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This document presents a new numerical scheme dealing with the Boltzmann transport equation. This scheme is based on the expansion of the angular flux in a truncated spherical harmonics function and the discontinuous finite element method for the spatial variable. The advantage of this scheme lies in the fact that we can deal with unstructured, non-conformal and curved meshes. Indeed, it is possible to deal with distorted regions whose boundary is constituted by edges that can be either line segments or circular arcs or circles. In this document, we detail the derivation of the method for 2D geometries. However, the generalization to 2D extruded geometries is trivial.

Introduction

We propose in this work a new method of solving Boltzmann's transport equation based on the P N method for the angular direction and the discontinuous finite element method in the spatial variable. The numerical scheme proposed is conservative, in the sense that the balance equation is respected per region of calculation. This method has the advantage of dealing with completely unstructured, non-conformal and curved meshes. The regions we consider in 2D are regions of arbitrary shape whose boundary is a finite union of straight line segments, arcs of circles or circles. Fig. 1 depicts an example of a mesh that can be handled by the method.

Recall that non-conforming meshes offer great flexibility for local refinement, and offer the possibility to deal with compex geometries. Indeed, we can refine a region or element of the mesh into two or more regions without any refinement of other regions. This cannot be done in general with conformal meshes. This makes the non-conformal meshes appreciable when using an adaptive mesh refinement (AMR). Methods dealing with non-conformal meshes automatically handle conformal meshes, the opposite is not true.

Two approximations are adopted: the first one is that the angular flux is assumed to be polynomial in space per region of calculation; and the second is that the expansion of the angular flux on spherical harmonics is truncated at a finite order N . This method leads to matrix systems whose coefficients require calculations of integrals of polynomials over a region and over its surface as well as integrals on the angular variable over the unit sphere and over half-spheres. We will show how all these integrals can be calculated exactly even for geometric regions of arbitrary shape. The computation of these integrals can be generalized without difficulty for 2D extruded geometries. We recall that the P N method has the advantage of not presenting the ray effects which affect the S N method. This is because the P N method approximates the angular flux for any direction, whereas the S N method is limited to approximate the angular flux for a finite number of directions.

The P N method has been widely studied in the literature and especially for the even-and odd-angular flux formulation, see for example [START_REF] Carrico | Three dimensional variational nodal transport methods for cartesian, triangular, and hexagonal criticality calculations[END_REF], [START_REF] Oliveira | An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering[END_REF], [START_REF] Keller | Two-dimensional C5G7 mox fuel assembly benchmark calculations using the FEM-PN code EVENT[END_REF] and [START_REF] Palmiotti | VARIANT: Variational anisotropic nodal transport for multidimensional cartesian and hexagonal geometry calculations[END_REF]. However, these studies remain limited to structured and conformal meshes consisting of rectangles, triangles or hexagons for 2D geometries.

As a method of acceleration, one can use a preconditioner resulting from the same method but with a lower P N order and/or a lower degree of polynomials in space. To our knowledge, such P N / P N acceleration has not been explored. This is just a suggestion for a possible acceleration, this proposal remains to be confirmed. Mathematically speaking, the acceleration by a lower order P N can be seen as methods using pre-conditioner called AMG (Algebraic MultiGrid).

The novelty in this work lies in the fact that: on the one hand we use a variational formulation presented in [START_REF] Bourhrara | New variational formulations for the neutron transport equation[END_REF] and to our knowledge, this formulation has not been explored numerically neither in P N nor in S N . On the other hand we deal with unstructured, non-conformal and curved meshes, such non-standard meshes are dealt mostly by the method of characteristics (MOC). Finally, we use a technique of integration of polynomials over regions of arbitrary shape using the divergence theorem.

The strong point of the method lies in the fact that we can calculate exactly the integrals defining the coefficients of the elementary matrices resulting from the adopted approximation, and this for arbitrarily-shaped regions. Moreover, the matrices involved in the approximation depend only on the geometry and not on cross-sections, and so not on energy groups, this makes the method reasonable in terms of memory storage.

The numerical scheme presented in this document has been implemented in C++ in the NYMO solver of the APOLLO3 R code [START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multipurpose platform for core physics analysis[END_REF]. NYMO integrates two solvers NYMO-CG and NYMO-DG. These two solvers are based on the same variational formulation and both use the P N approximation for the angular variable but they have different spatial approximations. NYMO-CG uses continuous finite element method and NYMO-DG uses discontinuous finite element method, see [START_REF] Di Pietro | Matehematical aspects of discountinuous Galerkin methods[END_REF] for discontinuous Galerkin methods. NYMO's CG version deals with 1D, 2D and 3D geometries, but it is limited to structured and conformal meshes. This document discusses only the NYMO-DG version.

Γ = ∂D × S 2 , Γ + = {(x, ω) ∈ Γ, ω • n(x) > 0}, Γ -= {(x, ω) ∈ Γ, ω • n(x) < 0}.
The neutron transport problem in its multigroup form consists to determine the multigroup flux u = (u g (x, ω)) g=1,••• ,G and eventually the associated eigenvalue λ such that:

   ω • ∇u g + σ g u g = H g u + 1 λ F g u + q g in X, (1) 
u g = f g on Γ -, (2) 
where

(H g u)(x, ω) = G g =1 S 2 σ g,g s (x, ω • ω )u g (x, ω ) dω , (3) 
(F g u)(x, ω) = α χ g α (x) G g =1 νσ g f,α (x) S 2 u g (x, ω ) dω . ( 4 
)
σ g denotes the total cross-section and σ g,g s is the transfer cross-section from group g to g. In Eq. ( 4) defining the fission operator F g , the sum over α is done over the fissile isotopes. νσ g f,α and χ g α are respectively the fission production term, assumed isotropic, and the spectrum for isotope α. The terms q g (x, ω) and f g (x, ω) represent the external source and the incoming angular flux respectively. Remark 2.1. It should be noted that u g , in Eqs. (1)-( 4), is the flux in the group g and u denotes the multi-group flux:

u = (u g ) g=1,••• ,G .
Remark 2.2. In the case where the external source q g and the incoming flux f g are both zero, the problem is said an eigenvalue problem, where u is the eigenvector associated with eigenvalue λ. In other cases we have λ = 1 and the problem is called a source problem.

Remark 2.3. The angular direction ω is described by two angles θ ∈ [0, π] and ϕ ∈ [0, 2π], θ and ϕ are the axial and azimuthal angles of ω, so that ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ). In Eqs. (3) and (4) the integral over the sphere S 2 is defined by:

S 2 u(ω) dω = 1 4π 2π 0 π 0 u(θ, ϕ) sin θ dθ dϕ.

