0.11 0.17683 10.3 0.02 0.36657 9.7
400 0.16 0.15604 5.4 0.07 0.20126 5.4
1K 0.3 0.03866 2.4 0.11 0.08183 2.4
2K 0.46 0.02642 1.3 0.33 0.02357 1.2

As shown in Table 1, more the number of explored nodes increases, more P%
and UD improve while speedup diminishes; since exploring more nodes involves
more execution time but with better chance to converge to the global optimum.

The second remark is that TS outperforms SA. However, it should be noted
that even by exploring about 50% of all possibilities both algorithms deliver
low-quality solutions with very modest speedup. To enhance further their per-
formance, we propose two minor modifications (results are presented in Table 2):

• Neighborhood by displacement: rather than considering a randomly-generated
neighborhood, we pick the current solution and assign each flow to all avail-
able interfaces one at a time. For illustration purposes, let us assume two
interfaces, three flows, and the current solution = [1, 1, 2]. This indicates
that flows 1, 2, and 3 are assigned to interfaces 1, 1, and 2, respectively.
Neighborhood = [[2, 1, 2] [1, 2, 2] [1, 1, 1]].

• Caching: SA and TS (and especially SA) will revisit many solutions, hence
their neighborhood. If some of the neighborhood results are cached, it
should improve the run-time complexity of both algorithms.
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Table 2: Scenario 1–Results for TS & SA with minor modifications

Nodes Tabu Search Simulated Annealing
P% UD SP P% UD SP

10 0.00 0.00000 138.9 0.00 0.00000 138.7
100 0.65 0.18419 30.3 0.67 0.13411 29.8
200 0.88 0.03139 14.6 0.98 0.00029 24.2
1K 0.94 0.00086 2.9 0.98 0.00029 22.7
2K 0.97 0.00043 1.4 0.98 0.00029 19.5
20k 1.0 0.0 0.13 0.98 0.00028 3.1

The enhancement in P% and UD is apparent with SA reaches its peak faster
than TS at around 200 nodes. After that, SA gets stuck in local optimum, which
is typical of SA. Indeed, at lower temperatures, SA tends to seize exploration
and hold to the current best solution. In the other hand, TS manages to find all
global optimum, despite the fact that the improvement is slower as compared
to that of the SA. These results confirm two points:

• The outcome is heavily influenced by the neighborhood generation method;

• 100% success rate is expensive.

Concerning the caching, it essentially helps SA due to the nature of this
latter. Indeed, SA lacks a procedure to avoid looping over the same search
space; therefore, reexamining previously explored solutions is likely. In the
other hand, TS did not really benefit from the caching. This could be explained
by the fact that TS avoids revisiting solutions by conserving the Tabu list.
The minor enhancement, noticed in the obtained results, is due to the cases
where the revisited nodes were produced from solutions that are either not
Tabu or were Tabu but removed during the Tabu list update. As the benefit
of these slight modifications is obvious, and in order to provide fair results, all
competitive algorithms considered in the performance evaluation will undergo
these modifications, including Tabu with oriented diversification [3].

For small-scale problems, both algorithms’ performance improved; however,
for large-scale problems (e.g., the second scenario) algorithms’ performance de-
creases (see Table 3). The P% is directly proportional to the number of solutions
explored, though the larger the set of nodes is, the more time is needed, which
is ineffective in the context of FIA. In fact, the end-user will endeavor to achieve
the maximum utility, but only as long as it is attainable during a specific time
frame. The dynamic nature of mobile networks is another factor to be consid-
ered. Obviously, in order to be useful, the results must be provided in real-time,
as it is useless to exploit the results while some networks are no longer accessible
and/or other new networks are available.
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Table 3: Scenario 2–Results for TS & SA

