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Abstract

Can human listeners use implicit temporal contingencies in auditory input to formtemporal predictions, and if so, how are these predictions represented endogenously?To assess this question, we implicitly manipulated temporal predictability in an audi-tory pitch discrimination task: unbeknownst to participants, the pitch of the standardtone could either be deterministically predictive of the temporal onset of the targettone, or convey no predictive information. Predictive and non-predictive conditionswere presented interleaved in one stream, and separated by variable inter-stimulusintervals such that there was no dominant stimulus rhythm throughout. Even thoughparticipants were unaware of the implicit temporal contingencies, pitch discrimina-tion sensitivity (the slope of the psychometric function) increased when the onset ofthe target tone was predictable in time (N = 49, 28 female, 21 male). Concurrentlyrecorded EEG data (N = 24) revealed that standard tones that conveyed temporalpredictions evoked a more negative N1 component than non-predictive standards. Weobserved no significant differences in oscillatory power or phase coherence betweenconditions during the foreperiod. Importantly, the phase angle of delta oscillations(1–3 Hz) in auditory areas in the post-standard and pre-target time windows predictedbehavioral pitch discrimination sensitivity. This suggests that temporal predictions areencoded in delta oscillatory phase during the foreperiod interval. In sum, we showthat auditory perception benefits from implicit temporal contingencies, and provideevidence for a role of slow neural oscillations in the endogenous representation oftemporal predictions, in absence of exogenously driven entrainment to rhythmic input.
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Introduction 1

The human brain is constantly forming predictions about its environment (Friston, 22005; Rao and Ballard, 1999), which concern the where and what of future events, 3but also the when (Arnal and Giraud, 2012; Coull and Nobre, 1998; Nobre et al., 2007; 4Nobre and van Ede, 2018; Rimmele et al., 2018). To predict when future events will 5occur, temporal statistics of sensory input are extracted and translated into temporal 6predictions that benefit perception and action. Yet little is known about how endoge- 7nous temporal predictions are formed from temporal regularities in sensory input, 8and how they are represented in human brain dynamics. 9

Temporal predictions are often enabled by an isochronous periodic structure of 10sensory inputs, to which we will refer as rhythmic temporal predictions in the follow- 11ing. Rhythmic input structure has been shown to improve detection performance and 12speed (Henry and Obleser, 2012; Lawrance et al., 2014; Rimmele et al., 2011; Stefanics 13et al., 2010; Wright and Fitzgerald, 2004). Fewer studies have shown that rhythmic 14temporal predictions can also improve perceptual sensitivity (i.e. discrimination per- 15formance) in the auditory (Jones et al., 2002; Morillon et al., 2016; Schmidt-Kassow 16et al., 2009; but see Bauer et al., 2015), as well as the visual domain (Cravo et al., 172013; Rohenkohl et al., 2012). It is, however, not trivial to disentangle mechanistic 18input-driven alignment of neural activity to rhythmic input from an internalized and en- 19dogenously activated representation of temporal predictions (Haegens and Golumbic, 202017; Rimmele et al., 2018; van Wassenhove, 2016). 21

To assess the endogenous representation of temporal predictions, devoid from 22the representation of the periodic structure of sensory input, we here induced tem- 23poral predictability by manipulating the temporal statistics in a so-called foreperiod 24paradigm (Niemi and Näätänen, 1981; Woodrow, 1914). This type of manipulation 25has been shown to increase visual perceptual sensitivity (Correa et al., 2004, 2005; 26Cravo et al., 2011; Rolke and Hofmann, 2007). In audition, temporally predictable 27foreperiods have been found to speed up stimulus processing (Bausenhart et al., 2007) 28and improve short-term memory performance (Wilsch et al., 2018, 2014). Morillion et 29al. (2016) reported an increase in auditory sensitivity, inducing aperiodic but ordered 30temporal regularities. 31

Importantly, forming temporal predictions does not require conscious awareness 32of the temporal structure, but can occur implicitly (Cravo et al., 2011; Herbst and 33Obleser, 2017). While some previous studies used explicit temporal prediction tasks, in 34which temporal regularities were fully disclosed to participants (Stefanics et al., 2010), 35here we aim at studying the automatic extraction of temporal predictions from sensory 36environments, to mimic naturalistic settings. 37

To assess an endogenous representation of temporal predictions, we investigated 38the hypothesis that slow neural oscillations (in the delta/1–3 Hz and theta/4–7 Hz 39frequency bands) implement temporal predictions via endogenous phase-resetting 40and -shifting mechanisms. This hypothesis can be drawn back to the influential 41proposal of Dynamic Attending in Time (DAT; Jones, 1976; Large and Jones, 1999), 42suggesting that (auditory) attention fluctuates in phase with rhythmic input. A neural 43implementation of dynamic attending has been postulated through phase-locking of 44neural delta oscillations to rhythmic inputs, also termed entrainment. Entrainment 45reflects an internalization of the exogenous temporal structure, to align the most 46efficient brain states for sensory processing to the most likely time points for stimulus 47occurrence (Lakatos et al., 2008; Schroeder and Lakatos, 2009). Behaviourally, this 48results in fluctuations of performance in phase with the oscillation (Barczak et al., 49
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2018; Besle et al., 2011; Cravo et al., 2013; Kösem et al., 2014; Lakatos et al., 2008; 50Morillon and Baillet, 2017; Schroeder and Lakatos, 2009; Stefanics et al., 2010). 51

It is currently an open question to what extend entrained delta oscillations are a 52generic signature of processing rhythmic input, versus specifically represent a neural 53implementation of temporal predictions. Important evidence for a specific role of 54endogenous delta oscillations for temporal processing in audition comes from two 55studies showing that auditory processing fluctuates with the phase of spontaneously 56present delta activity in auditory cortex, in absence of rhythmic stimulation (Henry 57et al., 2016; Kayser et al., 2015). Furthermore, previous studies have shown that 58entrainment is subject to top-downmodulation, as phase coherence of slow oscillations 59in anticipation of temporally predictive input scales with the strength of temporal 60predictions (Breska and Deouell, 2017; Cravo et al., 2013; Stefanics et al., 2010). 61

As a means to experimentally separate endogenous delta oscillations from exoge- 62nous stimulus rhythms and the resulting entrainment of neural oscillations, studies 63have started to test whether the phase of an ongoing oscillation can be aligned in 64a top-down manner to an expected point in time, without an entraining stimulus 65structure (Cravo et al., 2011; Herbst and Obleser, 2017; Solís-Vivanco et al., 2018). To 66our knowledge, only one study in the visual domain reported an effect of increased 67phase coherence in single-interval temporal predictions (Cravo et al., 2011, theta 68band). Furthermore, a recent study (Barne et al., 2017) showed that delta phase in the 69target-onset time window reflects adjustments to previously encountered violations of 70temporal predictions in an explicit timing task. 71

Here, to investigate the role of slow oscillatory dynamics for an endogenous 72representation of temporal predictions in auditory inputs, in absence of a rhythmic 73structure, we implicitly associated temporal predictability to a sensory feature of the 74standard tone in an auditory pitch discrimination task: the standard’s pitch could be 75deterministically predictive of the onset time (but not the pitch) of the target tone, or 76convey no predictive information. Temporally predictive and non-predictive conditions 77were presented interleaved in one stream, and separated by variable inter-stimulus 78intervals such that there was no dominant stimulus rhythm throughout. 79

We hypothesized that, behaviourally, temporal predictability would increase pitch 80discrimination sensitivity, assessed via the slope of the psychometric function. In the 81concurrently recorded EEG data, we expected to see indices of temporally predictive 82processing in the auditory evoked potential, namely the N1 and P2 components. 83Based on the current literature the expected direction of the effect is not clear (Lange, 842013). Furthermore, we expected to confirm a hypothesized role of delta oscillations 85in temporal prediction, surfacing as enhanced phase coherence in the temporally 86predictive condition (Stefanics et al., 2010), or a direct relationship between delta 87phase and our behavioral measures (Cravo et al., 2013). 88