Variational formulation

In the remainder of this paper, we will assume that the total cross-section σ g is nonzero throughout the spatial domain D. Multiplying Eq. ( 1) by

(v + 1 σ g (ω • ∇v)), where v = v(x, ω
) is a test function, we obtain:

1 σ g (ω • ∇u g )(ω • ∇v) + σ g u g v + u g (ω • ∇v) + (ω • ∇u g )v = H g u + 1 λ F g u + q g v + 1 σ g (ω • ∇v) .
On integrating over the phase space X and after using of Green's formula, we obtain:

X 1 σ g (ω • ∇u g )(ω • ∇v) + σ g u g v dωdx + Γ u g v (ω • n) dωds = X H g u + 1 λ F g u + q g v + 1 σ g (ω • ∇v) dωdx.
Splitting the integral over Γ into the sum of two integrals over Γ + and Γ -and using the boundary conditions (2), we obtain the variational formulation:

a g (u g , v) = h g (u, v) + 1 λ p g (u, v) + L g (v), (5) 
where

a g (u g , v) = X 1 σ g (ω • ∇u g )(ω • ∇v) + σ g u g v dωdx + Γ+ u g v (ω • n) dωds, (6) 
h g (u, v) = X (H g u)v + 1 σ g (H g u)(ω • ∇v) dωdx, (7) 
p g (u, v) = X (F g u)v + 1 σ g (F g u)(ω • ∇v) dωdx, (8) 
L g (v) = X q g v + 1 σ g q g (ω • ∇v) dωdx - Γ- f g v (ω • n) dωds. (9) 
In [START_REF] Bourhrara | New variational formulations for the neutron transport equation[END_REF] it is established, when using an appropriate functional setting and with reasonable assumptions about the data of the problem, that the variational formulation ( 5) is equivalent to the transport problem (1)- [START_REF] Atkinson | Theoretical numerical analysis. A functional analysis framework[END_REF]. In other words, if u is solution of Eq. ( 5) then u is also solution of Eqs. ( 1)-( 2) and vice versa. We refer to [START_REF] Bourhrara | New variational formulations for the neutron transport equation[END_REF], [START_REF] Bourhrara | H1 Approximations of the neutron transport equation and associated diffusion equations[END_REF] and [START_REF] Bourhrara | WN Approximations of neutron transport equation[END_REF] for more details about this variational formulation.

The variational formulation (5) can also be derived by using a second-order form of the transport equation called Self-Adjoint Angular Flux equation (SAAF). A simple derivation of the SAAF equation is given in [START_REF] Morel | A self-adjoint angular flux equation[END_REF]. See [START_REF] Morel | A self-adjoint angular flux equation[END_REF] for other references deriving the SAAF equation with different approaches.

In [START_REF] Gesh | Finite element methods for second order forms of the transport equation[END_REF] (page 43, Eq. 3.24), the author derives a variational formulation for the SAAF equation, which resembles to the variational formulation (5) but without the integration over the angular direction. Slight modifications in the approach used in [START_REF] Gesh | Finite element methods for second order forms of the transport equation[END_REF] will lead exactly to the formulation [START_REF] Bourhrara | H1 Approximations of the neutron transport equation and associated diffusion equations[END_REF].

In [START_REF] Laboure | Globally conservative, hybrid self-adjoint angular flux and least-squares method compatible with voids[END_REF] authors use the variational formulation (5) for non-void regions and a conservative least-squares method for void regions, the approximation is based on the classical Lagrange continuous finite elements method, and both S N and P N approximations are considered. See also [START_REF] Laboure | Implicit filtered PN for high-energy density thermal radiation transport using discontinuous Galerkin finite elements[END_REF] and [START_REF] Drumm | Spherical harmonics (PN) methods in the SCEPTRE radiation transport code[END_REF] where the authors use the discontinuous finite elements method and the P N method based on other variational formulations of the transport equation.

Remark 3.1. The formulation (5) is written for v = 1:

X σ g u g dωdx + Γ+ u g (ω • n) dωds = X H g u + 1 λ F g u + q g dωdx - Γ- f g (ω • n) dωds.
This equation expresses the particle balance in the domain D, which shows that formulation (5) is conservative.

Discretization of the angular flux

We will denote by y k (ω), see Appendix A, the real-valued spherical harmonic functions defined on the unit sphere S 2 . The degree is zero or a positive integer and the order k is an integer varying fromto . The expansion of the flux u g (x, ω) on the spherical harmonics is written as:

u g (x, ω) = ∞ =0 k=- u k,g (x)y k (ω).
The functions u k,g (x) are called the angular flux moments. The first two moments u 0,g 0 (x) and u k,g 1 (x) are identical with the scalar flux and the current respectively. As a first approximation, we will assume that these flux moments are written as:

u k,g (x) = J j=1 u k,g ,j ϕ j (x),
where (ϕ j (x)) j=1,••• ,J is a known basis of functions that depend only on the spatial variable x. So:

u g (x, ω) = ∞ =0 k=- J j=1
u k,g ,j ϕ j (x)y k (ω).

The P N approximation of the angular flux consists of truncating the infinite sum over to an order N:

u g (x, ω) = N =0 k=- J j=1 u k,g ,j ϕ j (x)y k (ω). (10) 
In the same way we approximate the source term q g (x, ω) and the incoming flux f g (x, ω) by expanding them on the basis of functions ϕ j (x)y k (ω) :

q g (x, ω) = N =0 k=- J j=1 q k,g ,j ϕ j (x)y k (ω), (11) 
f g (x, ω) = N =0 k=- J j=1 f k,g ,j ϕ j (x)y k (ω). (12) 
Recall that the incoming flux f g (x, ω) is defined only for (x, ω) ∈ Γ -.

In the following, we consider a partition of the domain D in a set of homogeneous and non-overlapping regions or elements D r :

D = ∪ r D r .
The choice of the basis of functions (ϕ j ) play a crucial role in the approximation of the spatial variable. In a first step, we assume that the functions (ϕ j ) are polynomials and linearly independent, they may be dependent on the region D r . We specify later in Section 13 the choice of these polynomials used in the NYMO solver.

Remark 4.1. It should be noted that in the case of 2D geometries, for reasons of symmetry, the sum over k in Eqs. [START_REF] Oliveira | An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering[END_REF], [START_REF] Di Pietro | Matehematical aspects of discountinuous Galerkin methods[END_REF] and (12) is reduced only to k having the same parity as , see [START_REF] Ackroyd | Finite Element Methods for particle Transport: applications to reactor and radiation physics[END_REF] page 192. Likewise for 1D geometries, the sum over k is reduced to k = 0. Thus, the number of degrees of freedom, for a given energy group g and a given region D r , is N = J(N + 1) 2 in 3D, N = J(N + 1)(N + 2)/2 in 2D and N = J(N + 1) in 1D.

The idea to obtain the discretized problem consists in applying the variational formulation [START_REF] Bourhrara | H1 Approximations of the neutron transport equation and associated diffusion equations[END_REF] for each region D r of the domain D, which amounts to taking as phase space X r = D r × S 2 in (5). Then we apply Galerkin's method, for both spatial an angular variables, by replacing u g , q g and f g by their approximations given by Eqs. [START_REF] Oliveira | An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering[END_REF], [START_REF] Di Pietro | Matehematical aspects of discountinuous Galerkin methods[END_REF] and ( 12) as well as v by ϕ i y m n , which gives for all (i, n, m):

a g (u g , ϕ i y m n ) = h g (u, ϕ i y m n ) + 1 λ p g (u, ϕ i y m n ) + L g (ϕ i y m n ). (13) 
We stress that the incoming flux f g at the faces of region D r is given either by the boundary conditions or by the flux in the adjacent regions to the region D r . Equation ( 13) can be written in matrix form whose unknowns are u k,g ,j . In the following subsections we develop each terms of the above equation.

