N
N

N

HAL

open science

Exhaustive single bit fault analysis. A use case against
Mbedtls and OpenSSL’s protection on ARM and Intel

CpPU
Sébastien Carré, Matthieu Desjardins, Adrien Facon, Sylvain Guilley

» To cite this version:

Sébastien Carré, Matthieu Desjardins, Adrien Facon, Sylvain Guilley.
fault analysis. A use case against Mbedtls and OpenSSL’s protection on ARM and Intel
Embedded Hardware Design , 2019, 71, pp.102860 -.
10.1016/j.micpro.2019.102860 . hal-03487204

CPU. Microprocessors and Microsystems:

HAL Id: hal-03487204
https://hal.science/hal-03487204v1
Submitted on 20 Jul 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Exhaustive single bit

https://hal.science/hal-03487204v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Version of Record: https://www.sciencedirect.com/science/article/pii/S0141933118305143
Manuscript_af0aeSeecfda7608a400f65d82488a2b

Exhaustive single bit fault analysis. A use case
against Mbedtls and OpenSSL’s Protection on
ARM and Intel CPU

Carre Sebastien®, Sylvain Guilley®, Adrien Facon®

¢ Telecom Paristech, 75013 Paris, France
® ens, France

Abstract. Faults in software implementations target both data and in-
structions at different locations. Bellcore attack is a well-known fault at-
tack that is able to break CRT-RSA. In response, cryptographic libraries
such as OpenSSL are designed with protection. In this paper, new faults
locations are shown on OpenSSL implementation of the CRT-RSA sig-
nature running on Intel and ARM processors. Among those faults, one
restores the Bellcore attack on the OpenSSL library despite a protection
and another is a complete new fault that exploits the OpenSSL pro-
tection to get RSA private key. Quite surprisingly, one of the exhibited
faults is, ironically enough, made possible because of the existence of
such protection. Mbedtls library is also analysed in this paper. A way to
find all exploitable faults on monobit flip fault model is also detailed.

1 Introduction

Fault attacks against cryptographic implementations consist in triggering anoma-
lies during the execution of a program in order to retrieve sensitive data such
as cryptographic keys. Dan Boneh et al. [6] demonstrated the feasibility of such
attack on RSA signature that use the Chinese Remainder Theorem (CRT'). They
have shown that faulting a computation of the signature modulo p or ¢ allows an
attacker to retrieve the RSA private key. This attack, known as Bellcore attack,
is not possible if a fault occurs on both computations of signatures modulo ¢
and modulo p. Christian Aumller et al. [2] have shown that the fault can also
occur after the signatures modulo p or ¢ are computed, namely when they are
used in the recombination stage.

1.1 Contributions

This paper investigates OpenSSL and Mbedtls reliability against mono-bit faults.
This paper first investigates it in the rowhammer attack context, where the fault
model is to flip bits from 1 to 0, on Intel processors. This is then extends to 0 to 1
fault model. The analysis is also extended to ARM processors. The cryptography
operation that this paper targets is RSA signature performed with both padding
and message blinding.

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0141933118305143
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0141933118305143

Our fault research method consists in an exhaustive analysis of code muta-
tion, that is a very low-level methodology which does not require the attacker
to analyze the code. This simple methodology revealed powerful, since two new
faults location was found on OpenSSL compiled for Intel processors and more
than ten new faults location on OpenSSL compiled for ARM processors that lead
to retrieve the RSA private key by modifying only one instruction per fault.

The first fault on OpenSSL consists in an offset modification coded in a
memory read instruction. This fault spreads to multiple locations of CRT-RSA
algorithm. More specially both signatures modulo p and modulo ¢ as well as
Garner’s CRT recombination [12] are faulted. In those conditions, the Bellcore
attack should not work. However, the fault still allows to recover the private
RSA key. Interestingly, that is made possible thanks to the OpenSSL protection
against fault attacks on CRT. This is a paradoxical situation where a defensive
feature is jeopardized to become an attack vector. This first fault consists in
modifying an offset in a read memory instruction which results in passing an
incorrect argument to a given function.