Methods 89

Participants 90

In total, 51 participants were tested (23.6 years on average (SD = 3.5), 28 female, 6 91left handed), 26 of which also underwent electroencephalography (EEG). All partici- 92pants signed informed consent and received either course credit or payment for their 93participation (8 e per hour). The study was approved by the local ethics commit- 94
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tee at the University of Lübeck (17-154). We excluded two of the participants who 95only underwent the behavioral testing, because of ceiling effects (their slopes for the 96psychometric function in one of the two conditions exceeded the mean of the slope 97distributions of all participants by more than 2.5 standard deviations). Furthermore, 98we excluded the EEG data from two participants who had blinked in synchrony with 99the auditory stimulation and for whom we were not able to separate blinks from the 100auditory evoked potentials during EEG preprocessing. The behavioural data of these 101two participants were kept in the analyses. 102

Stimuli and Procedure 103

The experiment was conducted in an electrically shielded sound-attenuated EEG booth. 104Stimulus presentation and collection of behavioural responses was achieved using the 105Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) under Windows 7. Responses were 106collected on a standard keyboard. All participants were instructed to use the index 107and middle fingers of the right hand. 108

Participants performed a pitch discrimination task, comparing tone pairs embed- 109ded in noise, as illustrated in Figure 1A. They were instructed to indicate after each 110tone pair whether the second tone was lower or higher than the first. 111

A black fixation cross was displayed on gray background throughout the whole 112block. Auditory stimuli were delivered via headphones (Sennheiser HD 25-SP II). 113Lowpass (5kHz) filtered white noise was presented constantly throughout each block, 114at 50 dB above the individual sensation level, which was determined for the noise 115alone at the beginning of the experiment using the method of limits. Pure tones of 116varying frequencies (duration 50 ms with a 10 ms on- and offset ramp), were presented 117with a tone-to-noise ratio fixed at −18 dB relative to the noise level. 118

The first tone, to which we will refer as the standard in the following was always 119at one of two frequencies: 550 or 950 Hz. The second tone, the target, was varied 120in individually predetermined steps around its respective standard. The same step 121size was used for both standards, but logarithmically transformed and multiplied 122with the standard frequency, to obtain a log-spaced frequency scale around each 123standard. To predetermine the step size, each participant was first presented with one 124experimental block, containing all tone steps to familiarize themselves with the task. 125Then, a second block was performed, and if pitch discrimination performance across 126steps was below 65%, the tone-steps were increased, which was repeated up to three 127times. All participants reached the minimum performance level after minimally two 128and maximally four rounds of training. As a result of this procedure, the average lowest 129target tone presented with the 550 Hz standard was 508.3 Hz (range 490.0–519.1 Hz), 130and the highest target tone 595.3 Hz (range 582.7–617.4 Hz); the lowest target tone 131presented with the 950 Hz standard was 878.0 Hz (range 846.4–896.7 Hz), and the 132highest target tone 1028.3 Hz (range 1006.5–1066.3 Hz). The high and low tones never 133overlapped. In the behavioural experiment, eleven tone frequencies were used from 134the lowest to highest tone, including the standard; in the EEG experiment we used 7 135discrete frequencies. 136

Critically, and unbeknownst to participants, we manipulated the interval between 137standard and target tones, the foreperiod, by either pseudo-randomly drawing forepe- 138riods from a discretized uniform foreperiod duration (11 foreperiods in the behavioral 139experiment and 7 in the EEG experiment, all ranging from 0.5–3 s, blue distribution in 140Figure 1 A), or used the same foreperiod duration (1.75 s, green distribution in Figure 141
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Fig 1. Paradigm and Behavioural Results. A. Paradigm: Tone-pairs were presentedembedded in low-pass filtered white noise. Participants’ task was to judge whetherthe target tone (T) was lower or higher in pitch than the preceding standard (S).Unbeknownst to participants, the pitch of the standard tone was associated withpredictive (green) or non-predictive foreperiod intervals (blue). For the non-predictivecondition, foreperiods were drawn from a uniform distribution (upper right panel),while for the predictive condition, foreperiods were fixed at 1.75 s (lower right panel). B.
Accuracy and response times: Top: Accuracy improved significantly in the predictivecondition (left panel), which was nominally also true at the intermediate foreperiodonly (right panel). Bottom: Response times were faster in the predictive condition(left panel). The difference was driven by slower response times at short foreperiodsin the non-predictive condition (right panel) C. Averaged psychometric functions:The slope of the psychometric function was steeper in the predictive compared to thenon-predictive condition. There were no differences in threshold, nor the lower orupper asymptotes. D. Slopes for single participants: for the non-predictive (x-axis)versus predictive (y-axis) conditions. E. Thresholds for single participants: for thenon-predictive (x-axis) versus predictive (y-axis) conditions. a.u. stands for absoluteunits.
1 A). This resulted in one condition in which the target onset was perfectly predictable 142in time, the predictive condition, and one condition in which the target onset was 143maximally jittered, the non-predictive condition. To allow participants to implicitly 144dissociate the conditions, the foreperiod distributions were associated with one of 145the standard pitches, for example for one participant the 550 Hz standard was always 146followed by a predictive foreperiod and the 950 Hz standard was always followed by 147a non-predictive foreperiod. The assignment was counterbalanced over participants. 148The two conditions were presented interleaved, such that participants had to encode 149
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the standard pitch on each trial. Importantly, the manipulation of foreperiod intervals 150was strictly implicit, and participants were not informed about it. 151

To avoid build-up of a rhythm over trials, the inter-stimulus interval between 152a target tone and the standard tone of the next trial was drawn from a truncated 153exponential distribution (mean 1.5 s, truncated at 3 s) added to a minimum interval of 1543 s (resulting in values between 3–6 s). After the target tone, participants had 2 s to 155respond. The stimulation continued automatically, even if no response was given. 156

One block consisted of 22 trials in the behavioural (one repetition per tone step 157and condition), and 56 trials in the EEG experiment (4 repetitions per tone step and 158condition). In the behavioural experiment participants performed 20 blocks (440 trials), 159and in the EEG experiment minimally 12 and maximally 15 blocks (672–840 trials). 160Between blocks, participants could take breaks of self-determined length. Feedback 161was given per trial during the training, and at the end of each block (as proportion of 162correctly answered trials) during the main experiment. 163

After the experiment, all participants were asked the same four questions by the 164experimenter. First, the experimenter asked whether participants had noticed that 165the interval between the first and second tone of a pair was variable. Second, they 166were asked to describe whether they noticed any systematic variation therein. Third, 167they were told that either the low or high tones were always presented with the same 168separating interval and asked whether they noticed this. Fourth, they were asked to 169guess whether in their case the low or high pitch tones were the ones presented with 170the constant interval. Finally, they filled in a musicality survey (Schaal et al., 2014). The 171full experimental session lasted about 2.5 h. 172

EEG recording and preprocessing 173

EEG was recorded with 64 electrodes Acticap (Easy Cap) connected to an ActiChamp 174(Brain Products) amplifier. EEG signals were recorded with the software Brain Recorder 175(Brain Products) at a sampling rate of 1 kHz, using no online high-pass filter and a 176200 Hz low-pass filter. Impedances were kept below 10 kΩ. Electrode TP9 (left mastoid) 177served as reference during recording. Electrode positions were digitized. 178

EEG data were analysed using the Fieldtrip software package for Matlab (MAT- 179LAB 2016a, MATLAB 2017a), and the lme4 package in R (Bates et al., 2015; R Core 180Team, 2016). First, we re-referenced the data to linked mastoids. Then we applied a 181low-pass filter to the continuous data (cut-off 45 Hz, two-pass, transition bandwidth 1823 Hz; firws filter from the firfilt plugin, Widmann et al., 2015). No high-pass filter 183was applied. For the time-frequency analysis, we produced a parallel version of the 184data, that was not filtered during pre-processing. Filtering two-pass as done for the 185analyses of event-related potentials might smear data back in time, which would be 186problematic for analyses in the pre-target time window (Rousselet, 2012; Zoefel and 187Heil, 2013). Filtering the data only in the forward direction, however, leads to phase 188shifts (Widmann et al., 2015) which we wanted to avoid for the phase angle analyses. 189