Nodes Standard Tabu Simulated Annealing
P% UD SP P% UD SP

10 0.0 1.00000 109105.8 0.0 1.00000 112664.5
100 0.0 1.00000 38136.4 0.0 1.00000 37176.4
200 0.0 0.72653 21110.5 0.0 0.96108 23726.3
1k 0.72 0.08222 5931.3 0.84 0.00199 14210.1
10k 0.72 0.00247 570.9 0.84 0.00199 13799.1
50k 0.96 0.00036 90.5 0.84 0.00199 9903.5

5. Our proposal

In this section, we seek to remedy the shortcomings indicated previously. We
chose TS as the main algorithm, although it has lower performance compared
to SA, and that is for two reasons: (i) TS does not seize exploration, unlike
SA whose exploration relies on the temperature variable which eventually be-
comes low and the algorithm remains steady, and (ii) TS can employ different
types of memory (short, intermediate, and long-term) to bias move towards
promising areas of the search space or promote a general diversity. To enhance
the performance of TS, we propose a new method called Smart Tabu Search
(STS) that improves the original TS on three points, the Clever Diversification,
Approximate Initial Solution, and Oscillation.

5.1. Clever Diversification

TS uses random diversification to escape from getting stuck on a local op-
timum, when there is a slump in the solution improvement, the algorithm pro-
duces a random candidate and explores its neighborhood for a better solution.
If one is found, TS updates its state and continues from there, otherwise, new
diversification is executed. Two defects can be identified in the current process.

• For a demonstration, let I equals the number of interfaces and F the num-
ber of flows. S is the search space, where S = IF , and Ns is neighborhood
size, where Ns = (I−1)∗F (using the displacement technique). It is clear

that as the search space gets larger, the number of neighborhoods N =
S

Ns
gets bigger, which means the chance to produce a candidate, whose neigh-
borhood contains the global optimum, gets extremely small with a large
S.

• The process being totally random, means it will produce candidates that
are far from being optimal and the algorithm will spend a lot of time
exploring them.

To address these issues, we propose a clever diversification (CF ). In CF ,
the search space from which the candidate is chosen is kept smaller, although
it still grows with S but with a lower rate. This will increase the chance to
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stumble upon a neighborhood with the global optimum. Second, the candidates
produced by CF will contain interfaces that are likely to be part of the global
optimum.

To explain how CF works, let us assume that we have four flows and three
interfaces. The procedure to generate a candidate includes two steps:

1. The first step aims to reduce the search space by using the Algorithm
1. The output of the algorithm is a matrix M , where columns represent
flows and rows represent available network interfaces for each flow. For
example, in the matrix below, flow 1 can select interface 1 or 2, and flow
2 can be associated only to interface 1.

M =

1 1 1 1
2 − 2 −
− − 3 −


2. The second step generates a candidate, where network interfaces are ran-

domly assigned to flows as shown in the matrix M . If the resulted can-
didate is Tabu, then the process is repeated for a maximum of n times
(n > 0). If no candidate is generated then the random diversification is
executed.

5.2. Approximate Initial Solution

TS begins by a randomly generated candidate as an initial solution and
starts improving it. Sometimes the provided candidate can be far from the
global optimum and/or invalid, thus a considerable amount of time will be
spent to improve it. Instead, an approximate solution with high utility and
valid (if possible) is provided to the algorithm, hence TS has a higher chance to
stumble upon the global optimum quickly.

To create an approximate solution, we find the interface with the highest
utility for each flow and assign it to the latter, then update the interface’s
expandable resources (e.g. bandwidth, buffer, etc.) to reflect the allocation.
The procedure requires I ∗ F evaluations. In addition to the simplicity of the
technique, it significantly improves the performance as it is demonstrated in the
next section.

