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Let n, k, r be positive integers, with n ≥ kr. The r-uniform Kneser hypergraph KG r (n, k) has as vertex set the set of all k-subsets of the set {1, . . . , n} and its (hyper) edges are formed by the r-tuples of pairwise disjoint k-subsets of the set {1, . . . , n}. In this paper, we give conditions for the existence of homomorphisms between uniform Kneser hypergraphs.

Introduction and preliminaries

A hypergraph H is an ordered pair (V(H), E(H)), where V(H) (the vertex set) is a finite set and E(H) (the edge set) is a family of distinct non-empty subsets of V(H). If every (hyper) edge in E(H) has size r, then H is called r-uniform. Notice that a (simple) graph is a 2-uniform hypergraph. Let A, B be two finite sets and let φ : A → B be a mapping from A to B. The extension of φ, that we denote by φ, is a mapping from 2 A to 2 B defined by φ(S) = ∪ a∈S {φ(a)}, for any subset S ⊆ A.

Let G = (V(G), E(G)) and H = (V(H), E(H)) be two hypergraphs. A mapping φ : V(G) → V(H) is called a homomorphism from G to H if, for any edge e ∈ E(G), we have that φ(e) ∈ E(H). If there is a homomorphism φ from G to H, we will write G → H, and also introduce φ writing φ : G → H. An automorphism of a (hyper)graph G is an injective homomorphism from G to himself. The set of all automorphisms of a (hyper)graph G forms a group structure which is denoted by Aut(G).

For any positive integer t, let [t] denote the set {1, 2, . . . , t}. A t-coloring of a hypergraph H is a coloring f : V(H) → [t] of the vertex set with t colors such that there is no monochromatic edge. The minimum t such that there exists a t-coloring for hypergraph H is called its chromatic number, and it is denoted by χ(H).

For any positive integers n, k, let [n] k be the set of k-subsets of [n]. The Kneser hypergraph KG r (n, k) is the r-uniform hypergraph whose vertex set is [n] k and whose (hyper) edges are formed by the r-tuples of pairwise disjoint k-subsets of [n].

Concerning the study of homomorphisms between 2-uniform Kneser hypergraphs, the most known and useful results are the following: Lemma 1 (Stahl [START_REF] Stahl | n-tuple colorings and associated graphs[END_REF]). Let n, k be positive integers with n ≥ 2k. Then, there is a homomorphism

KG 2 (n + 2, k + 1) → KG 2 (n, k). Notice that if H → KG 2 (n 1 , k 1 ) and H → KG 2 (n 2 , k 2 ), then H → KG 2 (n 1 + n 2 , k 1 + k 2 ).
Therefore, by using the Stahl's homomorphism we can deduce that KG 2 (n, k) → KG 2 (tn -2s, tks) for any positive integer t and any s ∈

[k -1].
Lemma 2 (Godsil and Roy [START_REF] Godsil | Algebraic graph theory[END_REF]). Let n/k = w/s > 2. Then, there is a homomorphism KG 2 (n, k) → KG 2 (w, s) if and only if k divides s.

Lemma 3 (Godsil and Roy [START_REF] Godsil | Algebraic graph theory[END_REF]). Suppose there is a homomorphism

KG 2 (n, k) → KG 2 (w, s). If s n k > n n-1 k-1 + (w -n)h n,k , then there is a homomorphism KG 2 (n -1, k) → KG 2 (w -2, s), where h n,k = 1 + n-1 k-1 -n-k-1 k-1 .
The chromatic number of r-uniform Kneser hypergraphs has been completely determined. In a famous paper, Lovász [START_REF] Lovász | Kneser's conjecture, chromatic number and homotopy[END_REF] proved that χ(KG 2 (n, k)) is equal to n -2k + 2. Later, this result has been extended to r-uniform Kneser hypergraphs by Alon, Frankl and Lovász [START_REF] Alon | The chromatic number of Kneser hypergraphs[END_REF] who showed that χ(KG r (n, k)) = n-(k-1).r r-1

for n ≥ kr. As far as we know, there are no results concerning the study of homomorphisms between runiform Kneser hypergraphs for r > 2. In this paper, we give some necessary and sufficient conditions for the existence of homomorphisms between Kneser hypergraphs. The paper is organized as follows: in Section 2, we start our study by characterizing the existence of homomorphisms between two r-uniform Kneser hypergraphs. The study of homomorphisms between two Kneser hypergraphs formed by hyperedges of different size is done in Sections 3 and 4. In Section 3, we study the homomorphisms from KG r (n, 1) to any other r -uniform Kneser hypergraph. In Section 4, we present results for the more general case of homomorphisms from r-uniform Kneser hypergraphs to r -uniform Kneser hypergraphs. Finally, in Section 5, we discuss some applications of our results to rainbow colorings of Kneser hypergraphs.