Next, we epoched the data around the standard tone onset (−3 to 6 s), and down- 190sampled to 100 Hz. All data were visually inspected to mark bad channels that were 191interpolated (1.2 channels per participant on average). Then ICA were computed using 192the ’runica’ algorithm, with the number of output components adjusted by subtracting 193the number of bad channels. Blinks, muscular artefacts, and unspecific noise occurring 194temporarily in a channel or trial were excluded, using the semi-automatic inspection 195
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of ICA components provided by the SASICA toolbox for fieldtrip (Chaumon et al., 2015) 196and removal of these (on average 33.7 components per participant). 197

Analyses 198

Analyses of the behavioural data 199

We analysed accuracy as proportion correct (after removing trials in which the standard 200and target were equal in pitch) and response times, defined as the interval between the 201onset of the target tone and the registered button press. Response times shorter than 2020.2 s were considered outliers and removed. We compared accuracy and response 203times between conditions and over foreperiods for the non-predictive condition. Tone- 204steps and foreperiods used in the behavioral experiment were binned to reduce the 20511 steps to 7 to match the steps in the EEG-experiment, by averaging the second and 206third, fourth and fifth, as well as the seventh and eight and ninth and tenth tone steps. 207

To obtain a measure of pitch discrimination sensitivity, we fitted psychometric 208functions to model participants’ responses in the pitch discrimination task, using 209bayesian inference, implemented in the Psignifit toolbox for Matlab (Version 4, Schütt 210et al., 2016). The psychometric function describes the relationship between the stim- 211ulus level (on the abscissa, here: the difference in pitch between the target and the 212respective standard tone) and the participant’s answer (on the ordinate, here: pro- 213portion of trials on which the target pitch was judged as higher).To accommodate 214the different standard tones per condition, and the individual pitch steps obtained 215during the training, we transformed the discrete tone frequencies per participant and 216condition to 11, or respectively 7 linearly spaced steps from -1 to 1, with -1 and 1 217reflecting each participant’s extremest tones, and 0 being the pitch of the standard 218tone. 219

To select the options for the psychometric function (logistic versus cumulative 220normal function, number of free parameters), we assessed deviance pooled for both 221conditions. Deviance reflects a monotonic transformation of the log-likelihood-ratio 222between the fitted model and the saturated model (a model with no residual error), 223allowing for an absolute interpretation, or a comparison between different models 224(Wichmann and Hill, 2001). The best fits (i.e. lowest deviance, 3.80 for the best model) 225were obtained by fitting a cumulative normal function with four free parameters: 226threshold, slope, lower, and upper asymptote. 227

For a yes-no-task as the one used here, the threshold parameter indicates the 228stimulus level at which a participant is as likely to judge the stimulus as ’low’ or 229’high’. Divergence from the actual midpoint of all stimulus levels (here: 0) can thus be 230interpreted as a response bias. The slope parameter reflects the amount of stimulus 231change needed to distinguish between low and high tones, and can be interpreted 232as the sensitivity of the listener. The lower asymptote indicates the proportion of 233answering ’high’ for the lowest pitches in the tested range, and the upper asymptote 234the proportion of answering ’low’ for the highest pitches, that is they reflect the errors 235made by the listener at different target tone frequencies. 236

We used Psignifit’s default priors for the threshold, slope, guess, and lapse-rates, 237based on the given stimulus range (Schütt et al., 2016, p.109). Psignifit’s version 4 238fits a beta-binomial model (instead of a binomial model), which assumes that the 239probability for a given proportion of answers is itself a random variable, drawn from a 240beta distribution. This has been shown to provide better fits for overdispersed data, 241
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that is data in which answer probabilities over blocks and trials are not independent 242as assumed by the conventional model. 243

We fitted psychometric functions to each individual’s data separately per condition 244and compared the resulting parameters between conditions (threshold, slope, guess- 245and lapse rates) using two-sided t-tests. Additionally, we calculated Bayes Factors for 246all statistical tests, using the Bayes Factors package for Matlab (Rouder et al., 2009). 247

Additionally, we computed a logistic regression on the single-trial responses of 248the pitch-discrimination task, to parallel the analysis of delta phase angles performed 249for the EEG (see below). Pitch difference and condition were used as interacting fixed 250effects (with random intercepts and random slopes for both predictors and their 251interaction), using the lme4 package in R (function glmer, Bates et al., 2015) with a 252binomial link function. 253

Event-related potentials 254

We examined the time-domain data with respect to responses evoked by standard 255and target tones, contrasting the predictive and non-predictive condition. For the 256standard-evoked response, we detrended the data based on the whole epoch and 257applied baseline correction from −0.1 to 0 s pre-standard. We only examined the 258time-window between standard onset and 0.5 s after, because this was the maximal 259interval in which no target events occurred (earliest target onset was 0.5 s in the 260non-predictive condition). For the target-evoked response, we first applied detrending 261and the same pre-standard baseline to standard-locked epochs, and then re-epoched 262to the target event. We examined the time interval from −0.5 to 0.5 s around the 263target event. We averaged over trials within participants and condition, and then over 264participants, to obtain the average event-related potential (ERP, depicted in Figure 2). 265

To test for statistically significant differences in the time-domain data, we ap- 266plied cluster permutation tests on two levels. First, we contrasted trials from the 267non-predictive and predictive condition within each participant using independent 268samples regression implemented in FieldTrip (ft_timelockstatistics). This resulted in 269regression coefficients (betas) for each time-electrode data point for the ERPs. Next, 270the group-level analysis was performed with a dependent samples t-test to contrast 271the betas from the subject-level analysis against zero. A permutation test (5000 Monte 272Carlo random iterations, minimum of three neighbouring channels to count as a clus- 273ter) was performed with cluster-based control of type I error at a level of α=0.05 as 274implemented in FieldTrip. The condition assignment (i.e. whether the predictive condi- 275tion was presented at the low or high pitch tones) was added as a control variable. This 276analysis resulted in time-electrode clusters exhibiting significant condition differences 277in the ERPs. 278

Time-frequency representations 279

Time-frequency representations were computed for epochs time-locked to the stan- 280dard tones, separately for the predictive and non-predictive condition. We performed 281this analysis on trials with foreperiods equal or longer than 1.75 s only to avoid evoked 282activity from target onsets occurring early in the non-predictive condition. We matched 283the smaller number of trials available from the non-predictive condition, by randomly 284sampling the same number of trials from the predictive condition. To obtain stable 285results, we repeated the random sampling 50 times and averaged over the resulting 286
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time-frequency representations. Additionally, we ruled out potential back-smearing 287of evoked activity related to target-onset by replacing all data points after 1.75 s by 288the value at this time point for the respective trial and channel before performing the 289time-frequency transformation. 290

Data were transformed to time-frequency representations for frequencies ranging 291from 0.5 to 34.5 Hz (linear steps, 1 Hz) and time points between −0.5 to 2.5 s, using 292convolution with a single adaptive Hanning taper with frequency-dependent time 293windows (increasing linearly from 2 to 4 cycles per frequency). To provide sufficiently 294long data epochs for the lowest frequencies, we appended the epochs (−3 to 6 s, time 295locked to the standard tone) with their inverted and right-left flipped version to the 296left and right before applying the time-frequency transform. 297

Power estimates were extracted as the squared modulus of the complex-valued 298Fourier spectra and baseline corrected to relative change (first subtracting, then 299dividing by the trial-average baseline value per frequency) using the condition average 300in the interval from −0.5 s to standard onset. Inter-trial phase coherence (ITC) was 301extracted as the magnitude of the amplitude-normalized complex values, averaged 302across trials for each time-frequency bin and channel. 303

Statistics were performed in the time-window between 0 to 1.7 s post standard 304onset and for all frequencies jointly. For power, we used a two-level procedure as 305described for the ERPs (but using ft_freqstatistics, 1000 permutations). For the ITC, we 306only computed statistics on the second-level condition differences since it represents a 307measure that already combines single trials. An additional, hypotheses-driven cluster 308test for power and ITC effects was performed, restricted to the delta band (1 to 3 Hz). 309