5.3. Oscillation

Normally, TS only accepts solutions with better or equal utilities. This
behavior makes the algorithm greedy and it might get stuck on a local optimum.
By introducing diversification, we provide the algorithm with random candidates
that lead to the global optimum and mitigate the greedy behavior. But this
holds true only if the new candidates or their neighborhoods have solutions
with a better utility than the current best. This process is repeated when there
is no improvements and it gets longer when the current solution gets closer to
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Algorithm 1 Reduce Diversification Space

Require: M empty matrix
1: for f in Flows do
2: for i in Interfaces do
3: Calculate the utility Ufi using equations [9]:

for upward attributes (e.g., Throughput):

f(x) = L− (L− b)e(−k(x−a)) (2)

k is computed using the following equation:

k = − ln(1− p)/(Target point− a), 0 < p < 1 (3)

for downward attributes (e.g., Latency)

f(x) = L− e(k−(x−a)) (4)

for monetary cost: {
f(x) = 1− x/u, x ≥ u
f(x) = 0, x > u

(5)

4: end for
5: Calculate the mean m and std. deviation sd of Ufi

6: SDonly = False
7: for i in Interfaces do
8: if ¬SDonly then
9: if Ufi ≥ m+ sd then

10: Clear M [f ]
11: SDonly = True
12: Add i to M [f ]
13: else if m− sd ≥ Ufi ≥ m+ sd then
14: Add i to M [f ]
15: else
16: Discard i
17: end if
18: else if Ufi ≥ m+ sd then
19: Add i to M [f ]
20: end if
21: end for
22: end for
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the global optimum, since the number of solutions better than the current best
utility diminishes.

To explain, consider the following example. Assume the present solution
is second to the global optimum, and to reach the optimum, two flows have
to change their interfaces. Generating the neighborhood by displacement only
alters one flow each time. That means the algorithm cannot reach the global
optimum, because TS would not explore solutions with inferior utility (see Table
5).

This problem can be solved by allowing TS to explore and accept sub-optimal
solutions. To realize that we use a technique similar to SA’s acceptance prob-
ability (Equation 6), but contrary to SA, when the number of iterations since
the last improvement rises (resp. c is set low) the probability increases. This
will render TS to be more stochastic when improvements halt. The probability
is reset when a better solution is found, to permit the algorithm to search the
vicinity of the current solution.

OscillationPr +
Lastimprovement

c
< random(0, 1), (6)

where c is a constant, c ≥ 1.

6. Performance evaluation

The combination of the improvements presented in the previous section and
TS lead to a new algorithm called Smart Tabu Search (STS). The new algo-
rithm is compared with the TS with oriented diversification (OTS) [3] running
the same scenarios presented above. Results in Tables 4 and 5 highlight the
performance gain of STS.

Table 4: OTS vs. STS – Scenario 1

N (Nodes) Oriented Tabu STS
P% UD SP P% UD SP

10 0.0 1.00000 140.0 0.99 0.00005 117.4
100 0.65 0.17584 30.9 1.00 0.00000 31.7
200 0.89 0.05146 17.0 1.00 0.00000 14.8
1k 0.95 0.00078 3.1 1.00 0.00000 2.9
2k 0.96 0.00062 1.4 1.00 0.00000 1.4
20k 1.0 0.00000 0.5 1.0 0.00000 0.5

From the results, it is obvious that OTS does not provide a lot of advantages
compared to the standard Tabu, and that is because of the way oriented diver-
sification works. For a given input, it takes the TabuList and search for flows
that have not yet visited all interfaces, and randomly assigns one of the flows to
one of the unvisited interfaces, or resort to random diversification if such a case
cannot be found in the TabuList. The approach is futile when the candidate’s
neighborhood is generated by the displacement method; since the majority of
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the results generated by the oriented diversification are already evaluated when
exploring the neighborhood. We tried to randomly generate the neighborhood,
but OTS performs even poorly compared to the TS, however, there is a par-
ticular case where the approach can be helpful, and that is when we meet a
situation similar to the example discussed previously in the oscillation section,
represented in Table 5. Where OTS can find all global optimum by evaluating
50k nodes, contrary to the STS (without oscillation) where the search halts at
96%, although will still converge albeit very slowly.