Homomorphism between two r-uniform Kneser hypergraphs

In this section, we characterize the existence of homomorphisms between two r-uniform Kneser hypergraphs in terms of the existence of homomorphisms between 2-uniform Kneser hypergraphs.

Theorem 1. Let r, n 1 , k 1 , n 2 , k 2 be positive integers, with n i ≥ rk i , for i = 1, 2, and with r ≥ 3. There is a homomorphism from KG r (n 1 , k 1 ) to KG r (n 2 , k 2 ) if and only if there is a homomorphism from KG 2 (n 1 , k 1 ) to KG 2 (n 2 , k 2 ).

Proof. Assume there is a homomorphism φ : KG r (n 1 , k 1 ) → KG r (n 2 , k 2 ). Let A and B be a pair of adjacent vertices in KG 2 (n 1 , k 1 ). As n 1 ≥ rk 1 and r ≥ 3, there exists a set of r -

2 pairwise disjoint elements {C 1 , . . . , C r-2 } of [n 1 ]\(A∪B) k 1
. Thus, the set e = {A, B, C 1 , . . . , C r-2 } is an edge of KG r (n 1 , k 1 ) and therefore, by hypothesis, the set φ

(e) = {φ(A), φ(B), φ(C 1 ), . . . , φ(C r-2 )} is an edge of KG r (n 2 , k 2 ), which implies that φ(A) ∩ φ(B) = ∅. Therefore, φ is a homomorphism from KG 2 (n 1 , k 1 ) to KG 2 (n 2 , k 2 ).
Conversely, let φ be a homomorphism from KG 2 (n 1 , k 1 ) to KG 2 (n 2 , k 2 ). By hypothesis, for any pair of vertices A, B in

[n 1 ] k 1 such that A ∩ B = ∅, we have that φ(A) ∩ φ(B) = ∅.
Therefore, by definition of r-uniform Kneser hypergraphs, we have that each edge of KG r (n 1 , k 1 ) is mapped by φ to an edge of KG r (n 2 , k 2 ), which proves that φ is also a homomorphism from KG r (n 1 , k 1 ) to KG r (n 2 , k 2 ).

Remark 1. Let H be an r 1 -uniform hypergraph and G be an r 2 -uniform hypergraph. If there is a homomorphism from H to G then r 1 ≥ r 2 .

In fact, notice that if φ : H → G is a homomorphism and e = {v 1 , . . . , v r 1 } is an edge of H, then φ(e) = {φ(v 1 ), . . . , φ(v r 1 )} is an edge of G and therefore r 2 ≤ r 1 .

The case k 1 = 1

In Theorem 2 we completely characterize the existence of homomorphisms between KG r 1 (n 1 , 1) and other r-uniform Kneser graphs. First, in Lemma 4 we show that such homomorphism should send all vertices of KG r 1 (n 1 , 1) to a single edge in the image. Then Example 1 shows this condition is not sufficient. The rest of the section is then devoted to characterize such homomorphisms. Lemma 4. Let n 1 , n 2 , r 1 , r 2 , k 2 be positive integers with n 1 ≥ r 1 , n 2 ≥ r 2 k 2 , and r 1 > r 2 . Let φ be a homomorphism from KG r 1 (n 1 , 1) to KG r 2 (n 2 , k 2 ). Then, for any pair of (hyper)edges e 1 , e 2 in KG r 1 (n 1 , 1), we must have that φ(e 1 ) = φ(e 2 ).