The second fault on OpenSSL is a way to restore the Bellcore attack despite
the OpenSSL protection against it. This fault is performed on Garner’s CRT
recombination. It mainly consists in a confusion between the addresses of two
registers which causes data substitution, also known as splicing. This allows to
exploit the processor calling convention to permanently modify the function so
that it takes different arguments. During this attack, the protection is simply
skipped, hence it is ineffective to detect the injected fault.

None of those faults directly modify the value of a register, and despite
one could achieve those faults by this way, such scenario requires to know the
addresses from the victim, which is an impractical assumption when ASLR pro-
tection is activated. The way the faults are performed is not affected by such
protection.

The two last faults are possible on both Intel and ARM processors. However,
more faults was found on OpenSSL compiled for ARM processors. The faults
can be classified as deterministic faults, that always work independently of the
message that have to be signed, and probabilistic faults that occurs only with
specific inputs. Those specific inputs are finely detailed in this paper and the
probability for which those faults works is drift. A probabilistic fault is then
more difficult to detect since it behaves like a random functional error.

Namely, six deterministic exploitable faults and five probabilistic exploitable
faults were found on OpenSSL compiled for ARM. On Intel, all faults are deter-
ministic.

This paper is the extension of Carré et al. paper [9] that only focuses on Intel
processor. From [9], our paper is extended as follows. Firstly, ARM processors
is take into account in the addition of Intel processors. Secondly, Mbedtls is
analysed with the same methodology used by Carré et al. [9]. Thirdly, the number
of exploitable faults is extended and probabilistic faults are introduced. Fourthly,
the fault model that flips a 1 to a 0 is extended to a fault model that also flips
0 to 1. Finally, practical considerations about Rowhammer attack is discussed.

1.2 Outline

This paper is organized as follows. Section 2 gives prerequisites to understand
how the faults that are described in this paper work, including x86_64 and ARM
calling convention. Section 3 gives background about RSA signatures, including
CRT-RSA and its implementation in the OpenSSL cryptographic library. More
specifically, this section gives the details of the register usage while calling the two
functions responsible for the fault attacks that are described in this paper. The
Bellcore attack is also reminded in this section. Section 4 gives the methodology
used in this paper to find the faults before explaining how they lead to a key
recovery by Bellcore attack for Intel processors in Sec. 5 and for ARM processors
in Sec. 6. Finally, the section 7 discusses several generalizations and mitigations
of the described attacks. The conclusion is then given in section 8.

2 Prerequisite

2.1 Fault attacks

Faults can be injected using multiple techniques such as laser irradiation, pen-
etration by an electromagnetic pulse, or by tampering with the clock of the
targeted electronic device. Most of these techniques require a specific equip-
ment and cannot be perpetrated remotely. On an electronic device, several fault
locations are possible. For example, Ingrid Verbauwhede et al. [22] give a classi-
fication model of fault attacks in which registers can be used as a place to fault.
Hagai Bar-El et al. [3] also point out registers as a location to make a fault.

Other injections like the rowhammer attack do not rely on sophisticated
equipment. This attack is a Dynamic Random Access Memory (DRAM) specific
fault injection, introduced by Yoongu Kim et al. [16], that allows an attacker to
directly change the values stored in DRAM. The high density of capacitors in
such memory makes it possible to discharge one of these capacitors by accessing
another one. This allows an attacker to flip a bit from 1 to 0 and thereby gives
the opportunity to modify either data or instructions of a computer software
despite protections such as W @ X.

Practical exploitation scenarios have been accounted by Mark Seaborn et
al. [21] who show a privilege escalation by modifying one bit in a page table
using native code.

Despite the rowhammer attack originally had strong constraints such as the
need to know physical addresses and its mapping with physical memory struc-
ture, various techniques were developed to improve the feasibility of this attack.
For example Sarani Bhattacharya and Debdeep Mukhopadhyay [4] use timing
analysis on the DRAM row buffer to find an interesting location to make a fault.