4.1. Calculation of the term a g (u g , ϕ i y m n ) Let us start by splitting the term a g (u g , v) of Eq. ( 6) into three terms:

a g (u g , v) = a g 0 (u g , v) + a g 1 (u g , v) + a + (u g , v),
with

a g 0 (u g , v) = Xr 1 σ g (ω • ∇u g )(ω • ∇v) dωdx, a g 1 (u g , v) = Xr σ g u g v dωdx, a + (u g , v) = Γ+ u g v (ω • n) dωds.
Here, X r = D r × S 2 where D r is a calculation region and

Γ + = {(x, ω) ∈ ∂D r × S 2 , ω • n(x) > 0}.
In order to get the expressions of a g 0 , a g 1 and a + completely discretized, we use the approximation [START_REF] Oliveira | An arbitrary geometry finite element method for multigroup neutron transport with anisotropic scattering[END_REF] for u g and we replace v with ϕ i y m n . After rearranging the terms and using the orthonormalization of the spherical harmonics, see Appendix A, we get:

a g 0 (u g , ϕ i y m n ) = ,k,j
A 0 r (i, n, m; j, , k)

1 σ g u k,g ,j , (14) 
a g 1 (u g , ϕ i y m n ) = ,k,j A 1 r (i, n, m; j, , k) σ g u k,g ,j , (15) 
a + (u g , ϕ i y m n ) = ,k,j A + r (i, n, m; j, , k) u k,g ,j , (16) 
with

A 0 r (i, n, m; j, , k) = 3 p=1 3 q=1 Dr ∂ p ϕ i ∂ q ϕ j dx S 2 ω p ω q y m n y k dω , (17) 
A 1 r (i, n, m; j, , k) = (δ n, δ m,k ) Dr ϕ i ϕ j dx, (18) 
A + r (i, n, m; j, , k) = f∈∂Dr f ϕ i ϕ j (ω•n)>0 y m n y k (ω • n) dωds. ( 19 
)
Where ∂ 1 , ∂ 2 and ∂ 3 refer to ∂ x , ∂ y and ∂ z respectively. Similarly ω 1 , ω 2 and ω 3 refer to ω x , ω y and ω z . δ n, is the Kronercker symbol. The sum ,k,j is an abbreviation for

N =0 k=- J j=1
with of course the restrictions on k for one-and two-dimensional geometries as mentioned in Remark 4.1. In the definition of matrix A + r the sum over f is done over all faces of the boundary ∂D r of region D r .

Note that if n and are of opposite parity we have A 0 r (i, n, m; j, , k) = 0, because the integral over all directions of an odd function of ω vanishes.

If the functions (ϕ j ) are orthonormalized in the region D r , then A 1 r (i, n, m; j, , k) = δ n, δ m,k δ i,j and the matrix A 1 r is reduced to the identity matrix.

The matrices A 0 r , A 1 r and A + r are symmetric and we will show later that the integrals defining the coefficients of these matrices can be calculated exactly for regions of arbitrary shape, for any degree of polynomials and at any order N .

Calculation of the scattering source

h g (u, ϕ i y m n )
Let us split the term h g (u, v) of Eq. ( 7) into two terms:

h g (u, v) = h g 1 (u, v) + h g 2 (u, v), with h g 1 (u, v) = Xr (H g u)v dωdx, h g 2 (u, v) = Xr 1 σ g (H g u)(ω • ∇v) dωdx.
The addition theorem leads to:

σ g,g s (x, ω • ω ) = a n=0 σ n;g,g s n m=-n y m n (ω)y m n (ω ),
where a is the order of anisotropy in the region D r . Thus, on using the discretized flux given by Eq. ( 10), the scattering operator (3) is written as:

(H g u)(x, ω) = ,k,j ϕ j (x)y k (ω) G g =1 σ ;g,g s u k,g ,j .
Substituting this expression of (H g u) into the definitions of h g 1 and h g 2 , we get:

h g 1 (u, ϕ i y m n ) = ,k,j A 1 r (i, n, m; j, , k) G g =1 σ ;g,g s u k,g ,j , (20) 
h g 2 (u, ϕ i y m n ) = ,k,j A 2 r (i, n, m; j, , k) G g =1 σ ;g,g s σ g u k,g ,j , (21) 
where the matrix A 1 r is defined by [START_REF] Macrobert | Spherical harmonics: An elementary treatise on harmonic functions, with Applications[END_REF] and the matrix A 2 r is given by:

A 2 r (i, n, m; j, , k) = 3 p=1 Dr (∂ p ϕ i )ϕ j dx S 2 ω p y m n y k dω. (22) 
In Eqs. ( 20)-( 21), σ ;g,g s is zero if is strictly greater than the order of anisotropy in the region D r .

Note that if n and have the same parity we have A 2 r (i, n, m; j, , k) = 0, because the integral over the unit sphere of an odd function of ω vanishes.

Remark 4.2. It is possible, if we want to avoid inner iterations, to switch the scattering source term of the group g into itself in the left-hand side of Eq. (13), on writing:

(a g -h g,g 1 -h g,g 2 )(u g , ϕ i y m n ) = h ,g (u, ϕ i y m n ) + 1 λ p g (u, ϕ i y m n ) + L g (ϕ i y m n ), with h g,g 1 (u g , ϕ i y m n ) = ,k,j A 1 r (i, n, m; j, , k) σ ;g,g s u k,g ,j , h g,g 2 (u g , ϕ i y m n ) = ,k,j A 2 r (i, n, m; j, , k) σ ;g,g s σ g u k,g ,j .
The term h ,g = h ,g 1 + h ,g 2 is written as

h g = h g 1 + h g 2 by replacing G g =1 with G g =1;g =g .
On the other hand, we have:

(a g 1 -h g,g 1 )(u g , ϕ i y m n ) = ,k,j A 1 r (i, n, m; j, , k) σ ,g a u k,g ,j ,
where σ ,g a = σ g -σ ;g,g s is the effective absorption section.

4.3. Calculation of the fission source p g (u, ϕ i y m n ) Let us split the term p g (u, v) defined by Eq. ( 8) into two terms:

p g (u, v) = p g 1 (u, v) + p g 2 (u, v),
where

p g 1 (u, v) = Xr (F g u)v dωdx, p g 2 (u, v) = Xr 1 σ g (F g u)(ω • ∇v) dωdx.
The discretized terms p g 1 and p g 2 are written as:

p g 1 (u, ϕ i y m n ) = ,k,j F 1 r (i, n, m; j, , k) α χ g α G g =1 νσ g f,α u 0,g 0,j , (23) 
p g 2 (u, ϕ i y m n ) = ,k,j F 2 r (i, n, m; j, , k) α χ g α σ g G g =1 νσ g f,α u 0,g 0,j , (24) 
with

F 1 r (i, n, m; j, , k) = δ n,0 δ m,0 δ ,0 δ k,0 Dr ϕ i ϕ j dx, (25) 
F 2 r (i, n, m; j, , k) = δ n,1 δ ,0 δ k,0 3 p=1 Dr (∂ p ϕ i )ϕ j dx S 2 ω p y m n dω. (26) 
4.4. Calculation of the source term L g (ϕ i y m n )

Let us split the term L g (v) defined by Eq. ( 9) into three terms:

L g (v) = L g 1 (v) + L g 2 (v) -L g -(v),
where

L g 1 (v) = Xr q g v dωdx, L g 2 (v) = Xr 1 σ g q g (ω • ∇v) dωdx, L g -(v) = Γ- f g v (ω • n) dωds.
Using approximations ( 10), ( 11) and ( 12), we obtain after some algebra:

L g 1 (ϕ i y m n ) = ,k,j A 1 r (i, n, m; j, , k) q k,g ,j , (27) 
L g 2 (ϕ i y m n ) = ,k,j A 2 r (i, n, m; j, , k) 1 σ g q k,g ,j , (28) 
L g -(ϕ i y m n ) = f∈∂Dr ,k,j A - f (i, n, m; j, , k) f k,g ,j , (29) 
where the matrices A 1 r and A 2 r are defined by Eqs. ( 18) and ( 22) and the matrix A - f is given by:

A - f (i, n, m; j, , k) = f ϕ i ϕ j (ω•n)<0 y m n y k (ω • n) dωds. ( 30 
)
If the functions (ϕ j ) are orthonormalized in the region D r , then L g 1 (ϕ i y m n ) = q m,g n,i . Note that the incoming flux f k,g ,j in Eq. ( 29) can be given: either by the boundary conditions if the face f is a part of the boundary ∂D of the domain D or by the flux in the adjacent regions when the face f is an interface between two regions.