As for STS the results are apparent, for the first scenario, the algorithm be-
gins at 99% success rate, thanks to the approximate initial solution, and reaches
100% after evaluating 100 nodes only. This proves that supplying a high utility
initial solution yields better results quickly. The second observation is that STS
is slightly slower compared to the OTS and that is expectable, since computing
the initial solution and limiting the search space for the diversification process
takes time; but that is apparent on small problems only, the overhead is negligi-
ble as the search space becomes larger. First case of the second scenario shows
that STS is capable of solving large problems with affecting its performance, and
although the algorithm converges quickly, there are cases where it gets stuck on
a local optimum early and ceases to improve. The second case demonstrates
the importance of oscillation. By simply allowing the algorithm to accept and
explore sub-optimal solutions, we can escape the local optimum.

Table 5: OTS vs. STS – Scenario 2

Nodes Oriented Tabu STS
Case 1: no oscillation Case 2: oscillation

P% UD SP P% UD SP P% UD SP
10 0.0 1.0000 96388 0.8 0.0009 118066 0.8 0.0009 115503
100 0.0 1.0000 38319 0.96 0.0001 106503 1.0 0.0000 47135
200 0.0 0.8042 19662 0.96 0.0001 32507 1.0 0.0000 25230
1k 0.76 0.0423 6856 0.96 0.0001 5955
10k 0.76 0.0423 589 0.96 0.0001 570
50k 1.0 0.0000 91 0.96 0.0001 100

To further quantify the real benefit of our approach, we developed a real
health monitoring testbed, named RaspNet, comprising multiple sensors for
medical application. In the following section, we will present the work car-
ried out toward the design, development and implementation of our testbed in
the LiSSi laboratory. We will also report the obtained results, supported by the
comparison with other works.

7. Design and Implementation of a Real Health Monitoring Testbed

In this section, we present the implementation details of our proposition in
an appropriately configured RaspNet and discuss the scenarios we have tested.
More specifically, an e-Health application is considered to assess the impact
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of the selection algorithm on various parameters. Five medical sensors from
Libelium [23] are used to capture different biometrics, namely ECG, EMG,
GSR, Airflow and a Thermometer. The sensors are wired to an e-Health Sensor
Shield (PCB) [24] from the same company which in turns connect to Arduino,
Intel Galileo or Raspberry Pi, the latter is used in this study (see Figure 2).
This setup (sensor node) can be used to monitor the status of a patient in real-
time or to get sensitive data in order to be subsequently analyzed for medical
diagnosis.

Figure 2: The e-Health platform.

The gathered information is wirelessly sent over LAN using any of the two
connectivity options available: Wi-Fi and Bluetooth to another Raspberry Pi
(router node) connected to the Internet. The router node has five wireless
network interfaces: built-in Wi-Fi and Bluetooth for LAN communications with
the sensor node, and 4G, 3G and Wi-Fi dongle with Internet access for data
forwarding. The router node’s main objective is routing the received data from
the sensor node(s) to the server through the appropriate interface according to
the application and user requirements using a selection algorithm (see Figure
3).

This entity takes into consideration several pieces of information, such as the
monetary cost, the network performance, and etc. Some of these characteristics
are collected from the operating system of the device or are hard-coded due to
the lack of an appropriate equipment.

The testbed is based on client/server architecture, both of which run on
different Linux flavors.

7.1. Client

The client comprises two entities with different tasks. A sensor node that
captures patient’s vital signs using different medical sensors, and a second entity,
known as router node responsible for routing the captured data via the most
suitable network interface.
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Figure 3: The testbed setup.

7.1.1. Sensor node

The sensor node runs on Raspberry pi 3 with raspbian stretch OS. It contains
an e-Health Sensor Shield (PCB) mounted on top of the Raspberry pi 3, and
an ECG, EMG, GSR, Airflow, and a Thermometer connected to the e-Health
Sensor Shield. Each sensor stores the captured data in a file with real-time
updates, then the files are sent over Wi-Fi or Bluetooth in LAN setup to the
router node.