Delta phase angle analyses 310

A timingmechanism that predicts the onset of the target tone would have to be initiated 311by the standard tone which serves as a temporal cue. Therefore, we examined the data 312for any signatures of such amechanism in the phase of the delta band (see Figure 4B for 313a schematic depiction). To not confound target evoked activity with pre-target activity, 314we used the same version of the data as for the time-frequency transformations 315described above, to which no filters had been applied during preprocessing. Target- 316onset ERPs were muted (as described above) from the time point of target onset 317on each trial (1.75 s in the predictive condition and 0.5 to 3 s in the non-predictive 318condition). To reduce the dimensionality of the data, and to focus our analysis on 319auditory activity, we computed a weighted average of single electrodes at each time 320point. The weights reflected each participant’s N1-peak topography, computed as the 321average absolute value per channel in the time interval from 0.14 to 0.18 s following 322the standard (see topography shown in Figure 4B). We then multiplied the time-domain 323data at all latencies and channels with these weights and averaged over channels, 324resulting in one virtual channel. 325

We applied a band-pass filter to the data (3rd order Butterworth, two-pass), with 326cut-off frequencies of 1 and 3 Hz for the delta band. After filtering, we applied the 327Hilbert transform and extracted phase angles as the imaginary value of the complex 328fourier spectrum averaged over latencies from 0.14 to 0.18 s, the peak latency of the 329N1. We chose the peak of the N1 as the window of interest, as the time point at which 330we measure the first reaction to the standard tone, possibly reflecting a phase reset 331of ongoing oscillations. Note that we did not choose the later time window in which 332
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the difference in the standard-evoked ERP significantly differed between conditions to 333avoid biasing our analysis for a between-condition effect. 334

We subjected the phase angles to a logistic regression to test for an effect of 335phase angle on the behavioural response, using the lme4 package in R (function 336glmer with a binomial link function, Bates et al., 2015). Per trial, we predicted the 337participant’s response in the pitch discrimination task (second tone lower or higher) 338with two numerical predictors, (1) the normalized pitch difference between standard 339and target tone (∆pitch in eq. 1, range −1–1, a.u.), and (2) the standard-evoked phase 340angle extracted as described above (ϕ), plus their interaction. 341

The predictors of the logistic regression can be interpreted following the logic 342of the psychometric function (DeCarlo, 1998), which models a behavioural measure 343(on the ordinate) based on variations of a stimulus feature (on the abscissa), and is 344described by two main parameters: threshold and slope. A threshold effect, that is a 345horizontal shift of the psychometric function, would be reflected by a main effect of 346the predictor ϕ, indicating a response bias, which we did not observe in the behavioral 347data.. A slope effect, reflecting a shift in the steepness of the psychometric function, 348would result in an interaction between the predictors ∆pitch and ϕ. Here, we were 349particularly interested in a slope effect, that is an interaction between the predictors 350pitch and phase angle. Due to computational constraints, we only specified a random 351intercept, but no random slopes for the predictors. 352

To account for the circularity of the phase angles, we followed an approach 353previously described by Wyart et al. (Wyart et al., 2012) (see also (Barne et al., 2017; 354Cravo et al., 2013)), using the sine and cosine of the phase angles jointly as linear 355predictors in a regression. For both, the sin(ϕ) and cos(ϕ), we specified an interaction 356with ∆pitch: 357

y = β0 + β1 · (∆pitch · sin(ϕ)) + β2 · (∆pitch · cos(ϕ)) (1)
Then, we recombined the regression weights obtained for the interactions of 358

sin(ϕ) and cos(ϕ) with ∆pitch: 359

βcombined =
√
β2
1 + β2

2 (2)
The resulting βcombined is always positive and can thus not be tested against zero. 360We computed a reference distribution of βcombined based on 1000 permutations, by 361permuting, per participant, the response values over trials, recomputed the model 362and retained the βcombined. To assess significance of the interaction between pitch and 363phase angle, we assessed 99% one-sided confidence intervals, and computed p-values 364from the permutation distribution (Phipson and Smyth, 2010): 365

pperm =
N(βpermcombined > βcombined) + 1

N(perm) + 1
(3)

To visualize the modulation of pitch discrimination sensitivity over phase angles, 366we predicted responses from the logistic regression model (using the R package 367
emmeans, Lenth, 2018), for a range of ∆pitch, sin(ϕ), and cos(ϕ) values, and plotted 368the resulting values for the recombined and binned ϕ (shown in Figure 4C). 369
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We additionally computed the phase analysis on data filtered for the low delta 370(0.5–2 Hz), theta (4–7 Hz), alpha (8–12 Hz), and beta (15–30 Hz) frequency bands 371and tested the resulting βcombined for significance using the permutation approach 372(Figure 4D). P-values were Bonferroni-corrected (accounting for five tests with a p-value 373threshold of 0.05, one for each frequency band), resulting in an adjusted alpha level of 3740.01. 375

Furthermore, we assessed the time-course of the regression weights per condition 376by independently computing the model (Eq. 1) for each time point from -0.1 to 2 s 377and for each of the two conditions separately (Figure 4F). Here, we did not mute 378the time-domain data at target onset, since the model was computed separately per 379condition. To test for significance, we applied the permutation approach described 380above, using 200 permutations only (due to the time-consuming procedure). Finally, 381to test for condition differences, we computed the time-resolved logistic regression for 382both conditions jointly and added the factor condition to the above-described model 383to test for a three-way interaction. 384

Distinguishing oscillatory from aperiodic activity 385

To assess whether the activity observed in the delta band is truly oscillatory, rather 386than reflecting aperiodic 1/f activity we applied irregular resampling (IRASA; Wen and 387Liu, 2016; see also Helfrich et al., 2018; Henry et al., 2016). This technique consists in 388downsampling the data at pairwise non-integer values and computing the geometric 389mean of the resulting power spectra. The resampling leaves the 1/f activity intact but 390removes narrow-band oscillatory activity. Once the 1/f activity has been obtained, it 391can be subtracted from the total power spectrum to assess only the oscillatory activity. 392We applied IRASA to the trial-wise data time-locked to the standard tone (-3 to 6 s), to 393the trial-averaged data per participant (ERP), and to 9 s of simulated data with a brown 394noise spectrum (see Figure 5A), as well as to single trial data from a 3 s snippet during 395the inter-trial interval (see Figure 5B). Power spectral density (PSD) was computed in 396sliding windows of 3 s in 0.25 s steps, using a fast Fourier transform tapered with a 397Hanning window for a frequency range of 0.33 – 25 Hz, without detrending, and the 398default resampling parameter (1.1 to 1.9, 0.05 increment). The PSD was normalized by 399dividing all values by the maximum value of the respective total PSD (trial data, ERP, 400and simulated data). 401

Results 402

Temporal predictability improves pitch discrimination 403

On average, participants’ responses were correct in 86% percent of trials. Using the 404full sample of 49 participants, we found that accuracy was significantly higher in the 405predictive compared to the non-predictive condition (T(48)=3.77, p<0.001, BF = 89.6); 406Figure 1B). We found a marginally significant increase in accuracy at the intermediate 407foreperiod for the predictive compared to the non-predictive condition (T(48)=1.8, p = 4080.07, BF = 0.93); Figure 1B). 409

We furthermore analysed response times between conditions and over foreperi- 410ods. Response times were faster in the predictive (average 0.85 s), compared to the 411non-predictive condition (0.92 s), by about 70 ms (T(48)=8.3, p < 0.001, BF = 110). As 412
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shown in Figure 1B, the difference is strongly driven by slower responses at shorter 413foreperiods in the non-predictive condition, but there was still a significant difference 414between the response times at the intermediate foreperiod only (T(48)=2.10, p = 0.04, 415BF = 1.47). 416

For the psychometric functions (depicted in Figure 1C), we observed a steeper 417slope in the predictive compared to the non-predictive condition (T(48)=3.85, p<0.001, 418Bayes Factor (BF)=114.3); Figure 1D), but no threshold effect (T(48)=1.05, p = 0.30, BF 419= 0.35); Figure 1E), nor effects on the lower asymptote (p = 0.48, BF = 0.27) or higher 420asymptote (p = 0.44, BF = 0.28). 421

To test whether the slope effect might be driven by shorter or longer foreperiods 422only, we computed psychometric functions on the trials with intermediate foreperiods 423(1.25–1.5 s in the behavioral sample, 1.33 – 2.17 s in the EEG sample; see Figure S1). 424We found a smaller but significant slope effect between conditions (T(48)= 2.73; p<0.01; 425BF = 5.46) showing that the slope difference was not solely driven by the shortest or 426longest foreperiods. Together with the condition differences in accuracy (not signifi- 427cant) and response times at the intermediate foreperiod only, this suggests that the 428performance improvement occurred not only at unexpectedly early or late foreperiods, 429but results from the difference in temporal predictability between conditions. 430