Remark 4.3. The term L g -(ϕ i y m n
) is the only one linking the flux in region D r to the fluxes of its adjacent regions, i.e. sharing the same face.

Solving the discretized problem

Before showing how one can calculate the coefficients of the matrices A 0 r , A 1 r , A 2 r , F 1 r , F 2 r , A + r and A - f , we give in this section the strategy used in the NYMO code to solve the discretized problem.

The discretization of the transport problem presented in the above sections leads to a matrix problem per energy group g and region D r which is written by considering Remark 4.2 and after numbering the degrees of freedom (j, , k):

A g r u g = Q g r u, (31) 
with

A g r u g = A 0 r d 0,g r + A 1 r d 1,g r -A 2 r d 2,g r + A + r u g + f∈∂Dr A - f u g f , (32) 
and where the matrices d 0,g r , d 1,g r and d 2,g r are diagonal:

d 0,g r (i, n, m; j, , k) = δ n, δ m,k δ i,j 1 σ g , d 1,g r (i, n, m; j, , k) = δ n, δ m,k δ i,j σ ,g a , d 2,g r (i, n, m; j, , k) = δ n, δ m,k δ i,j σ ;g,g s σ g .
Where σ ;g,g s is zero if is strictly greater than the order of anisotropy in the region D r . u g is the flux in the group g and in the region D r given by its components (u k,g ,j ) and u g f is either an incoming flux given by the boundary conditions or the flux in the region D r adjacent to the region D r by the face f. Q g r represents the source term regrouping the scattering, fission and eventually an external source:

Q g r u = A 1 r ( s g ) + A 2 r 1 σ g s g + 1 λ F 1 r ( p g ) + F 2 r 1 σ g p g + A 1 r (q g ) + A 2 r 1 σ g q g , (33) 
where

s k,g ,j = G g =1,g =g σ ;g,g s u k,g ,j , p k,g ,j = δ ,0 δ k,0 α χ g α G g =1
νσ g f,α u 0,g 0,j .

The matrices A 0 r , A 1 r , A 2 r , A + r and A - f depend on the region D r , but not on the energy group g. Now, by giving a global numbering of degrees of freedom (r, j, , k) and after assembling the matrices

A 0 r , A 1 r , A 2 r , A + r , A - f , d 0,g r , d 1,g r and d 2,g r into global matrices A 0 , A 1 , A 2 , A + , A -, d 0,g , d 1
,g and d 2,g we get the matrix system per energy group:

A g u g = Q g u, (34) 
with

A g u g = A 0 d 0,g + A 1 d 1,g -A 2 d 2,g + A + + A -u g . ( 35 
)
The matrices d 0,g , d 1,g and d 2,g are diagonal. The matrices A 0 , A 1 , A 2 , A + and A -do not depend on the energy group g. In addition, these matrices are sparse because the flux in a region D r is coupled only to the fluxes of its neighbor regions. NYMO uses the Compressed Sparse Row format (CSR) to store only the nonzero coefficients of these matrices.

The matrix A g is not symmetric and the resolution of the system (34) requires solvers dealing with non-symmetric matrices such as GMRES and BiCGSTAB. Moreover, such solvers are well suited to solve system (34) because they only need matrix-vector operation that can be computed using (35) by storing only matrices A 0 , A 1 , A 2 , A + + A -, d 0,g , d 1,g and d 2,g . This avoids the storage of matrices A g which can be expensive in cases with many energy groups.

The matrix-vector operation with sparse matrices is easily parallelizable in shared memory using OpenMP.

Another level of parallelization in distributed memory can be used with MPI, by grouping calculation regions D r into some agglomerations D R of regions D r . The assembly of the matrices A 0 r , A 1 r , A 2 r , A + r , A - f , d 0,g r , d 1,g r and d 2,g r can be done in distributed memory for each agglomeration D R of regions, likewise the matrix-vector product can also be done in distributed memory. This approach is similar to the domain decomposition method where each agglomeration D R of regions is considered as a subdomain.

In the NYMO code, the two solvers GMRES and BiCGSTAB are implemented and the matrix-vector operation is parallelized using OpenMP. However, the parallelization using MPI is not yet implemented. For the moment we use the most trivial preconditioner namely the diagonal of the matrix A g . But one can consider preconditioners resulting from the same method but with a lower P N order and/or a lower degree of polynomials in space.

Equation (34) have two levels of coupling multigroup fluxes (u g ) via both the scattering and the fission sources. These couplings are treated conventionally using outer and thermal iterations.

Calculation of integrals over the angular variable

The integrals over the angular variable intervening in the coefficients of matrices

A 0 r , A 2 r , F 2 r , A + r and A - f are S 2 ω p ω q y m n y k dω, S 2
ω p y m n y k dω and

±(ω•n)>0 y m n y k (ω • n) dω. (36) 
In order to explain how we can calculate these integrals, we start by defining the set E of functions with a single real variable f (θ) which are written

f (θ) = a 0 + i≥1 a i c cos(i θ) + j≥1 a j s sin(j θ), (37) 
where the sums over integers i and j are finite and coefficients a 0 , a i c and a j s are real numbers. Let us also define the set Y of two real variable functions y(θ, ϕ) by: Y = {y(θ, ϕ) = f (θ)g(ϕ); with f ∈ E and g ∈ E}.

(38)

It's easy to see that the set E is a vector space. What will interest us more in the following is the fact that E is stable by multiplication

: if f 1 (θ) ∈ E and f 2 (θ) ∈ E then f 1 (θ)f 2 (θ) ∈ E.
This results by linearization of product of functions cos(i θ) and sin(j θ).

Therefore the set Y is also stable by multiplication: if

y 1 (θ, ϕ) ∈ Y and y 2 (θ, ϕ) ∈ Y then y 1 (θ, ϕ)y 2 (θ, ϕ) ∈ Y.
Functions y m n (θ, ϕ), ω p (θ, ϕ) and sin θ belong to the set Y. And since the latter is stable by multiplication, functions (ω p ω q y m n y k sin θ) and (ω p y m n y k sin θ) which appear under the integrals in (36) are also functions of Y. The integrand sin θ results from taking into account that dω = (1/4π) sin θ dθ dϕ.

Thus, integrals (36) are reduced to integrals in the form:

θ1 θ0 ϕ1 ϕ0 f (θ) g(ϕ) dθ dϕ = θ1 θ0 f (θ) dθ ϕ1 ϕ0 g(ϕ) dϕ, with f ∈ E and g ∈ E.
For integrals over the entire sphere S 2 , we have θ 0 = 0, θ 1 = π, ϕ 0 = 0 and ϕ 1 = 2π. For the integrals over the outgoing half-sphere (ω•n > 0) and in the 2D case, we have θ 0 = 0, θ 1 = π, ϕ 0 = ϕ n -π/2 and ϕ 1 = ϕ n +π/2 where ϕ n is the measure of the angle formed by the x-axis and the normal n. For integrals over the incoming half-sphere (ω • n < 0) we have ϕ 0 = ϕ n + π/2 and ϕ 1 = ϕ n + 3π/2. Remark 6.1. The two first integrals over the entire sphere S 2 in Eq. (36) have been studied in [START_REF] Scott | Spherical harmonics solutions to second order forms of the Boltzmann transport equation using particle transport code SCEPTRE[END_REF]. We find in this reference the analytic expressions of these integrals and even the C++ source code calculating them. Integrals over the half-sphere are not discussed in [START_REF] Scott | Spherical harmonics solutions to second order forms of the Boltzmann transport equation using particle transport code SCEPTRE[END_REF].