7.1.2. Router node

The router node also runs on Raspberry pi 3 with raspbian stretch OS, it
has access to the Internet through three different RATs: 4G, 3G, and Wi-Fi.
The node’s main objective is sending the received data from other sensor nodes
using the most suitable network interface according to the flow requirements and
user preferences. The implemented system powering the node consists of five
separate but complementary modules. The modules objectives are as follows:

1. Network Probing: This module collects all the information about the
parameters pertaining to NIS, such as the monetary cost, the network
performance, the power consumption, the signal strength, speed, GPS po-
sition, etc. The type of information collected depends on the application
requirements. In this study, the first three set of information are consid-
ered.

• Power Consumption: It is difficult to measure accurately. An
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estimation could be made based on the wireless Network Interface
Card (NIC) transmission power and data rate, but this method does
not consider the power consumption when the interface is idle or re-
ceiving data. Another approach is to compute the terminal’s power
consumption over a period of time t (in seconds) with all network in-
terfaces turned off, then doing the same with one interface turned on
and operating (sending and receiving). The difference between these
two measurements divided by t is the average network interface’s
power consumption per second. We adopted the second approach,
and calculated power consumption for all available wireless NICs,
results are depicted in Table 6.

• Monetary Cost: Since it is fluctuating and based on the providers’
economic policies, the values for each interface are precomputed based
on the carrier’s data plan and hard-coded.

• Network Performance: It refers to the measurement of the overall
performance of a service, as seen by the customer. There are many
different ways to measure the performance of a network, the following
measures are often considered important:

– Throughput is the actual transfer rate for the data.

– Latency is the delay between the sender and the receiver.

– Jitter is the variation in packet delay at the receiver.

– Packet Loss is the number of corrupted packets expressed as a
percentage or fraction of the total sent.

There are many tools available to measure one or more of these param-
eters, some of which are proprietary and specific to vendor applications.
The measurement process is typically undertaken by sending a number of
probing packets from one system (sender) to another (receiver), when the
packets arrive at the receiver, some predefined metrics are computed and
reported.

A more accurate method is to use a dedicated software such as Spirent Test
Center, JDSU QT600, Netcps, IxChariot, Iperf3, Ttcp, netperf, NetPIPE,
Flowgrind or bwping for measuring different parameters.

We have chosen Iperf3 [25], a widely used open-source and cross-platform
tool for network performance measurement and tuning. It can produce
standardized performance measurements for any network. Iperf3 has client
and server functionality, and can create data streams to measure different
parameters between the two ends in one or both directions. The data
streams can be either TCP, UDP or SCTP. Throughput is measured with
TCP while UDP is used for Jitter and Packet loss.

Iperf3 does not measure Latency, therefore another tool is required for
that. Latency can be either One-Way Delay (OWD), i.e., latency in one
direction or in terms of Round-Trip-Time (RTT), which is the length of
time it takes for a signal to be sent plus the length of time it takes for
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an acknowledgment of that signal to be received. The OWD is more
relevant measure than RTT for applications that are primarily producers
or consumers of data, since delays between two network nodes are not
completely symmetric.

OWAMP [26] is an implementation of the One-Way Active Measurement
Protocol OWAMP as defined by RFC 4656. It is used to determine the
OWD. However, OWAMP drawback lies in its difficulty to use, it requires a
Network Time Protocol (NTP) synched client and server with at least four
peers for the measurements to be accurate. Another method that is easy
to accomplish (with a simple ping) but would produce an approximation
is to halve the RTT value. The accuracy of such an estimation depends
on the delay distribution in both directions: as delays in both directions
become more symmetric, the accuracy increases.

The tests are executed in parallel for all available NICs to reduce execu-
tion time, but that requires the server’s throughput to be greater than all
the client NICs’ combined for the measurement to be as accurate as possi-
ble; otherwise, sequential execution is performed. Our server has enough
throughput for a parallel approach. The execution time takes about 6 sec-
onds in total, 3 to determine throughput and another 3 for the remaining
parameters.