All of the above results held, albeit somewhat weaker, when analysing only data 431from participants for whom we had recorded EEG: Predictability resulted in marginally 432higher accuracy, (T(25)=1.82, p = 0.08, BF = 1.07), significantly larger PMF slopes 433(T(25)=2.60, p = 0.02, BF = 4.04), and no effects for the threshold, guess, and lapse rate 434(all p > 0.18, BF: 0.43, 0.61, 0.29, respectively). 435

To parallel the analysis of delta phase angles reported below, we also computed a 436logistic regression for the behavioural data, for the participants from the EEG sample 437only, with the predictors pitch difference (∆pitch), condition, and their interaction 438(plus random effects for all three). The analysis confirms the results described above, 439namely a significant main effect for ∆pitch (p < 0.001), no main effect for condition 440(p = 0.9), but an interaction between ∆pitch and condition (p < 0.01), which can be 441interpreted as a slope effect (see Figure 4A). 442

Finally, we assessed to what extend the predictability manipulation had been 443noticed by participants. During debriefing, no participant spontaneously reported 444to have noticed the manipulation of temporal predictability. Four participants from 445the behavioral and eight participants from the EEG sample said they had noticed the 446manipulation after the experimenter explained it. 16 (70%) of the behavioral and 44717 (65%) of the EEG participants guessed correctly whether the high or low tones 448were temporally predictive in their case. Neither the participants who recognized 449the manipulation once it was explained, nor the ones who guessed correctly which 450tones were temporally predictive in their case showed a larger behavioral slope dif- 451ference than the other ones (one-tailed Wilcoxon signed rank test, p = 0.88, p = 0.94, 452respectively). This suggests that the fact that participants were able to recognize the 453manipulation once it was explained did not reflect active engagement in timing during 454the experiment. The high percentage of correct guesses can possibly be explained by 455reverse inference, in which participants noticed that one condition was easier than the 456other, and – after learning about the predictive foreperiods – associated the perceived 457facilitation with predictability. 458
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Temporal predictability affects both, standard- and target-evoked 459
event-related potentials: 460

Standard-evoked activity: Event-related potentials were examined time-locked to 461the standard-tone (Figure 2A). Both conditions showed a negative deflection between 4620.1–0.2 s after the standard onset, with a peak at 0.16 s and a fronto-central topography. 463We refer to this component as the standard-evoked N1. We observed a significant 464difference between conditions in the time window of the late N1/ early P2 component, 465where amplitude was more negative for standards that were temporally predictive 466of the onset of the target (predictive condition; 0.21–0.26 s, p = 0.02). This difference 467is important in that it shows that standard tones were processed differently if they 468served as a temporal cue for the target onset versus did not serve as a temporal cue. 469The latency and topography of the standard-evoked N1 (not the time-range in which 470the difference was found which was slightly later) was used for the analysis of phase 471angles described below. When directly comparing the ERPs evoked by the 550 versus 472950 Hz standards (randomly assigned to the predictive and non-predictive condition 473over participants), there was no statistically significant difference in the early time 474window following the standard tone. 475

Target-evoked activity: Event-related potentials time-locked to the target-tone (Fig- 476ure 2B) also showed a negative deflection between 0.1–0.2 s after the target onset, 477with a fronto-central topography. We refer to this component as the target-evoked 478N1. For targets in the predictive condition, the N1 was larger (0.09–0.14 s, p = 0.02). 479Importantly, the difference is not solely due to the onset time of the target (see inset 480in Figure 2B and Figure S2), which would be reflected by a difference only for long or 481short foreperiods in the non-predictive condition. 482

To test for an apparent latency shift in the N1 between the non-predictive and 483predictive conditions, we computed the half-area measurement (Luck, 2005), which 484indexes the time-point at which half the area of a deflection has been reached. Com- 485pared to peak-latencies, this measure accounts better for asymmetric deflections. 486We found a significantly earlier N1-latency for the predictive, compared to the non- 487predictive condition (Cz, 0.13 s versus 0.15 s; T(23)=3.03, p < 0.01). 488

Furthermore, there was an amplitude difference at a later positive prolonged 489component, which was positive at posterior and negative at frontal electrodes (0.20– 4900.45 s, p<0.01; 0.28–0.36 s, p = 0.02). When computing the analysis using only trials 491with foreperiods ≥1.75 s (and equating the number of trials in the predictive condition 492for a fair comparison), the early cluster and the later frontal clusters remained (0.09– 4930.14 s, p = 0.04; 0.25–0.37 s, p = 0.008, marked in light blue in Figure 2B, right panel). 494When running the same analysis on the trials ≤1.75 s, we again found the early cluster 495(0.08–0.14 s, p = 0.01), and the later posterior cluster (0.16–0.49 s, p<0.001, marked 496in pink in Figure 2B). These findings show that the early difference was not driven by 497the shorter or longer foreperiods separately, but resulted from temporal predictability 498per se. The positive difference at posterior channels (cluster marked in pink in Figure 4992B), however, was driven by the short foreperiod trials, and the negative difference 500at frontal channels (cluster marked in light blue in Figure 2B) was driven by the long 501foreperiod trials. 502
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No condition differences in delta (1–3 Hz) power or ITC during the 503
foreperiod 504

We assessed power in a frequency range between 0.5–34.5 Hz for the predictive 505and non-predictive conditions (see Figure 3A), time-locked to standard onset. Both 506conditions showed an increase in power in the delta-range (1–3 Hz, Figure 3B) after 507

Fig 2. Event-related potentials (ERP). A. ERPs time-locked to the standard tone:Left: The predictive condition (green line) evoked a more negative N1 than the non-predictive condition (blue line). The fine blue and green lines depict single participants’ERPs. The inset shows the topographies in the time windows of 0.1–0.2 s and 0.2–0.3 sfor both conditions separately. Right: condition difference. The grey shades indicatesthe two-sided 95% confidence interval, estimated from the t-distribution. The cyanshade marks the time points at which a significant condition difference occurred, andthe topography shows the scalp distribution of the activity during these time windows.Channels at which the difference was significant are marked in black. B. ERPs time-
locked to the target tone: Left: The predictive condition (green line) evoked anearlier N1 than the non-predictive condition (blue line). The upper inset shows thetopographies in the time windows of 0.1–0.2 s and 0.2–0.3 s for both conditionsseparately. The lower inset exemplary depicts the target-evoked ERP for the 20%longest, intermediate, and 20% shortest foreperiods. Right: condition difference. Thecyan and pink shades mark the time points at which a significant condition differenceoccurred, and the topographies show the scalp distributions of the activity duringthese time windows.
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standard onset, and a prolonged increase in the alpha-range (8–12 Hz) relative to 508baseline. We found no statistically significant power differences between conditions at 509the cluster level (see Figure 3C). 510

ITC across the 1–3 Hz range did show the expected increase following the stan- 511dard tone, ranging from 1–3 Hz, and a prolonged increase in the delta band in both 512conditions (Figure 3D,E). However, when comparing inter-trial phase coherence (ITC) 513for all frequencies between conditions, no significant differences were observed. A 514hypothesis-driven cluster test restricted to the delta frequency band (1–3 Hz) revealed 515a non-significant cluster of enhanced delta ITC (Figure S3; 0.85–1.1 s, 1.5–2.5 Hz, p 516= 0.19). This shows that delta ITC increased nominally, albeit not significantly in the 517predictive condition. Likely the effect is too weak to reach significance either because 518of signal processing constraints (muting of target-evoked activity), or the absence of 519an entraining rhythm. 520

Fig 3. Time-frequency representations. A. Power, time-locked to standard-

onset. Power estimates were baseline-corrected to the pre-standard interval anddisplay relative change. Top panel: non-predictive condition, bottom panel: predic-tive condition. The topographies show the power scalp distributions in the intervalfrom 0.2–0.4 s for frequencies from 1–3 Hz. B. Delta power (1–3 Hz) over time forthe non-predictive (blue) and predictive conditions (green). Fine lines depict singleparticipant’s power values. C. Power-difference between conditions (T-values). Nosignificant condition differences were found. D. Inter-trial phase coherence (ITC),
time-locked to standard-onset. Top panel: non-predictive condition, bottom panel:predictive condition. The topographies show the ITC scalp distributions in the intervalfrom 0.2–0.4 s for frequencies from 1–3 Hz. E. Delta ITC (1–3 Hz) over time for thenon-predictive (blue) and predictive conditions (green). Fine lines depict single partici-pant’s ITC values. F. ITC-difference between conditions (T-values). No significantcondition differences were found.