When n and are of opposite parity, the integrals over the half-sphere in Eq. (36) can be recast into integrals over the whole sphere:

±(ω•n)>0 y m n y k (ω • n) dω = 1 2 S 2 y m n y k (ω • n) dω = 1 2 3 p=1 n p S 2 ω p y m n y k dω.
This results from the fact that the integrand y m n y k (ω • n) is even of ω. Thus, in the case where n and have opposite parity, the integrals over the half-sphere also have an analytic expression which can be found in [START_REF] Scott | Spherical harmonics solutions to second order forms of the Boltzmann transport equation using particle transport code SCEPTRE[END_REF]. Remark 6.2. It should be noted that the surface integrals involved in the coefficients of matrices A + r and A - f :

f ϕ i ϕ j ±(ω•n)>0 y m n y k (ω • n) dω ds,
can be written, in the case where the face f is a line segment, as:

f ϕ i ϕ j ds × ±(ω•n)>0 y m n y k (ω • n) dω .
This results from the fact that the normal vector n is constant along the face f. However, the integral over the surface and the integral over the half-sphere remain coupled in the case where the face is a circular arc, but even in this case the integrals can be calculated exactly as we will see in the following.

Integral of a monomial over a 2D region

Coefficients of matrices A 0 r , A 1 r , A 2 r , F 1 r and F 2 r require the computation of the integrals over a region D r of the polynomials: ϕ i ϕ j , (∂ p ϕ i )(∂ q ϕ j ) and (∂ p ϕ i )ϕ j . As the computation of the integral of a polynomial leads to calculate the integral of its monomials, we will limit ourselves to explaining how to calculate the integral of a monomial X i Y j over a region D r .

Consider a region D r having a boundary ∂D r that can be partitioned into some finite number of edges:

∂D r = N e ∪ e=1 A e .
Each edge A e can be line segments, arc of circles or circles. We will denote by n e = (n x e , n y e ) the unit normal vector on the edge A e oriented outside of the region D r .

In order to compute the integral of the monomial X i Y j over the region D r , consider the vector field:

F (X, Y ) = 1 i + 1 X i+1 Y j , 0 ,
this field is chosen so that: div F = X i Y j . On using the divergence theorem:

Dr X i Y j dx dy = Dr div F dx dy = ∂Dr F • n ds = N e e=1 Ae F • n e ds.
Thus

Dr X i Y j dx dy = 1 i + 1 N e e=1 Ae X i+1 Y j n x e ds.
The last equation recasts the volume integral of a monomial X i Y j over a region D r into the surface integrals over edges A e constituting the boundary ∂D r . The following sections give the details for calculating the surface integrals:

I = Ae X i+1 Y j n x e ds.
The expressions of these integrals differ according to the shape of the edge: line segment, circular arc or circle.

Case where the edge is a line segment

Consider the case where the edge A = (A, B) is a line segment, with A(x A , y A ) and B(x B , y B ). By setting 2 and noting that the normal vector n(n x , n y ) is constant along the line segment, we obtain:

∆ x = x B -x A , ∆ y = y B -y A , L = (∆ x ) 2 + (∆ y )
I = A X i+1 Y j n x ds = n x L 1 0 ∆ x s + x A i+1 ∆ y s + y A j ds.
Using the binomial formula:

I = n x L i+1 i =0 j j =0 i + 1 i j j (x A ) i+1-i (∆ x ) i (y A ) j-j (∆ y ) j 1 0 s i +j ds, with i i = i! i !(i -i )!
.

Moreover, we have n = κ L (∆ y , -∆ x ) where κ = 1 if region D r is at the left of the line segment (A, B) when going from A to B and κ = -1 otherwise. Thus n x = κ∆y L and finally:

I = κ∆ y i+1 i =0 i + 1 i (x A ) i+1-i (∆ x ) i j j =0 j j (y A ) j-j (∆ y ) j 1 i + j + 1 . (39) 

Case where the edge is an arc of circle

In the case where A is an arc defined by its radius ρ, its center C(x C , y C ) and its endpoints (A, B) and denoting α the angle formed by the x-axis and the vector -→ CA and β the angle formed by the x-axis and the vector --→ CB, we obtain

I = A X i+1 Y j n x ds = κρ β α x C + ρ cos s i+1 y C + ρ sin s j cos s ds.
In the above equation we used the fact that n x = κ cos s, with κ = 1 if the region D r is at the left of the arc when going from A to B in the trigonometric sense and κ = -1 otherwise. Using the binomial formula:

I = κρ β α i+1 i =0 i + 1 i (x C ) i+1-i ρ i cos i s   j j =0 j j (y C ) j-j ρ j sin j s   (cos s) ds,
and finally

I = κρ i+1 i =0 i + 1 i (x C ) i+1-i ρ i j j =0 j j (y C ) j-j ρ j β α (cos i +1 s)(sin j s) ds. (40) 
Thus, the computation of the integral I is reduced to integrate functions of the form (cos N (s) sin M (s)). In NYMO code, we proceed by linearization of the function (cos N (s) sin M (s)) to compute its integral. To do this, we write

cos N (s) sin M (s) = 1 2 (e is + e -is ) N 1 2i (e is -e -is ) M .
By expanding the right-hand member using the binomial formula, we obtain:

cos N (s) sin M (s) = 1 2 N +M (i M ) N n=0 M m=0 N n M m (-1) M -m e i(2(n+m)-N -M )s .
Noticing that N n = N N -n and M m = M M -m it's easy to see that:

cos N (s) sin M (s) =              (-1) M/2 2 N +M N +M k=0 C N,M k cos(2k -N -M )s if M is even (-1) (M +1)/2 2 N +M N +M k=0 C N,M k sin(2k -N -M )s if M is odd
where coefficients C N,M k are integers given by:

C N,M k = N n=0 M m=0 N n M m (-1) m δ k,n+m .
In the case where the edge is a circle, the calculation of the integrals is done in a similar way to those of arc with α = 0 and β = 2π.

Remark 7.1. The integral over an arc of circle of a monomial can also be approximated by subdividing the arc into several arcs sufficiently small so that these can be considered as straight line segments. Then we apply the formula of the integral of a monomial over a line segment as it is seen in Section 7.1.

Remark 7.2. The previous remark is also applicable for other types of edges that are neither line segments nor circular arcs.

Integral of a monomial over the boundary of a region

The coefficients of matrices A + r and A - f require computations of integrals of polynomials over the incoming and the outgoing boundaries of a region D r . The computation of these integrals leads to calculate the integrals of monomials X i Y j over these boundaries. Thus, for an edge A of the boundary ∂D r we have to calculate the integrals:

I + (i, n, m; j, , k) = A X i Y j (ω•n)>0 y k y m n (ω • n) dω ds, (41) 
I -(i, n, m; j, , k) = A X i Y j (ω•n)<0 y k y m n (ω • n) dω ds. ( 42 
)
In the following subsections, we give the details to compute these integrals according to the shape of the edge A: line segment or arc of circle.

8.1. Case where the edge is a line segment

In the case where the edge is a line segment, the surface integrals and the integrals over the angular direction, in Eqs. ( 41)-( 42), are decoupled because the normal vector n is constant along the line segment:

I ± (i, n, m; j, , k) = A X i Y j ds ±(ω•n)>0 y k y m n (ω • n) dω .
In this section, we give only the details for the calculations of the surface integrals, see Section 6 for integrals over the angular direction. Denote by A(x A , y A ) and B(x B , y B ) the endpoints of the line segment A. By setting

∆ x = x B -x A , ∆ y = y B -y A and L = (∆ x ) 2 + (∆ y ) 2
, we can write:

I = A X i Y j ds = L 1 0 ∆ x s + x A i ∆ y s + y A ds.
Using again the binomial formula, we obtain:

I = L i i =0 i i (x A ) i-i (∆ x ) i j j =0 j j (y A ) j-j (∆ y ) j 1 0 s i +j ds. Finally I = L i i =0 i i (x A ) i-i (∆ x ) i j j =0 j j (y A ) j-j (∆ y ) j 1 i + j + 1 . (43) 

Case where the edge is an arc of circle

In this section, we explain how the integrals (41) and ( 42) can be evaluated exactly in the case where A is an arc of a circle. But these integrals can also be approximated by applying Remark 7.1 and the previous section.