These tests can throttle the transmission of other data through the In-
ternet connection as they are undertaken, and can cause inflated data
charges. Therefore, it stands to reason to run it sparingly or when needed.
In this testbed, the module is executed routinely and asynchronously at a
predefined interval, but the frequency is subject to change depending on
different factors such as mobility and terminal speed. It is also possible
to force its execution for certain events, such as:

• Disconnected network,

• NIC is down or up.

QoS, monetary and power consumption values of the used networks are
detailed in Table 6. The ones marked as dynamic are for reference only,
since they are subject to change and needs to be computed during the
program execution. Others are pre-computed and hard coded.

2. Policies: They provide information about flow requirements and user
preferences to the NIS module. Every flow has to define the required
QoS and user preference values. In order to simplify this issue for the less
experienced users, we predefined a list of the most usable values as follows.

• QoS

– Real-time voice (e.g. PCM VoIP)

– Real-time data (e.g. TelePresence)

– Best effort voice (e.g. audio streaming)
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– Best effort data (e.g. video streaming)

– Scavenger (e.g. FTP, P2P or Torrent)

• User preferences

– Performance

– Cost

– Energy

– Balanced

3. NIS: This module is responsible for assigning each data flow to an ap-
propriate network interface while considering multiple factors. It takes as
input flows requirements, user preferences, and network interfaces mea-
surements. The output is a priority list of the two most suitable networks
for each flow as determined by the selection algorithm. Different algo-
rithms will produce different results, but the main goal is to determine the
global optimum or at least approach it in case of large search spaces. Five
selection algorithms are considered namely, Brute-force, STS, TS, SA, and
Random. Brute-force is used as a standard by which other algorithms are
measured since it always finds the optimum solution. While the random
strategy will simply assign each flow to a network interface randomly, and
is meant to exhibit the efficacy of other selection algorithms.

4. Transmission: It is implemented as threads, a thread for each data flow.
The module objective is to send the data read from a file through the
given network interface using TCP socket, if the network is disconnected
or down then the second interface is used. If all interfaces are down, the
thread status is updated to ”disconnected” and communicated to the main
program to force a new network probing, followed by a NIS. The selection
results are communicated back to the thread, and transmission is resumed.
The module will run continuously until all data are sent or discarded by
the user (e.g. file deleted). The end of data flow is determined by setting a
timer on the given file, if the timer runs out and no write event is reported
by the inotify API then the flow is considered close, and the thread will
exit.

5. Main: This module implements the main execution routine and brings all
other modules together. It monitors a given folder for file creation events
using Linux inotify API. In case of an event, a Transmission thread is cre-
ated and assigned to the newly created file, then network’s parameters and
flow’s information are fetched through the Network probing and Policies
modules, respectively. The NIS is executed once the previous information
is available, and the results are fed to the Transmission thread to start
sending the data. It also routinely monitors network events such as newly
discovered networks or network disconnection, and reacts by forcing the
network probing execution followed by NIS, the new results are propagated
to the active Transmission threads.
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Table 6: QoS, monetary and power consumption values of the used networks

Technology Carrier Dynamic* Static
Throughput
(Mbits/s)

Latency
(mSec)

Jitter
(mSec)

PER
(%)

Cost
(cents/Mbyte)

Power consumption
(mWatt)

4G Bouygues 12 83 10 0 0.2 1726
3G SFR 3.5 345 17 0 1 1678

Wi-Fi Lab WiFi 5 65 23 1 0.001 210

* Values are for reference only, since they are subject to change and need to be computed

during the program execution.