Proof. Let e 1 = {u 1 , . . . , u r 1 } be an edge of KG r 1 (n 1 , 1). As φ is a homomorphism, then φ(e 1 ) = e, where e = {v 1 , . . . , v r 2 } is an edge of KG r 2 (n 2 , k 2 ). By sake of contradiction, assume there is a vertex

x ∈ [n 1 ]\e 1 such that y = φ(x) ∈ e. As r 1 > r 2 , there exists v i ∈ e such that |φ -1 (v i )∩e 1 | > 1. Let u ∈ φ -1 (v i ) ∩ e 1 .
Notice that e = (e 1 \ {u}) ∪ {x} is an edge of KG r 1 (n 1 , 1), and e = e 1 . However, φ(e ) = e ∪ {y} which is not an edge of KG r 2 (n 2 , k 2 ), contradicting the fact that φ is a hypergraph homomorphism.

By Lemma 4, if φ is a homomorphism from KG r 1 (n 1 , 1) to KG r 2 (n 2 , k 2 ), then φ([n 1 ]) is an edge of KG r 2 (n 2 , k 2 ).
However, this fact is not a sufficient condition for determining whether there exists or not a homomorphism between KG r 1 (n 1 , 1) and KG r 2 (n 2 , k 2 ) as Example 1 shows.

Example 1. Consider n 1 ≥ 5, r 1 = 3, k 2 = 1, r 2 = 2,
and n 2 ≥ 2. We show that there is not homomorphism from KG 3 (n 1 , 1) to KG 2 (n 2 , 1). By sake of contradiction assume φ : KG 3 (5, 1) → KG 2 (n 2 , 1). From Lemma 4 we have φ([n 1 ]) = e = {v 1 , v 2 }, where e is an edge of KG 2 (n 2 , 1). As

{φ -1 (v 1 ), φ -1 (v 2 )} is a partition of [n 1 ], w.l.o.g. we can assume that |φ -1 (v 1 )| ≥ 3. Thus φ -1 (v 1 )
contains an edge e of KG 3 (n 1 , 1), which is a contradiction as we have φ(e ) = {v 1 } which is not and edge of KG 2 (n 2 , 1).

Therefore, there exists no homomorphism between KG 3 (n 1 , 1) and KG 2 (n 2 , 1). In particular, notice that χ(KG 3 (5, 1)) = χ(KG 2 (3, 1)) = 3 but KG 3 (5, 1) → KG 2 (3, 1).

Given φ : KG r 1 (n 1 , 1) → KG r 2 (n 2 , k 2 ), using Lemma 4 one can define a partition n 1 = a 1 + • • • + a r 2 of n 1 into r 2 positive parts, where each part corresponds to the size of the pre-image under φ of a vertex in φ([n 1 ]). We call such partition the type of φ. In fact, notice that by Lemma 4, as φ is a homomorphism, then all vertices in KG r 1 (n 1 , 1) are mapped by φ to one hyperedge

e = {v 1 , v 2 , • • • , v r 2 } in E(KG r 2 (n 2 , k 2 )) and thus, φ([n 1 ]) = e. Therefore, the type of φ is the r 2 -partition (a 1 , a 2 , • • • , a r 2 ) of n 1 , where a i = |φ -1 (v i )| for i = 1, 2, • • • , r 2 . Definition 1. An r-partition of n is a vector a = (a 1 , . . . , a r ) of size r with n = a 1 + • • • + a r and 0 < a 1 ≤ a 2 ≤ • • • ≤ a r .
As Example 1 shows, not every r 2 -partition of n 1 is the type of a homomorphism from KG r 1 (n 1 , 1) to KG r 2 (n 2 , k 2 ). In Lemma 5, we give a characterization of when a partition is the type of a homomorphism. In Lemma 6, we show that modulo automorphisms of the two hypergraphs, the type characterizes the homomorphism. Lemmas 5 and 6 completely characterize the set of all homomorphisms from KG r 1 (n 1 , 1) to KG r 2 (n 2 , k 2 ) for any positive integers n 1 , n 2 , r 1 , r 2 , k 2 with n 1 ≥ r 1 , n 2 ≥ r 2 k 2 , and r 1 > r 2 .