Consider the case where A is an arc defined by its radius ρ, its center C(x C , y C ) and its endpoints (A, B). Let α be the angle formed by the x-axis and the vector -→ CA and β the angle formed by the x-axis and the vector --→ CB. The integrals (41) and (42) are then written:

I + (i, n, m; j, , k) = ρ β α a(s) ω•n>0 y k y m n (ω • n) dω ds, I -(i, n, m; j, , k) = ρ β α a(s) ω•n<0 y k y m n (ω • n) dω ds, where 
a(s) = (x C + ρ cos s) i (y C + ρ sin s) j .
Since n = κ(cos s, sin s, 0) and ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ), with κ = 1 if the region D r is at the left of the arc when going from A to B in the trigonometric sense and κ = -1 otherwise, we obtain:

I ± (i, n, m; j, , k) = ρ 4π β α a(s) ϕ ± 1 (s) ϕ ± 0 (s) π 0 y k y m n (ω • n) sin θ dθ dϕ ds = κρ 4π β α a(s) cos s ϕ ± 1 (s) ϕ ± 0 (s) cos ϕ π 0 y k y m n sin 2 θ dθ dϕ ds + κρ 4π β α a(s) sin s ϕ ± 1 (s) ϕ ± 0 (s)
sin ϕ π 0 y k y m n sin 2 θ dθ dϕ ds where ϕ + 0 , ϕ + 1 , ϕ - 0 , ϕ - 1 are given by:

ϕ + 0 (s) = s -π/2, ϕ + 1 (s) = s + π/2, ( 44 
)
ϕ - 0 (s) = s + π/2, ϕ - 1 (s) = s + 3π/2. ( 45 
)
Consider now the functions φ x (ϕ) and φ y (ϕ) defined by:

φ x (ϕ) = cos ϕ π 0 y m n (θ, ϕ)y k (θ, ϕ) sin 2 θ dθ, φ y (ϕ) = sin ϕ π 0 y m n (θ, ϕ)y k (θ, ϕ) sin 2 θ dθ.
It's easy to see that φ x ∈ E and φ y ∈ E, so their primitives Φ x and Φ y are written as:

Φ x (ϕ) = c x ϕ + f x (ϕ), (46) 
Φ y (ϕ) = c y ϕ + f y (ϕ), (47) 
where f x and f y are still functions of E, c x and c y being constants. So we have:

I ± (i, n, m; j, , k) = κρ 4π β α a(s)(cos s) Φ x (ϕ ± 1 (s)) -Φ x (ϕ ± 0 (s)) ds + κρ 4π β α a(s)(sin s) Φ y (ϕ ± 1 (s)) -Φ y (ϕ ± 0 (s)) ds. (48) 
Using ( 44), ( 45), ( 46) and (47), it is easy to see that the functions

γ ± x (s) = Φ x (ϕ ± 1 (s)) -Φ x (ϕ ± 0 (s)) and γ ± y (s) = Φ y (ϕ ± 1 (s)) -Φ y (ϕ ± 0 (s)
) are also functions of E. And since E is stable by multiplication, the functions

a(s)(cos s)(Φ x (ϕ ± 1 (s)) -Φ x (ϕ ± 0 (s)) and a(s)(sin s)(Φ y (ϕ ± 1 (s)) -Φ y (ϕ ± 0 (s))
belong to E.

Thus the computation of the integrals I ± (i, n, m; j, , k) is reduced to integrals of functions of E, things we know how to do. It is not easy to give an analytic expression for the integrals I ± (i, n, m; j, , k), but their calculation is achievable by programming a computer to do the algebra.

Circles are treated in the same way as arcs with α = 0 and β = 2π.

Integral of a monomial over a 2D extruded region

We shall briefly give here the main idea to compute the integral of a monomial over a 2D extruded region. To do this, assume that the region D r is a vertical cylinder with horizontal bases:

D r = S × [z 0 , z 1 ],
where S is a flat horizontal surface of arbitrary shape. So

Dr X i Y j Z k dx dy dz = S z1 z0 X i Y j Z k dx dy dz = 1 k + 1 (z k+1 1 -z k+1 0 ) S X i Y j dx dy.
The integral S X i Y j dx dy can be computed as explained in the previous sections. Surface integrals can also be calculated without difficulty by distinguishing the lateral surfaces and the bases surfaces of the region.

Treatment of the reflecting boundary conditions

Let f be a perfectly reflecting surface of the boundary ∂D assumed to be a line segment, as is the case in real applications. Let n(θ n , ϕ n ) denote the unit normal to the surface f oriented outside of the domain D. The reflected direction of ω(θ, ϕ) by the surface f is ω (θ , ϕ ) defined by

ω = ω -2(ω • n)n. (49) 
The reflecting boundary conditions applied to the surface f is then written:

u(x, ω) = u(x, ω ), for ω • n < 0. (50) 
Thus the incoming flux in region D r through the face f is given by:

I - f (i, n, m) = f ω•n<0 u(x, ω )ϕ i (x)y m n (ω)(ω • n) dω ds.
Using approximation (10)

I - f (i, n, m) = f ω•n<0   ,k,j u k ,j y k (ω )ϕ j (x)   ϕ i (x)y m n (ω)(ω • n) dω ds, thus I - f (i, n, m) = ,k,j A -, f (i, n, m; j, , k) u k ,j , with A -, f (i, n, m; j, , k) = f ϕ i ϕ j ds ω•n<0 y m n (ω)y k (ω )(ω • n) dω .
Using (49), it's easy to see that ω = (sin θ cos ϕ , sin θ sin ϕ , cos θ ) with θ = θ and ϕ = π + 2ϕ n -ϕ. Therefore the function y k (ω ) is also a function of Y.

The computation of the coefficients of matrices A -, f is done in a similar way to the computation of the coefficients of A - f presented in Section 8.1. The matrices A -, f are not symmetric while the matrices A - f are.

Orthonormalization of a family of polynomials

The coefficients of matrices A 1 r and F 1 r require the computation of the integrals Dr ϕ i ϕ j dx dy, these coefficients become simpler if the polynomials family (ϕ j ) is orthonormalized on the region D r with respect to the L 2 (D r )-product, since the last integral is reduced to δ i,j . The use of orthonormalized basis of functions (ϕ j ) avoids the problem of obtaining a solution from an ill-conditioned matrix equation and also introduces the economy of avoiding the storage of the matrix A 1 and subsequent matrix-vector multiplication. Using an orthonormalized polynomials family (ϕ j ) in each region D r is possible, but the family (ϕ j ) becomes necessarily dependent on the region D r . Thus on both sides of an interface f the flux is developed on two different bases of polynomials. This changes the expression of the matrix A - f . In this section we recall how to orthonormalize a family of polynomials in a region and we revise the expression of the matrix A - f accordingly. Consider a family of linearly independent polynomials (φ j ) j=1,••• ,J . We recall here the Gram-Schmidt process for building a family of polynomials (ϕ j ) j=1,••• ,J orthonormalized on a region D r spanning the same space as the family (φ j ).