7.2. Server

The server uses Linux Ubuntu 16.04.4. The implementation is fairly simple,
it accepts connection from clients and stores the received files locally. If a file
already exists the server responds with the end-of-file position to the client.
This is useful in case of disconnection so the client can resume sending from
the last successfully sent packet. Another objective is to provide iperf3 server
for network testing, it does so by running iperf3 server on multiple ports if
possible for concurrent testing. The number of ports is limited by the server’s
connection uplink and/or downlink capacity, depending on the test direction.
The connection’s throughput is required to be at least equal to the clients’
connections throughput combined for the measurement to be accurate. In this
case study, the server is running on Amazon EC2 with 70 Mbits/sec downlink
and 65 Mbits/sec uplink Internet connection, which is more than enough to
provide concurrent testing for one client with three Internet connections rating
at 20 Mbits/sec max.

The testbed’s different modules and their interaction is represented through
a component diagram in Figure 4.
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Figure 4: Testbed component diagram.

8. Results

In this section, we will discuss the testbed setup, execution and the obtained
results. The real traffic through the Internet is used, with the clients located in
Paris, France, and the server in Ohio, United States. The following process was
followed in order to setup the testbed before each test case:

1. The captured data from each sensor is stored in a file, and the same file is
used for all subsequent tests, in order to prevent data size changes between
executions.

2. The router node is configured in an initial state where the sensors’ files
are already in local storage. Thus, isolating any variations introduced by
wireless communications between the sensor and router nodes.

3. The router node is not connected to any wireless access network and no
information is transferred.

4. The flow requirement is parameterized according to Table 7. While the
user preference is set to Cost for all traffic.

5. The network interfaces are connected and the scenario is executed.

The execution starts with the router node initiating a network probing and
collects all the information about the network’s parameters, then running one
of the NIS algorithms. The selection algorithms except Brute-force can run in-
definitely, therefore a stopping condition is needed to terminate the algorithm’s
execution. We limited the running time to 20 seconds or when the results seize
improving for 100 consecutive iterations.
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Table 7: Sensors’ network requirements

Sensor File size (Mbyte) Requirement
Airflow 1 Real-time data

Thermometer 4.5 Real-time data
EMG 3.5 Best effort data
GSR 2 Best effort data
ECG 55 Scavenger

Once an association is obtained, each file is sent through the assigned net-
work. Results are acquired after all data is transferred successfully. Network
disruptions during execution will affect the obtained results and, as such, are
discarded.

Results contain five parameters:

1. Satisfaction ratio: represents to how extent the user’s and application’s
(flows) requirements are met. 1.0 means all the requirements are satisfied,
while 0.0 is the antithesis.

2. Sending time: measures the time spent successfully sending all the data.

3. Cost: is the data charges in €0.01.

4. Energy consumption by active network interfaces.

5. Selection time: represents the selection algorithm’s running time in sec-
ond.

For each selection algorithm, there are three different outputs, representing
the number of sensor nodes used in the test, 1, 2 and 3 nodes which yield 5, 10
and 15 flows, respectively. Each test case is repeated ten times and results are
averaged. Output is depicted in Figures 5-9.

Figure 5 shows the satisfaction ratio (SR). Using 5 flows, all selection algo-
rithms produce SR equal to 1, except the random solution. By increasing the
number of flows, the SR starts to drop reaching its lowest value 0.67 with the
random solution while TABU and SA perform slightly better at 0.75 and 0.71,
respectively. The STS gives results identical to the Brute-force algorithm.

Sending time is affected by the FIA i.e., assigning flows with high bandwidth
demand to networks with large throughput takes less time to send the data than
doing otherwise. In this testbed, the ECG file is bulky and the flow type is set
as the scavenger, which prioritizes the network throughput. Therefore, it makes
sense to assign it to the network with the largest throughput (4G) while still
considering other flow requirements. With small problem size, as in the case of 5
flows, the objective is easy to attain, and all five algorithms give close results as
shown in Figure 6. But as the problem size grows larger, the resources become
scarce and the goal is increasingly difficult to reach, while considering the flow
requirements and user preferences. Both Brute-force and STS give the shortest
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Figure 5: Satisfaction ratio using different selection algorithms while increasing sensor nodes.

time, while the other algorithms start to suffer gradually as the problem size
increases, with random strategy giving the worst results.