Lemma 5. Let a be an r 2 -partition of n 1 . Then, a is the type of a homomorphism from KG r 1 (n 1 , 1)

to KG r 2 (n 2 , k 2 ) if and only if a 1 + r 1 > n 1 . Proof. First, assume a is the type of φ : KG r 1 (n 1 , 1) → KG r 2 (n 2 , k 2 ). Then each a i is the size of the set φ -1 (v i ) where v i is a vertex in φ([n 1 ]). Let S = [n 1 ] \ φ -1 (v 1 ). If |S| ≥ r 1 , taking S ⊆ S of size r 1 , we have that S is an edge of KG r 1 (n 1 , 1), but φ(S ) ⊆ φ([n 1 ]) \ {v 1 } which is not an edge of KG r 2 (n 2 , k 2 ). Therefore r 1 > |S| = n 1 -a 1 . Now, assume a is such that a 1 + r 1 > n 1 . Let e = {v 1 , . . . , v r 2 } be a fixed edge of KG r 2 (n 2 , k 2 ). For each i ∈ [n 1 ], define φ(i) = v j where j ∈ [r 2 ] is the index such that a 1 + • • • + a j-1 < i ≤ a 1 + • • • + a j-1 + a j . Clearly, φ is a map from [n 1 ] to [n 2 ]
k 2 such that φ([n 1 ]) = e. If φ is not a homomorphism from KG r 1 (n 1 , 1) to KG r 2 (n 2 , k 2 ), then there is an edge e 1 of KG r 1 (n 1 , 1) and j ∈ [r 2 ] such that v j / ∈ φ(e 1 ). Then

|e 1 | ≤ | φ-1 ( φ(e 1 ))| ≤ n 1 -a j ≤ n 1 -a 1 < r 1 which is a contradiction. Lemma 6. Let n 1 , n 2 , r 1 , r 2 , k 1 , k 2 be positive integers with k 1 = 1, n 1 ≥ r 1 , n 2 ≥ r 2 k 2 , and r 1 > r 2 .
Let φ 1 and φ 2 be two homomorphisms from KG r 1 (n 1 , k 1 ) → KG r 2 (n 2 , k 2 ) with types a 1 and a 2 , respectively. Then a 1 = a 2 if and only if there are α i in Aut(KG

r i (n i , k i )) for i ∈ {1, 2} such that φ 1 α 1 = α 2 φ 2 .
Proof. Let e 1 and e 2 be the edges of KG r 2 (n 2 , k 2 ) such that φ i (e) = e i for any edge e ∈ E(KG r 1 (n 1 , 1)) and i ∈ {1, 2}. First, consider that a 1 = a 2 . Now, for v ∈ e 1 , define α 2 (v) = u where u ∈ e 2 and |φ -1

2 (v)| = |φ -1 1 (u)| in such way that α 2 (v) = α 2 (v ) for v, v ∈ e 1 ;
complete the definition of α 2 by using any injective function from

V(KG r 2 (n 2 , k 2 )) \ e 1 to V(KG r 2 (n 2 , k 2 )) \ e 2 .
Since a 1 = a 2 , α 2 is well defined. Next, define α 1 by using, for every v ∈ e 1 , an injective function from φ -1 2 (v) and

φ -1 1 (α 2 (v)). Notice that φ 1 α 1 = α 2 φ 2 .
Conversely, assume that there are α i in Aut(KG

r i (n i , k i )) for i ∈ {1, 2} such that φ 1 α 1 = α 2 φ 2 .
It is clear that α 2 restricted to e 1 is an injective function with image e 2 . Notice that every vertex v ∈ e 1 contributes with value |φ -1 2 (v)| to compose the type a 2 and the contribution of

α 2 (v) ∈ e 2 to compose a 1 is |φ -1 1 (α 2 (v))|. Since φ 1 α 1 = α 2 φ 2 , it holds |φ -1 2 (v)| = |φ -1 1 (α 2 (v))| and therefore a 1 = a 2 .
The next result shows necessary and sufficient conditions for determining the existence of a homomorphism between two hypergraphs KG r 1 (n 1 , 1) and KG r 2 (n 2 , k 2 ), with r 1 = r 2 .