Standard-evoked delta phase angle predicts pitch discrimination 521
sensitivity 522

To test whether delta oscillations play a role in temporally predictive processing in this 523study, we tested for a relation between delta phase angles and pitch discrimination 524performance using a logistic regression approach (see Figure 4B for a schematic 525depiction). A timing mechanism that predicts the onset of the target tone would have 526
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to be initiated at the standard tone, which acts as a temporal cue, which is why we 527were particularly interested in this time window. We chose the peak of the N1 as time 528point of interest, as it is the earliest measurable response to the temporal cue. We 529hypothesized that temporal predictions could possibly be implemented via a phase 530reset of an ongoing delta oscillation. 531

Phase angles in the post-standard time window (0.14–0.18 s) were extracted by 532applying the Hilbert transform to band-pass filtered (1–3 Hz) single trial data with one 533virtual channel (see Methods for details) representing the sum of all channels weighted 534by the N1-topography. We subjected the phase angles (as their sine and cosine) to 535a logistic regression with two numerical predictors, the normalized pitch difference 536between standard and target tone, and the standard-evoked phase angle, plus their 537interaction. To assess significance of the interaction effect, we used a permutation 538approach. We found a significant interaction between pitch and phase angle, which 539indicates that the slope of the psychometric function varied depending on the delta 540phase angle evoked by the standard tone (Figure 4 C). The interaction effect was 541significant only for the delta band (1–3 Hz), but not for other frequency bands tested 542(0.5–2 Hz; 4–7 Hz; 8–12 Hz; 15–30 Hz; Figure 4 D). Note that this procedure was 543performed on all trials, without separation into conditions, and thus is generally valid, 544both for trials on which the standard served as a temporal cue and trials for which it 545did not. 546

Next, we tested whether the interaction between delta phase angle and pitch 547discrimination sensitivity was specifically driven by our manipulation of temporal 548predictability. We examined the regression weight for the interaction at different 549time points over the trial, and independently for the predictive and non-predictive 550conditions. This analysis (Figure 4F, upper panel) showed that the interaction effect 551between delta phase angle and the slope of the psychometric function was significant 552(i.e. exceeded the 99% confidence interval of the permutation distribution) only for 553the predictive condition, and occurred at two time points: after the standard tone 554(around 0–0.4 s), and prior to target onset (around 1.1–1.4 s). We therefore conclude 555that the interaction effect was mainly driven by the predictive condition. 556

The three-way interaction between condition, delta phase angle, and pitch dis- 557crimination sensitivity was significant only in the later time window (Figure 4F, lower 558panel). A supplementary analysis testing the effect of different foreperiods (target on- 559set times) on delta phase angles in the non-predictive condition (Figure S4), confirmed 560that phase angles in the time ranges in which we observed the above-described effects 561were not affected by the different target offsets in the non-predictive condition. 562

We also assessed the relationship between phase angle (binned into 6 bins for this 563purpose) and condition (indexed as -1 for the non-predictive and 1 for the predictive 564condition; Figure 4 E). If the trials would be equally distributed over conditions per 565phase angle bin, this should result in an average condition of 0 at all phase angles. We 566found more trials of the predictive condition to occur at the phase angles at which 567we had found the higher slopes (Figure 4 C), which suggests that phase angles varied 568between the two conditions. A post-hoc test for a quadratic effect of phase bin on 569condition (computing a generalized linear model predicting condition from phase 570bins) yielded only a marginally significant weight for this contrast (p = 0.09). We thus 571conclude that there is no meaningful phase angle difference between conditions at 572the population level. 573
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Fig 4. Delta phase angle predicts pitch discrimination sensitivity. A. Replication

of the behavioural effect (s. Figure 1) with a logistic regression approach. Model pre-dictions from the logistic regression with the predictors pitch (abscissa) and condition(colors). As illustrated by the bar-plot, there was a slope difference between conditions(i.e. an interaction between pitch and condition), with steeper slopes for the predictivecondition. B. Schematic depiction of the delta phase angle analysis. We extractedthe time domain data from single trials, from one virtual channel that reflects theweighted sum of the standard-evoked N1 topography (computed in the interval from0.14–0.18 s), band-pass filtered (1–3 Hz) and applied the Hilbert transform, to extractthe instantaneous phase angles in the time-window of 0.14–0.18 s (the N1-peak).
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Fig 4. (Continued from previous page.) C. Effect of delta phase angle on pitch
discrimination sensitivity: Model predictions from the logistic regression modelwith the predictors pitch (abscissa) and phase angle (colors, binned only for visualdisplay). There was a significant interaction between pitch and phase, that is the slopesof the psychometric functions differed depending on delta phase angle (depicted in thebar plot). Note that this analysis was performed on all trials, without separation intoconditions. The inset on the bottom right side shows the observed interaction weight(in black) compared to a permutation distribution and its 99% confidence interval(in grey). D. Pitch × phase interaction and confidence intervals for different
frequency bands. The grey bar shows the 99% confidence interval, the black bar theobserved weight. Only for the delta band (1–3 Hz) the observed weight significantlyexceeded the permuted weights. E. Distribution of conditions over phase angles.Conditions were coded as −1 for the non-predictive and 1 for the predictive condition,therefore an equal distribution of conditions over phase angle bins should resultin an average condition (colored bars) of 0, which was not the case. Instead, moretrials from the predictive condition occurred at the phase angles that were relatedto a steeper slope of the psychometric function (panel C). F. Upper panel: Pitch ×
phase interaction over time, separated by condition. The thick lines indicate theregression weights for the interaction over time for the predictive (green) and non-predictive condition (blue), the thin lines and grey shade indicate the 99% confidenceinterval computed with the permutation approach. Lower panel: Condition × pitch
× phase interaction over time. The three-way interaction was significant only in thepre-target time window, indicating that only in the predictive condition delta phaseangles predicted pitch discrimination performance during this time. 574

575

Additional analyses 576

Oscillatory versus 1/f activity. To test for the presence of oscillatory activity in 577the delta band, we subtracted fractal power spectra (obtained using the irregular 578resampling method (IRASA; Wen and Liu, 2016) from the total power spectra. The 579results (depicted in Figure 5, see also S5) show that albeit no clear peaks can be found 580in the delta range, power spectral density (PSD) computed from single trial data was 581higher in the 1–3 Hz range compared PSD computed on the ERP and simulated data 582(Figure 5A). If anything, the PSD computed on single trial data has a small peak around 5831 Hz, while the PSD of the ERP has two smaller peaks at 3 and 4 Hz. When computing 584the same analysis on pre-stimulus data (from the ISI, 3 s signals), we observe residual 585oscillatory activity in the 1–3 Hz range (Figure 5B). While it is difficult to completely 586separate oscillatory from 1/f activity at slow frequencies – and to our knowledge, no 587previous study showed a clear oscillatory peak in the PSD in the delta range – our 588analyses suggest some oscillatory activity in the delta band. 589

Mediation analysis. We also considered mathematically the possibility that delta 590phase angle in the post-cue time window would mediate the effect of temporal pre- 591dictability on pitch discrimination sensitivity, by comparing the regression weight of 592the interaction between pitch and temporal predictability estimated from a model with 593no other predictors (as depicted in 4A), and from a model that additionally contained 594an interaction term for pitch and phase angle (Baron and Kenny, 1986; Muller et al., 595
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Fig 5. Testing for oscillatory activity in the 1–3 Hz range using the irregular

resampling method. A: from single trial data (red), trial-averaged data (blue) andsimulated brown noise (thick lines: average, fine lines: single participants). The leftpanel shows the oscillatory activity, obtained by subtracting the fractal PSD from thetotal PSD. The inset magnifies the delta frequency range from 1–3 Hz, and the shadedareas show 99% confidence intervals computed from a t-distribution. The differencebetween the red and blue lines shows that single trials contain additional, non-phaselocked oscillatory activity in the 1–3 Hz band as compared to the ERP (trial average).
B: Oscillatory spectrum obtained from resampling the pre-stimulus time window (3 s,taken from the ISI). Note that there is significant oscillatory activity in the 1–3 Hz range.
2005). The negligible change in weight between both models (0.307 to 0.304) indicates 596that there is no evidence for a mediation effect. 597