Assuming that the polynomials ϕ j for j = 1, • • • , i have already been built, the construction of the polynomial ϕ i+1 is done by setting:

ϕ i+1 = φ i+1 - i k=1 < φ i+1 , ϕ k > r ϕ k , with < φ i+1 , ϕ k > r = Dr φ i+1 (x) ϕ k (x) dx,
it is easy to check that ϕ i+1 is orthogonal to all polynomials ϕ j for j = 1, • • • , i. ϕ i+1 is then obtained by normalization of ϕ i+1 :

ϕ i+1 = ϕ i+1 || ϕ i+1 || .
The Gram-Schmidt algorithm requires only the calculation of the integrals < φ i+1 , ϕ k > r , which we know how to do as seen in the previous sections.

Suppose now that we have two families of polynomials (ϕ j ) j=1,••• ,J and ( ϕ j ) j=1,••• ,J spanning the same space with (ϕ j ) orthonormalized in a region D r and ( ϕ j ) orthonormalized in a region D r adjacent to the region D r . We can write:

ϕ i = J j=1 < ϕ i , ϕ j > r ϕ j .
The flux in the region D r is written:

u g (x, ω) = ,k,j u k,g ,j ϕ j (x)y k (ω), (51) 
thus

u g (x, ω) = ,k,j u k,g ,j J j =1 < ϕ j , ϕ j > r ϕ j y k . ( 52 
)
Let us rewrite the expression of L g -(ϕ i y m n ) where the basis of polynomials (ϕ j ) in the region D r and the basis ( ϕ j ) in its adjacent regions are different.

L g -(ϕ i y m n ) = Γ- u g (x, ω)ϕ i y m n (ω • n) dωds = Γ-   ,k,j u k,g ,j J j =1 < ϕ j , ϕ j > r ϕ j y k   ϕ i y m n (ω • n) dωds.
Thus by writing Γ-• dω ds = f∈∂Dr f (ω•n)<0 • dω ds:

L g -(ϕ i y m n ) = f∈∂Dr ,k,j A - f (i, n, m; j, , k) u k,g ,j , with A - f (i, n, m; j, , k) = J j =1 < ϕ j , ϕ j > r f ϕ i ϕ j (ω•n)<0 y m n y k (ω • n) dωds, thus A - f (i, n, m; j, , k) = J j =1 < ϕ j , ϕ j > r A - f (i, n, m; j , , k).
12. Description of the mesh in NYMO-DG

The 2D mesh in NYMO-DG is first described by a cloud of numbered points given by their coordinates (x, y). This cloud of points is constituted by the endpoints of the edges and the centers of arcs and circles intervening in the mesh. The mesh is then described by the edges separating two regions of calculation. Each edge is defined according to its shape, line segment, arc of circle or circle:

• A line segment is defined by the numbers of its two endpoints (A, B) and the numbers of its two neighbors regions (r L , r R ), where r L is the number of the left region of the line segment when going from A to B. When the line segment is a part of the boundary ∂D, the line segment has only one neighbor region and in this case we assign the null value to the superfluous region, i.e. r L = 0 or r R = 0 depending on the case.

• An arc is defined by its radius ρ, the number of its center C, the numbers of its two endpoints (A, B) and the numbers of its two neighbors regions (r L , r R ), where r L is the left region to the arc when going from A to B in the counter-clockwise.

• A circle is defined by its radius ρ, the number of its center C and the numbers of its two neighbors regions (r L , r R ), where r L is the region lying inside the circle.

The computation of matrices coefficients A 0 r , A 1 r , A 2 r , F 1 r , F 2 r , A + r and A - f is done by sweeping over all edges of the mesh and for each edge we calculate its contribution to the matrix coefficients for its two neighbors regions r L and r R .

Choice of polynomials in NYMO-DG

In NYMO-DG we use an orthonormalized polynomials family (ϕ j ) 1≤j≤J in each region D r . This family is constructed by orthonormalization of a family of translated monomials (φ j = (X -x 0 ) n (Y -y 0 ) m ), by setting up an one-to-one correspondence between the pair (n, m) and j. The point (x 0 , y 0 ) is a local origin of region D r . In NYMO, the choice of the local origin (x 0 , y 0 ) of the region D r is the barycenter of the points involved in the definition of the region: endpoints of edges and centers of arcs. The use of translated monomials allows for distant regions and identical up to an arbitrary translation to have identical elementary matrices.

When working with translated monomials, the integrals (39), (40), ( 43) and (48) remain valid by replacing x A , y A , x C and y C per (x A -x 0 ), (y A -y 0 ), (x C -x 0 ) and (y C -y 0 ) respectively.

The monomials family (φ j ) is specified by giving the highest degree d of its monomials as well as the mode of this degree: total (n + m ≤ d) or partial (n ≤ d and m ≤ d).

C5G7 benchmark

In this section we present numerical results for the C5G7 benchmark in its 2D version, see [START_REF] Smith | Benchmark on deterministic transport calculations without spatial homogenization. A 2-D/3-D MOX fuel assembly benchmark[END_REF]. This benchmark was proposed to provide a point of comparison for assessing the capabilities of transport codes to deal with reactor core problems without spatial homogenization. The geometry of the benchmark consists of 4x4 assemblies surrounded by moderator, see Fig. 2 where only a quarter of the geometry is presented for reasons of symmetry. Internal assemblies (MOX / UO2) are 17x17 cells. The cells comprise two material zones representing different fuels, guide tubes and instrumented tubes. The benchmark specifies the macroscopic cross-sections for seven energy groups and with isotropic collision. The geometry of the cells is presented in Fig. 3. The side length of each pin cell is 1.26 cm and all of the fuel pins and guides tubes have 0.54 cm radius. The mesh of cells used in the calculations is given in Fig. 4. The calculations are done in eighth of the geometry, Fig. 5 provides the mesh of computation.

The authors of the benchmark provided the k-effective and the overall pin power distribution resulting from the Monte-Carlo transport code MCNP. This power distribution is used as a reference result for comparison with the results obtained by the NYMO code. The results of the NYMO code, presented in this section, use piecewise linear polynomials in space. The authors also specified a number of results to be compared to those of MCNP. The tables 1 to 6 give these comparisons with NYMO code for different P N orders but with the same spatial mesh. The results of the k-effective in Table 1 do not give a convergence as desired when the order P N grows. This is due in part to the fact that P N calculations use the same spatial mesh, whereas for a convergence study one has to go up in P N order and refine the spatial mesh simultaneously. This phenomenon deserves to be analyzed on problems with Cartesian meshes so that the spatial refinement is easy to realize. Nevertheless, when we take a close look at Table 2, the convergence on the power distribution seems acceptable. Difference of the results between P N approximations with even and odd orders remains unexplained.

The P N approximation is often used with an odd expansion order. It is established for the P N equations resulting from the first-order transport equation that odd orders give better results, see Davison's book [START_REF] Davison | Neutron transport theory[END_REF], Section 10.3.2. The superiority of odd orders over even is not true in the absolute for all P N approximations, this depends on the variational formulation used, on the spatial approximations adopted and in particular on the approximations at the interfaces. The P N method developed here use both odd and even orders indifferently. There are no theoretical results, for our method, favoring or discrediting odd order approximations over those of even order. Other authors [START_REF] Van Criekingen | Mixed-hybrid transport discretization using even and odd P N expansions[END_REF] use the P N approximation based on other variational formulation, have shown that their method can be used with both even and odd orders. See also [START_REF] Drumm | Least squares finite elements algorithms in the SCEPTRE radiation transport code[END_REF] where the authors combine the P N method with the least-squares method, in this reference, all numerical results are given only with even orders.