Proof. We apply Theorem 1 and obtain that we can assume r = 2. Notice that KG 2 (m, 1) = K m the complete graph with vertex set [m]. To prove (i), notice that ϑ(i) = {(i-1)k +1, . . . , ik} defines a homomorphism ϑ :

K m → KG 2 (n, k) when m ≤ n k . On the other hand, if ϑ : K m → KG 2 (n, k) is a homomorphism, then {ϑ(i) : i ∈ [m]} is a set of m pairwise disjoint subsets of [n] of size k.
Thus mk ≤ n. To prove (ii), notice that any homomorphism from KG 2 (n, k) to K m is a m-coloring of KG 2 (n, k) and thus the result follows from Lovász [START_REF] Lovász | Kneser's conjecture, chromatic number and homotopy[END_REF] result χ(KG 2 (n, k)) = n -2k + 2. Now we use Theorem 3 and Theorem 2 to obtain necessary conditions for the existence of a homomorphism from KG r 1 (n 1 , k 1 ) to KG r 2 (n 2 , k 2 ).

Corollary 1. Let r 1 , r 2 , n 1 , n 2 , k 1 , k 2 be positive integers, with n i ≥ r i k i , for i = 1, 2, and with r 1 > r 2 ≥ 2. (i) If there is a homomorphism from KG r 1 (n 1 , k 1 ) to KG r 2 (n 2 , k 2 ), then n 1 k 1 ≤ r 2 (r 1 -1) r 2 -1 . In particular n 1 < r 1 r 2 -1 r 2 -1 k 1 . (ii) If n 1 -2k 1 +2 ≤ r 2 (r 1 -1) r 2 -1
, then there exists a homomorphism from KG r 1 (n 1 , k 1 ) to KG r 2 (n 2 , k 2 ). Proof. First, notice that (ii) follows from Theorem 3(ii) and Theorem 2. Now, we prove (i). Assume there is a homomorphism KG r 1 (n 1 , k 1 ) → KG r 2 (n 2 , k 2 ). Using Theorem 3, we have that there is a homomorphism from KG r 1 ( n 1 k 1 , 1) to KG r 1 (n 1 , k 1 ). Therefore, by homomorphism composition, there is a homomorphism from KG r 1 (

n 1 k 1 , 1) to KG r 2 (n 2 , k 2 ). Thus from Theorem 2 it follows that n 1 k 1 ≤ r 2 (r 1 -1) r 2 -1 . Notice that this implies n 1 k 1 < r 2 (r 1 -1) r 2 -1 + 1 = r 2 r 1 -1 r 2 -1 .
Remark 2. Notice that part (ii) of Corollary 1 gives sufficient conditions to the existence of special homomorphism between hypergraphs KG r 1 (n 1 , k 1 ) and KG r 2 (n 2 , k 2 ): the ones that map every hyperedge in KG r 1 (n 1 , k 1 ) to a single hyperedge in KG r 2 (n 2 , k 2 ). Thus the conditions in the corollary are tight for k 1 = 1. For k 1 > 1 Corollary 1 does not give a definite answer for r 2 (r 1 -1)

r 2 -1 + 2k -2 ≤ n 1 ≤ r 2 (r 1 -1)
r 2 -1 k + k We end this section with the following example:

Example 2. Let n 1 = 8, k 1 = 2, r 1 = 4, and n 2 = 7, k 2 = 3, r 2 = 2. As n 1 -2k 1 +2 = 6 = r 2 (r 1 -1) r 2 -1
then, by Corollary 1(ii), we know that there exists a homomorphism from KG 4 (8, 2) to KG 2 (7, 3). In fact, by Theorem 3(ii), there exists a homomorphism θ : KG 4 (8, 2) → KG 4 (6, 1). It can be defined as follows: θ -1 (i) = {{i, j} : i < j ≤ 8} for 1 ≤ i ≤ 5, and θ -1 (6) = {{6, 7}, {6, 8}, {7, 8}}. Now, let n 1 = 6, k 1 = 1, r 1 = 4, and n 2 = 7, k 2 = 3, r 2 = 2. By Theorem 2 ((iii) =⇒ (i)), there exists a homomorphism π from KG 4 (6, 1) to KG 2 (7, 3). Let e = {{1, 2, 3}, {4, 5, 6}} be a hyperedge of KG 2 (7, 3). Now, define π as follows: π -1 ({1, 2, 3}) = {1, 2, 3} and π -1 ({4, 5, 6}) = {4, 5, 6}. Notice that π([6]) = e. Finally, the desired homomorphism φ from KG 4 (8, 2) to KG 2 (7, 3) can be defined by φ = π • θ. Moreover, as there exists a homomorphism KG 4 (8, 2) → KG 2 (7, 3), then 

Relation to colorings

Some questions about colorings of hypergraphs can be reformulated as questions about hypergraph homomorphisms. Thus our results allow to characterize when certain types of colorings exist or not.