Daniel Gruss et al. [15] show the possibility to use this attack remotely, using
high precision timers available on JavaScript. Pierre Carru [10] shows that even in
a trusted execution environment using TrustZone, a cryptosystem can be broken
by rowhammer. More general faults on cryptographic applications like the one

exposed by Eric Brier et al. [7] on CRT-RSA are also exposed to rowhammer
attack on the public elements of the cryptosystem, such as its modulus.

Our paper reports that a naive bit-reset analysis of a cryptographic library
suffices to find relevant fault locations. However, more sophisticated tools would
greatly help to better identify more numerous weaknesses. For example, Marie-
Laure Potet et al. [20] use symbolic and concolic execution to find exploitable
faults that rely on modifying the control flow of a software. Still in an evaluation
context, formal verification can be used. For instance Lucien Goubet et al. [14]
have submitted a tool that helps to formally evaluate fault attack countermea-
sures thanks to an SMT solver. Thomas Given-Wilson et al. [13] developed a
formal way to find fault injection vulnerabilities using a model.

Despite our results are not specific to the rowhammer attack and can be
generalized to other means of fault injection, this paper first restrict to the
context of rowhammer faults. More specifically, this paper first focus on finding
mono-bit faults that carry out a bit flip from 1 to 0 in the .text section of
the cryptographic library, and then investigate on bit flips from 0 to 1. Indeed,
the code of a shared library can be repetitively accessed in read mode by the
attacker, which creates errors for both the attacker and any victim linked to this
shared code.

2.2 Calling convention

Nowadays processors use multiple registers. Some of these registers can be use
for general purpose, others have specific purpose like containing the pointer of
next instruction to be executed. Some of these registers are given in Table 1
and 2.

Table 1. General purpose registers

Intel x86_64 ARM
rax, rbx, rcx, rdx
rsi, rdi, r8 to ri1b

RO to R10

Table 2. Specific purpose registers

Intel x86_64|ARM64 Description
rip PC |instruction pointer
eflags CPSR flags
rsp SP Stack pointer
rbp FP Stack base
- LR Return address

Moreover, some of those registers are mobilized to pass parameters upon a
function call. The purpose of those registers is explained in Tab. 3.

Table 3. Calling convention

x86_64| ARMG64 Purpose

rax RO return integer value
rdi R1 first integer parameter
rsi R2 second integer parameter
rdx R3 third integer parameter
rcx R4 fourth integer parameter
r8 R5 fifth integer parameter
r9 R6 sixth integer parameter

2.3 Instruction structure

In order to be able to understand the fault that are described in this paper, the
structure of some instructions has to be formulate. For Intel processor, only a
mov instruction is interesting. This instruction have the following structure

mov OFF (%REG_BASE) , %REG_DEST,

in which %REG_DEST is the register where the read data will be stored to and where
OFF (%REG_BASE) is the AT&T syntax that indicates that the data to be read is
located at address %REG_BASE+OFF, where REG_BASE is a register that contains
a memory address and OFF is an offset value. For example a local variable of a
function can be read related to the stack frame register rbp as follows:

mov -0x14(%rbp) ,%rax.

On ARM processor, this paper focus on five classes of instructions that are
briefly describe here.

Load and store instructions
For our purpose, those instructions have the following format:

op{cond} Rt, [Rn, #off]

where

— op is either STR for a store to memory instruction, or LDR for a load from
memory instruction.

— cond is an optional condition code such as vs that performs the operation
only if the overflow flag is set.

— Rt is a register used to load or store the wanted data.

— Rn contains a base memory address on which the processor adds the offset
#off to locate the address to store or load.

For example, some load and store instructions that are used in this document
are:

STR RO, [FP, #-24]
LDR RO, [FP, #-24]
LDRVS R1, [FP, #-28]

Stack instructions
Stack instructions are structured as follows:

op {list}
where

— op is either PUSH or POP to write to or read from the stack respectively.
— l4st is the list of registers to push on the stack or to retrieve data from it.