Table 2 gives the relative error in percent of the extrema of pin power distribution compared to the results given by MCNP. The positions of the pins achieving the maximum and the minimum of the pin power distribution coincide between MCNP and NYMO calculations. 3 gives the relative error in percent per assembly power versus to the results given by MCNP. See document [START_REF] Smith | Benchmark on deterministic transport calculations without spatial homogenization. A 2-D/3-D MOX fuel assembly benchmark[END_REF] for the meanings of these deviations. N being the number of fuel pin, e n is the relative error in percent of the calculated power in the n th fuel pin compared to the reference result. p n is the reference pin power in the n th fuel pin. p avg = 1 N N n=1 p n is the average power. 5 gives statistics of the number of fuel pins having a relative error in percent compared to MCNP less than 0.68, 0.90, 0.98 and 0.998. And Table 6 gives the same statistics but in percent. The total number of fuel pins is 1056 for the quarter of the geometry. 

Conclusion

In this work, a new numerical scheme solving the transport equation is described in detail for 2D geometries. The method has the ability to deal with non-standard meshes (unstructured, non-conformal and curved), such meshes are considered for realistic calculations only by the method of characteristics MOC. The method presented is not limited neither in P N order nor in degrees of polynomials. The coefficients of the elementary matrices resulting from the adopted approximations are evaluated exactly for regions of arbitrary shape.

The numerical results presented for the C5G7 benchmark are very satisfying for the precision of computation and the computation time. The method deserves to be studied more and especially for the choice of a preconditioner with an acceptable storage cost. Optimizing of the performance of the method by parallelization and acceleration using a good preconditioner would make the method very competitive. It would also be interesting to implement the method for 2D extruded geometries. The motivation for the numerical scheme presented was firstly the consideration of complex geometries with regions having curved boundaries like those used in heterogeneous reactor calculations. The method is quite general so that it can also deal with other problems as shielding or source detector calculations. This of course remains to be demonstrated with appropriate test cases. However, the method as it is presented here cannot handle cases with void regions, a possible way to extend the method for void regions can be found in the work done in [START_REF] Laboure | Globally conservative, hybrid self-adjoint angular flux and least-squares method compatible with voids[END_REF].
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 1 Figure 1: Example of a 2D-mesh

  Figure 2: C5G7 geometry
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Table 1

 1 gives the k-effective solution for different P N orders and the error relative in pcm compared to MCNP code.[START_REF] Schneider | APOLLO3 R : CEA/DEN deterministic multipurpose platform for core physics analysis[END_REF] 

Table 1 :

 1 Keff resulting from NYMO code

	order P N	keff	pcm error cpu time (s)
	P 2	1.18672	14	71
	P 4	1.18684	24	226
	P 6	1.18704	41	575
	P 1	1.18500	-131	37
	P 3	1.18517	-116	130
	P 5	1.18527	-108	385
	MCNP	1.18655	±8	

Table 2 :

 2 Percent error results for specific pin powers

	order P N	Max pin power error (%) Min pin power error (%) Max error(%)
	P 2	2.477	-0.80	0.233	0.69	1.32
	P 4	2.487	-0.41	0.232	0.32	1.08
	P 6	2.498	-0.41	0.232	0.27	1.15
	P 1	2.515	0.71	0.233	0.68	2.98
	P 3	2.511	0.54	0.232	0.26	1.75
	P 5	2.502	0.18	0.232	0.38	1.25
	MCNP	2.498	± 0.16	0.232	± 0.58	
	Table					

Table 3 :

 3 Assembly power percent errors

	order P N	Inner UO2 error (%) MOX error (%) Outer UO2 error (%)
	P 2	490.5	-0.46	212.4	0.33	140.6	0.61
	P 4	491.3	-0.30	212.1	0.20	140.4	0.44
	P 6	491.3	-0.30	212.2	0.22	140.4	0.43
	P 1	495.1	0.48	210.8	-0.43	139.3	-0.36
	P 3	494.2	0.29	210.8	-0.42	140.1	-0.25
	P 5	493.2	0.09	211.3	-0.21	140.2	0.34
	MCNP	492.8	± 0.10	211.7	± 0.18	139.8	± 0.20

Table 4

 4 give the differences between MCNP and NYMO results for overall pin power distribution. These differences are calculated in three different ways called AVG, RMS and MRE:

Table 4 :

 4 Pin power distribution error

	order P N	AVG RMS MRE
	P 2	0.52	0.60	0.50
	P 4	0.34	0.42	0.33
	P 6	0.35	0.44	0.34
	P 1	0.90	1.11	0.76
	P 3	0.42	0.53	0.37
	P 5	0.31	0.40	0.25
	MCNP	0.32	0.34	0.27
	Table			

Table 5 :

 5 Number of fuel pins within the reference confidence intervals

	order P N	68% 90% 98% 99.8%
	P 2	734	910	968	972
	P 4	928 1038 1050	1052
	P 6	894 1022 1044	1047
	P 1	480	595	648	669
	P 3	843	947	986	993
	P 5	939 1030 1041	1041

Table 6 :

 6 Percentage of fuel pins within the reference confidence intervals

	order P N	68% 90% 98% 99.8%
	P 2	69.5 86.2 91.7	92.0
	P 4	87.9 98.3 99.4	99.6
	P 6	84.7 96.8 98.9	99.1
	P 1	45.5 56.3 61.4	63.4
	P 3	79.8 89.7 93.4	94.0
	P 5	88.9 97.5 98.6	98.6

Multigroup transport problemConsider the phase space X = D×S 2 where D is the spatial domain and S 2 is the unit sphere. We use the variables x ∈ D and ω ∈ S 2 to denote the space and the angular variables, respectively. We denote by ∂D the boundary of D and by n(x) the unit outward normal vector to D at x ∈ ∂D. We also denote by Γ and Γ ± the sets:
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Appendix A. Spherical harmonics

In this appendix, we recall the definition of real-valued spherical harmonics y m n .

Appendix A.1. The Legendre polynomials

The Legendre polynomials P n (µ), of degree n, are defined by Rodrigue's formula:
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They satisfy the following properties, see [START_REF] Macrobert | Spherical harmonics: An elementary treatise on harmonic functions, with Applications[END_REF]:

The last equation is a recursive formula on Legenre's polynomials, it can serve as an alternative definition for Legenre's polynomials with P 0 (µ) = 1 and P 1 (µ) = µ.

Appendix A.2. Associated Legendre Functions

The associated Legendre functions P m n (µ), of degree n and order m, are defined by:

They satisfy the following properties, see [START_REF] Macrobert | Spherical harmonics: An elementary treatise on harmonic functions, with Applications[END_REF]:

where,

On the other hand, we have the recurrence formula, for n ≥ 1 and 0 ≤ m ≤ n:

Appendix A.3. Spherical harmonics

The real spherical harmonics y m n (ω), of degree n and order m, are finally defined by, see [START_REF] Atkinson | Theoretical numerical analysis. A functional analysis framework[END_REF] page 315:

where (θ, ϕ) are the polar coordinates of the direction ω. θ is the angle formed by ω and the z-axis, ϕ is the angle formed by the orthogonal projection of ω on the xy-plane and the x-axis, thus ω = (sin θ cos ϕ, sin θ sin ϕ, cos θ).

The spherical harmonics y m n constitute a complete basis of the space L 2 (S 2 ) of square integrable real functions. We finally have the following properties:

Relation (A.1) expresses the orthonormalization of the spherical harmonics, relation (A.2) is the addition formula and relation (A.3) expresses that the parity in ω of the harmonic spherical y m n is that of n. A proof of the addition formula (A.2) is presented in [START_REF] Macrobert | Spherical harmonics: An elementary treatise on harmonic functions, with Applications[END_REF], page 128.