Delta phase versus ERP effect. To distinguish between the ERP effect (found on 598the N1) and the delta phase effect, we tested whether the N1 amplitude could explain 599the findings. Computing the same logistic regression model with the N1 amplitude 600(averaged activity between 0.14–0.18 s, using the same spatial filter) instead of the 601phase angles as above revealed no significant interaction effect (p = 0.15), i.e. the N1 602amplitude does not predict pitch discrimination performance on single trials and can 603thus not simply replace the delta phase angle. However, the N1 amplitude correlated 604significantly with the standard-evoked phase-angle at all frequency bands, as assessed 605by a circular-linear correlation (from the Directional package in R, Tsagris et al., 2018); 606
R2: 0.5–2 Hz: 0.21, 1–3 Hz: 0.27, 4–7 Hz: 0.06, 8–12 Hz: 0.056, 15–30 Hz: 0.004 (all 607p-values <0.001). 608

Discussion 609

In this study, we asked whether human listeners extract implicit temporal contingen- 610cies from auditory input to form temporal predictions in absence of a periodic input 611structure. If so, how are such endogenous temporal predictions represented in neural 612dynamics? We implicitly manipulated temporal predictability by varying the foreperiod 613(i.e., the interval between standard and target tones) in a pitch discrimination task. 614Unbeknownst to participants, one of two possible pitches used as the standard tone 615was indicative to one of two foreperiod distributions, respectively: drawn either from 616a uniform distribution, under which the onset of the target tone was unpredictable, or 617from a single-valued distribution under which the onset of the target tone was fully 618predictable. 619
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The data reveal several indices that participants did form temporal predictions: 620most importantly an increase in pitch discrimination sensitivity in the predictive condi- 621tion, and condition differences in the evoked response to standard- and target tones. 622However, contrary to our initial hypothesis, classical time-frequency analyses revealed 623no differences in power or inter-trial phase coherence in slow oscillatory frequencies. 624Yet, a direct analysis of delta phase angles shows that the phase of delta oscillations 625in response to the standard tone and in the pre-target time window is indicative of 626pitch discrimination performance. This finding suggests an instrumental role of delta 627oscillations in implementing endogenous temporal predictions for audition. 628

Implicit temporal predictability improves pitch discrimination 629
sensitivity 630

Behaviourally, we observed an increase in pitch discrimination sensitivity in the tem- 631porally predictive condition, reflected in a steeper slope of the psychometric function 632(Figure 1). Even though the absolute difference in behaviour is not large, we observed 633a robust set of converging effects of temporal predictability on response times, ac- 634curacy and slopes (49 participants). These suggest that listeners can implicitly learn 635to associate sensory stimulus features like pitch with single-interval temporal predic- 636tions, emphasizing the relevance and ubiquitousness of timing in human cognitive 637processing. 638

Importantly, participants were not made aware of the predictability manipula- 639tion, and no participant was able to correctly describe it during debriefing. About 25% 640of participants were able to recognize the manipulation after it was described by the 641experimenter, but did not show a larger behavioural effect, suggesting they did not 642actively engage in timing. The fact that a majority of participants guessed correctly 643which standard tone was associated with temporal predictability can be explained 644by reverse inference: participants noticed that one condition was easier than the 645other, and – after being informed about the predictive foreperiods during debriefing – 646associated the perceived facilitation with predictability. 647

To our knowledge, this is the first study to show that pitch discrimination sensi- 648tivity is improved by implicit but non-rhythmic temporal predictions. In the auditory 649domain, detection speed and performance are facilitated by rhythmic temporal pre- 650dictability (Henry et al., 2014; Henry and Obleser, 2012; Lawrance et al., 2014; Wright 651and Fitzgerald, 2004), but the use of detection tasks might underline the timing aspects 652of the task. 653

One previous study (citepbausenhart2007knowing showed that shorter pre- 654sentation times (difference of about 6 ms) are needed for to achieve correct pitch 655discrimination performance, when the target tone occurs with a block of constantly 656short foreperiods. Another study (Morillon et al., 2016) revealed that aperiodic regular- 657ities improved auditory sensitivity when participants had to discriminate a deviant tone 658from standards, but likely the manipulation was more easily detectable by participants 659due to the use of rhythmic and monotonically increasing intervals. Complementing 660these previous findings, we here show that implicit temporal predictability improves 661auditory perceptual processing in absence of an embedding rhythm, and despite any 662explicit incentive to engage in timing. 663
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Temporal predictions affect neural processing of predictive and 664
predicted tones 665

Predictive tones (standards). An important indicator for the successful extraction 666of temporal predictability is the difference in event-related potentials evoked by 667predictive and non-predictive standard tones (Figure 2A). It suggests that participants 668learned to associate the pitch of the standard tone to temporal predictability, and 669flexibly used the standard as a temporal cue on a trial-by-trial basis. 670

Few studies have investigated effects of predictability on the early sensory 671processing of the predictive or cue stimulus. In spatial cueing, there is evidence for 672an effect of predictions on early positive and negative cue-evoked components (100– 673200 ms post cue; Jongen et al., 2007; Nobre et al., 2000; Yamaguchi et al., 1994). In 674the temporal domain, there is, to our knowledge, only one study that showed an 675enhanced N1-after temporal cues (in 8–12 years old children, Mento and Vallesi, 2016). 676Our results are in line with this finding and reveal that the cue-evoked N1 in adults is 677affected even by implicit temporal predictability. The observed N1 enhancement, a 678response previously assigned to the recruitment of additional attentional resources in 679the context of predictive processing (Bendixen et al., 2012), could speculatively be 680explained as enhanced attentional processing of the predictive cue, which conveys 681more information about future task-relevant events than a non-predictive cues. 682
683

Predicted tones (targets). In response to target tones, we found a larger and faster 684N1 in the predictive compared to the non-predictive condition, suggesting a facili- 685tation of sensory processing of temporally predicted targets (Figure 2B). This result 686corroborates a large base of studies reporting mainly amplitude effects of temporal 687predictability on sensory evoked potentials (Correa et al., 2006; Hsu et al., 2014; Hughes 688et al., 2013; Kok et al., 2011; Lampar and Lange, 2011; Lange, 2009; Miniussi et al., 1999; 689Sanders and Astheimer, 2008; Schwartze et al., 2013). The reported direction of those 690amplitude effects varies with the paradigm used (for an extensive discussion see Lange, 6912013) – for probabilistic foreperiod variations as used here, both, reduced (Paris et al., 6922016; Sherwell et al., 2017) and enhanced N1 amplitudes (Griffin et al., 2002) have 693been reported. The main specificity of the present study is that we only manipulated 694temporal, not spectral predictions, and hence the temporal prediction could have 695resulted in a faster and more efficient allocation of attentional resources to predicted 696stimuli, to facilitate the assessment of their pitch, which could not be predicted. 697

The observed latency-shift of the N1 by temporal predictions is in line with one 698previous study using a manipulation of foreperiods (Seibold et al., 2011), and one study 699on rhythmic temporal predictability (Rimmele et al., 2011). Further evidence comes 700from experiments reporting a faster N1 for auditory speech and non-speech events 701combined with visual events (Paris et al., 2017; Stekelenburg and Vroomen, 2007; 702Vroomen and Stekelenburg, 2010; Wassenhove et al., 2005). Note that in our study, 703the predictive information conveyed by the cue was purely temporal, since the pitch 704of the target tones was unpredictable. In sum, the facilitation of the target-evoked N1 705suggests that temporal predictions alone can enhance early auditory processing. 706
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Implementation of temporal prediction through slow neural oscil- 707
lations 708