For example, the following instruction push and pop registers on the stack.
PUSH {R4, R11, LR}
POP {R11,PC}

Test instruction
The test instruction performs a logical AND operation, discards the result and
set the needed flags. The format of this instruction is

TST Rn, Operand2

where

— Rn is the register that contains the first operand.
— Operand? is a flexible operand, meaning it can be either a constant or a
register with optional shift.

For example the following instruction does a test on the values contained in the
register FP and the register IP shifted to the left by the value contained in the
register RO.

TST FP, IP, LSL RO

Branch instruction
Multiple branch instructions can be used for ARM processors. For our purposes,
this paper is only interested by the BL (branch with link) instruction that jump
to a specific address and stores the return address in register RL. This instruction
has the following structure:

BL Operand

where:

— Operand is the relative address, from the current instruction address, to
jump.

For example, the following instruction jumps to relative address 0x9£788.

BL 9£788

Arithmetic instructions
Arithmetic instructions have the following structure.

op Rd, Rn, Operand2
where

— op is an arithmetic operation. For our purposes, this paper only limits to
ADD or SUB operations that perform addition and subtraction respectively.

— Rd register contains the result of the operation.

— Rn and Operand?2 are the two operands of the operation. Operand2 can be a
register or a value.

The following instructions show two examples of addition and subtraction oper-
ations:

add ri11, sp, #8
sub sp, rill, #4

3 RSA

RSA is an asymmetric cryptosystem that can be used to sign or encrypt mes-
sages. In this paper, only RSA signature is considered. This cryptosystem uses
a private key (p,q,d,dp,dq,14) to sign a message M and a public key (e,n) to
verify this signature S. Algorithm 1 gives the details about this key generation.

Output: Public key (e, n), private key (p, q,d,dp,dq,iq)

=

(A.1) Choose two prime numbers p and ¢ large enough and not too close one
from each other (see PKCS#1).

(A.2) Compute n = pq.

(A.3) Compute ¢(n) = (p —1)(q — 1).

(A.4) Choose e such as ged(e, ¢(n)) = 1.

(A.5) Compute d = e~ mod ¢(n).

(A.6) Compute (dp,dy,74) = (d mod (p —1),d mod (g — 1),iq; = ¢~ mod p).
return public key (e,n) and private key (p, q,d, dp,dq,iq).

b =N VU V]

Algorithm 1: RSA key generation.

Knowing at least one of the prime number p or ¢, an attacker can recover
the whole private key.

The signature of a message M is performed by computing the modular expo-
nentiation S = M? mod n whereas the verification of a signature is performed
by computing the modular exponentiation S¢ mod n and by checking whether
the result matches the message M. Note that a hash of the message M is often
used instead of the message itself.

Notations: For reader convenience, the notations used in this paper are
gather here-after:

— n: RSA modulus as described in Alg. 1.

— dp, dq: The secret exponents modulo p — 1 and g — 1 as described in Alg. 1.

— M: The message to be signed.

— M, M,: The messages to be signed reduced modulo p and ¢ respectively as
described in Alg. 2.

— 8 = M? mod n: Signature of the message M.

— Sp, Sq: Signatures modulo p and ¢ respectively as described in Alg. 2.

— Se¢: S¢ mod n. Without fault, this is equal to M.

3.1 CRT-RSA

The modular exponentiation S = M?modn to sign a message M can be
computed using the Chinese Remainder Theorem (CRT) that splits this ex-

ponentiation into two modular exponentiations S, = Mg” mod p and S; =

Mg 7 mod q. The final signature S is then given by the Garner’s recombination
S =5;+q-(ig-(Sp —Sy) mod p). In the rest of the paper the term CRT-RSA is
used to refer an RSA signature with the CRT. The whole algorithm is given in
steps (B.1) to (B.5) in Alg. 2. The steps (B.6) and (B.7) of this algorithm check
whether CRT-RSA signature is correctly computed. If it is not the case, the
signature is computed without CRT, which does not expose p or ¢ to Bellcore
attack. Performing a fault on the conditional branch (B.7) of Alg. 2 is a way
to bypass this protection, but still, two faults are needed (one to corrupt (B.2)
or (B.4), and one to skip (B.7)). In this paper, only single bit fault model is
considered.