Figure 6: Time to send all files using different selection algorithms while increasing sensor
nodes.

Cost is inversely proportional to the sending time, and that is due to the type
of networks and user preference used. The network with the highest throughput
is the 4G network, but has slightly elevated data charges, while Wi-Fi has the
lowest price at an average throughput. Therefore, since user preference is set to
Cost, all selection algorithms except Brute-force and Random, will lean at first
toward solutions with low cost, even at the expense of SR, then start converging
toward the global optimum, which may require the usage of the 4G network or
even 3G to obtain the highest SR at the lowest possible cost.

When only 5 flows are considered, reaching the global optimum is a quick
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process, and all algorithms give results comparable to that of the Brute-force,
except the Random solution. But as the search space grows larger, both TABU
and SA produce results with lower cost than that of the Brute-force, but worst in
terms of SR and sending time, which suggest that both algorithms are stopped
before reaching (slow at finding) the global optimum. The STS gives the same
results as the Brute-force in all three cases.

Energy consumption follows the same trends, since the 4G and 3G networks
also have higher power consumption than Wi-Fi. But it should be noted that we
considered the energy consumption of the network interfaces only. If we were to
factor the computational energy expenditure, solution with high sending time
actually has a higher energy consumption.

Figure 7: Charges using different selection algorithms while increasing sensor nodes.

Figure 8: Energy expenditure using different selection algorithms while increasing sensor
nodes.
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While finding or approaching the global optimum is appealing, the time
required to obtain such a result is an important factor to determine if the al-
gorithm is suitable for real scenario usage. Random approach’s execution time
is negligible, since there is no search involved, but the solution is also of poor
quality compared to other approaches. Brute-force always gives the global opti-
mum, but the required time to obtain the result grows exponentially when the
problem size increases as can be seen in Figure 9. When 5 flows are considered,
the running time is equal to 244 ms and grows to 57 s and 14 hours (omitted
from the graph since it dwarfs other values) for 10 and 15 flows, respectively,
which render the algorithm completely impractical especially when the terminal
is mobile.TABU and SA take less time, but the quality results start deteriorat-
ing as the problem size grows. The STS provides best of both, by producing
comparable results to the Brute-force at a fraction of the time, 7.43 s when
considering 15 flows, which is half the time taken by the TABU.

Figure 9: Different selection algorithms running time while increasing problem size.

9. Conclusion and future work

In this paper, we work towards solving the FIA problem in HWNs. Different
random search approaches, such as TS and SA, in the context of FIA were stud-
ied in a simulation-based comparative manner. The simulation outcomes shed
light on weak and strong points of two approaches in the study scope context
and provoke our proposed approach that aims to alleviate the deficiencies. We
proposed three improvements to the original TS to provide an efficient FIA.
The effectiveness and efficiency of the proposed approach were firstly evalu-
ated through simulation and the obtained simulation results were supported by
comparison with the original TS, SA and an alternative existing work in the
literature. The obtained promising results indicate that the proposed approach
far outperforms the other approaches. In order to further quantify the actual
benefit of the proposed approach, we have developed a real health monitoring
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testbed, comprising multiple sensors for medical application, which can be used
for healthcare facilities due to several factors such as, emergency, remote lo-
cation, limited mobility, being part of the daily routine (patients with chronic
conditions), or simply because it is a tedious expensive task for some simple
procedures. The obtained results were reported, analyzed and compared with
other existing works. The results of these further experimental tests confirm
the simulation results.

The future work can focus in further investigation of the proposed algo-
rithm’s performance. Instead of adhering to the assumption made here, that
a flow can be assigned to only one network interface, a terminal with link ag-
gregation capability can be considered where multiple network connections are
combined in order to increase the throughput beyond what a single connection
could sustain, and to provide enough redundancy in case one of the links should
fail. An in-depth investigation can then be carried out, to determine the impact
on energy consumption, monetary charges, performance, user satisfaction, etc.
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