A central aim of this study was to assess the role of slow neural oscillations for an 709endogenous representation of temporal predictions. Previous studies convincingly 710established a mechanism of facilitation of sensory processing via phase alignment of 711delta oscillations for stimuli that occur during the preferred phase, i.e. in synchrony 712with the preceding rhythm (Cravo et al., 2013; Henry et al., 2014; Kösem et al., 2018; 713Lakatos et al., 2008; Schroeder and Lakatos, 2009). An open question is however, 714whether the alignment of slow neural oscillations towards predicted stimulus onsets 715is contingent on rhythmic entrainment to the exogenous stimulation, or whether 716slow oscillations also implement endogenous temporal predictions, for example via 717single-trial phase resets. 718

We found no robust condition differences in oscillatory power or phase using 719classical time-frequency analyses (see Figure 3). The absence of condition differ- 720ences in phase coherence during the foreperiod (Figure 3F) replicates our previous re- 721sults (Herbst and Obleser, 2017) and suggests that enhanced phase coherence (Breska 722and Deouell, 2017; Cravo et al., 2011) might be affected by dedicated or residual 723periodicity in the stimulation (Obleser et al., 2017), and/or overt engagement in tim- 724ing (Stefanics et al., 2010). As a side note, it is important to emphasize the method- 725ological challenge of analysing low frequency oscillations in the pre-target window. 726The probabilistic manipulation of foreperiods as applied here results in differential 727time-locking of target activity between conditions, and our conservative approach of 728removing this activity might have weakened existing pre-target differences through 729back-smearing of the muted activity. Here, a nominal increase in delta phase coher- 730ence was found in the predictive condition (Figure S3), but failed to pass the threshold 731for statistical significance, suggesting that a phase coherence effect is not fully ab- 732sent in non-rhythmic temporal predictions, but not strong enough to be measured 733with the available techniques. Thus, the representation of temporal predictions by 734enhanced phase coherence – or at least our ability to measure it in human EEG – is 735likely contingent on rhythmic stimulation. 736

Crucially, we found that the absolute phase angle of the delta oscillation in 737auditory areas shortly after the temporal cue predicted behavioural sensitivity in 738response to the later-occurring target tone (see Figure 4C). The effect was observed 739for data spatially filtered with a topography relevant for auditory stimulus processing 740(from the N1), suggesting auditory cortex as the most likely generator. Furthermore, 741the effect was specific for the delta band (1–3 Hz) with the highest sensitivity occurring 742at phase angles closest to the trough of the delta oscillation (±π) at the cue and about 7431.4 s post-cue (average period of 0.5 s). Albeit interpreting the absolute phase angle 744from EEG data demands caution, this corroborates the idea that the trough of the 745delta oscillation is a particularly beneficial state for auditory perception (Henry et al., 7462016; Lakatos et al., 2013). Theoretically, the proposed mechanism should surface as 747a relationship between delta phase and behavior throughout the whole foreperiod 748interval, but here we only observed it in the post-cue and pre-target time intervals. It 749is conceivable that the discontinuity of the effect throughout the foreperiod results 750from the EEG signal reflecting summed activity from large populations of neurons: 751other neural processes might overlay the maintenance of delta phase throughout the 752foreperiod, which surfaces only during the initiation of the prediction by the temporal 753cue, and the anticipation of the target, which are the most relevant time points for the 754proposed mechanism. 755
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This relationship between delta phase and behavioural sensitivity held across 756all trials, regardless of their experimental condition. However, a follow-up analysis 757per condition found this relationship between delta phase angle in the post-cue 758time window and behavioural sensitivity to occur only in the predictive condition 759(Figure 4F, upper panel). To test whether the relationship between delta phase and 760behavioural sensitivity differed statistically between conditions, we computed the 761three-way interaction between pitch, delta phase angle, and condition (4F, lower 762panel), which was significant only during the pre-target time window. Possibly, low 763statistical power for this particular analysis prevented us from confirming the condition 764difference in the post-cue time window. This finding thus suggests that delta phase in 765the post-cue time window affects behavioural sensitivity in both conditions, while the 766effect found in the pre-target time window is specific to the predictive condition only. 767

This per se is not proof of a causal chain from temporal predictability via op- 768timized phase angle of delta oscillations to increased auditory sensitivity. While not 769state of the art in neuroscience, our analysis did fail to establish hard statistical evi- 770dence for such a mediation effect. Possibly, different steps necessary to accommodate 771the complexity of our data in the model (dealing with the circular measure of phase 772angle and assessing an interaction effect as a measure of behavioural sensitivity), 773and the small proportion of variance explained by the experimental manipulation (a 774common problem in cognitive neuroscience) might have prevented us from observing 775a mediation effect (but see Benwell et al., 2017, for a successful example). 776

An important question is to what respect the observed phase effect reflects truly 777oscillatory activity, rather than a modulation of the evoked response to the standard or 778target tones. Admittedly, temporal smearing occurs due to the long analysis windows 779needed to capture slow oscillations. Importantly, the contingency between delta phase 780angle and auditory sensitivity re-occurs in the pre-target time window at around 1.4 s 781and does not rise monotonically into the post-target window. Therefore, we deem it 782unlikely this effect resulted from back-smearing of target-evoked activity. 783

Furthermore, the observed phase effect is specific to the frequency range identi- 784fied by previous studies, rather than resulting from broad-band activity – as one would 785have expected from a purely evoked effect. We further showed that the N1 amplitude 786itself does not show the critical relationship with behavioural sensitivity, although 787the two measures correlate, arguing for a more specific role of delta oscillations in 788temporal prediction. In fact, the ERP might at least partially result from a reset of 789ongoing neural dynamics by the onset of a stimulus (Makeig et al., 2002). 790

The effect is strongest in the 1–3 Hz range, and not at the frequencies that would 791reflect the stimulation (0.57 Hz for the intermediate foreperiod of 1.75 s), which is in 792line with a study that showed selective entrainment at 1.33 Hz despite stimulation 793at 0.67 Hz (Gomez-Ramirez et al., 2011). These findings align with the assumption 794that auditory processing fluctuates with the phase of endogenous delta oscillations in 795the absence of evoked activity (Henry et al., 2016; Kayser, 2019; Kayser et al., 2015; 796Stefanics et al., 2010). Not least, additional spectral analyses suggest some oscillatory 797activity in the delta band after subtracting the 1/f spectrum, which is not explained by 798the ERP (see Figure 5 and S5 for comparison of the spectra). 799

Taken together, these findings speak for a dedicated mechanism that imple- 800ments temporal predictability in the auditory domain via a phase shift of auditory- 801cortical delta oscillations. While this study was not designed to directly test assump- 802tions derived from dynamic attending theory (Jones, 1976; Large and Jones, 1999), but 803rather to assess the endogenous implementation of temporal predictions through a 804
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neural phase code, our findings are consistent with a dynamic adjustment of atten- 805tional windows to events in time. 806

We acknowledge that as an alternative explanation to an oscillatory effect, it is 807conceivable that the activity we observe reflects the extraction of temporal predictions 808from the temporal cue, but that another process is responsible for maintaining this 809prediction throughout the foreperiod interval to alert the system when it it is time to 810expect the target stimulus. For instance, this could be achieved via top-down projec- 811tions from auditory areas towards thalamic and thalamostriatal pathways described 812as crucial for auditory timing (Barczak et al., 2018; Ponvert and Jaramillo, 2018), con- 813verging with an instrumental role of the striatum in explicit timing (Mello et al., 2015). 814Future research is needed to assess sub-cortical circuits. 815

In sum, our findings do underline the relevance and specificity of delta oscil- 816lations for an endogenous representation of temporal predictions. The adjustment 817of phase angles at the cue can be seen as the initiation of a timing process, which 818prepares the system to be in a beneficial state at an anticipated time point, resulting 819in an optimized delta phase angle prior to target onset. 820

Conclusions 821

Human listeners do use strictly implicit temporal contingencies to perform a sensory 822task for which timing is not an explicit requirement. Here, we assessed how temporal 823predictions are implemented in neural dynamics by combining psychophysics and EEG 824data. We found endogenous temporal predictions for audition to be reflected in the 825phase of delta oscillations, likely via an optimized phase reset of delta oscillations in 826auditory areas evoked by a temporal cue. These results point towards an instrumental 827role of delta oscillations in initiating temporal predictions, even in the absence of an 828entraining rhythm. 829
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