A rainbow t-coloring of a hypergraph G is a vertex coloring of G with t colors in which every hyperedge contains a vertex of each of the t colors. Notice that rainbow 2-coloring is the same as normal 2-coloring, and the existence of a rainbow t-coloring for t = 2 implies that the hypergraph is 2-colorable. Rainbow t-coloring is also known as polychromatic coloring where the basic question is: given a certain family of hypergraphs (often interpreted as set systems representing geometric objets), what is the smallest t that guarantees the existence of a rainbow t-coloring. We refer to the work of Bollobás et al. [START_REF] Bollobás | Cover-decomposition and polychromatic numbers[END_REF].

Notice that, for r ≥ 2, the r-uniform Kneser hypergraph KG r (r, 1) is just a hyperedge with r vertices. Therefore, it is not difficult to see that a hypergraph G has a rainbow coloring with t colors if and only if there exists a homomorphism from G to KG t (t, 1). This notion leads us to characterize when an r-uniform Kneser hypergraph KG r (n, k) admits a rainbow t-coloring by using our results concerning the existence (or not) of a homomorphism from KG r (n, k) to KG t (t, 1).

On the other hand one can also be interested in colorings using exactly two colors per edge. A coloring with t colors using exactly two colors per edge is equivalent to a homomorphism to the complete graph K t . Notice that K t = KG 2 (t, 1) and thus our results allow to characterize when the hypergraph KG r (n, 1) admits such coloring, that is when n < 2(r -1), that is exactly when the graph is two colorable. In other words, any coloring of KG r (n, 1) with more than 2 colors necessarily colors one of the edges of KG r (n, 1) with 3 or more colors. Similar results can be obtained for other uniform Kneser hypergraphs.

1 = 6

 16 as stated in Corollary 1(i).
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Theorem 2. Let n 1 , n 2 , r 1 , r 2 , k 2 be positive integers with n 1 ≥ r 1 , n 2 ≥ r 2 k 2 , and r 1 > r 2 . Then the following are equivalent: (i) There exists φ : KG r 1 (n 1 , 1) → KG r 2 (n 2 , k 2 ) (ii) There exists an r 2 -partition a of

Proof. That (i) and (ii) are equivalent follows from Lemma 5. Notice that if (ii) holds, then

r 2 for i = 1, . . . , r 2 -s and a i = n 1 r 2 + 1 for i = r 2 -s + 1, . . . , r 2 . Then a is an r 2 -partition satisfying (ii). Now, to show that (iii) and (iv) are equivalent, notice first that the case r 2 = 1 is trivial. Therefore we assume r

and r 1 ≤ n 1 ≤ n 1 , then n 1 also satisfies (iii) (resp. (iv)). Thus to show that (iii) and (iv) are equivalent it is enough to show that (iii) holds for n 1 = N and does not hold for n 1 = N + 1. From the definition of N , we have that N > r 2 (r 1 -1) r 2 -1 -1. Thus,

and thus

Using that for any positive real x and positive integer n we have x n ≤ nx , we obtain that

Results for the general case

Using the results from Section 3, we derive bounds for general values of k 1 . The main idea is to construct a copy of KG r 1 (

, which implies bounds on n 1 k 1 (see Corollary 1). On the other hand, homomorphisms from KG r 1 (n 1 , k 1 ) to KG r 1 (n 1 -2k 1 + 2, 1) are also shown to exist (see Theorem 3), which imply the existence of homomorphisms from KG r 1 (n 1 , k 1 ) to KG r 2 (n 2 , k 2 ) when homomorphisms from KG r 1 (n 1 -2k 1 + 2, 1) to KG r 2 (n 2 , k 2 ) do exist (see Corollary 1). Theorem 3. Let r, n, k be positive integers such that n ≥ rk.

(i) There exists a homomorphism KG r (m, 1) → KG r (n, k) if and only if m ≤ n k .

(ii) There exists a homomorphism KG r (n, k) → KG r (m, 1) if and only if m ≥ n -2k + 2.