3.2 Padding of messages to be signed by RSA

RSA as a simple modular exponentiation, also called RSA textbook, is not secure
enough since if the message to sign is too small, it is possible to retrieve the
original message by computing a root. To avoid this, padding is used. There
exist multiple kinds of padding. The most common ones for signature are PKCS
#1 types 1 and 2. Both are similar and ensure that the length of the message is
large enough. PKCS #1 type 1 is a deterministic padding, whereas PKCS #1
type 2 is probabilistic. Note that a proven probabilistic signature scheme (PSS)
for RSA signature is often recommended.

In an encryption context, PKCS OAEP should be used. This kind of padding
does not only concatenate bytes, but ensures that the padded message looks like
a completely random one.

Input : Message M, private key (p,q,d, dp,dq,1q)
Output: Signature S = M¢ mod n

1 (B.1) Mpszodp.

2 (B.2) Sp = M mod p. /* Signature mod p */
3 (B.3) Mq—Mmodq

4 (BA4) S; = M mod q. /* Signature mod ¢ */
5 (B.5) S S +¢q-(ig- (Sp —Sq) mod p). /* Garner recombination mod m */
6 (B.6) Se = 5° mod n.

7 (B.7) if (Se — M) # 0 then /* verification */
8 L (B.8) S =M% mod n /* RSA textbook */
9 return S.

Algorithm 2: CRT-RSA (B.1~5) with verification (B.6~8).

3.3 Message blinding

The RSA textbook signature is vulnerable to timing side channel attack as de-
scribed by Paul C. Kocher [17]. One way to prevent this attack is to use the blind
signature. For RSA, message blinding consists in replacing M by M - r¢ mod n
where r is a random value. The signature is then performed on the blinded
message as shown in Alg. 3.

Input : Message M, private key (p,q,d, dp,dq,iq)
Output: Signature S = M¢ mod n
1 (C.1) Choose r such that ged(r,n) = 1.
2 (C.2) Blind the message: My = M - r® mod n.
3 (C.3) Sign the blinded message: Sy = Mg mod n.
4 (C.4) Unblind: S = S -~ mod n.

5 return S.

Algorithm 3: RSA on a blinded message.

Note that RSA textbook is vulnerable to RSA blinded attack that makes
possible to decipher a message if same keys are used in both signature and en-
cryption schemes. Due to that attack, most implementations blind a hashed and
padded message instead of the message itself. Moreover, it is highly recommended
not to use the same keys for both signature and encryption schemes.

3.4 Bellcore attack

The Bellcore attack is an CRT-RSA specific fault attack introduced by Dan
Boneh et al. [6]. The authors show that if the computation of S, is corrupted
but S, is not, it is possible to recover the prime number ¢ and subsequently the

entire private key. Indeed, in such condition, one gets a wrong partial signature
S,, and then a wrong signature S’ of the message M. The following is then true:

S’*S:S{DfSp;éOmodp,
S'—8§5=5,-85,=0mod gq.

Thus S’ — S is a multiple of ¢ but is not a multiple a p. As n = pq, the secret
prime ¢ can be computed using the greatest common divisor (GCD):

q=ged(S — S,n). (1)

Bellcore attack with padding and blinding:

The Bellcore attack on CRT-RSA signature (Eqn. (1)) requires both a correct
and a faulty output computation from the same given input to the modular
exponentiation.

If an attacker can directly control the inputs of the modular exponentiation,
the Bellcore attack always works. However, a more likely scenario is the one
where the attacker simply provides a message to a signing oracle. In this con-
dition, if the padding scheme is a non deterministic one, then even with two
identical messages, the input of the modular exponentiation will be different
and the Bellcore attack does not work except if the attacker finds a way to ei-
ther disable or make the padding deterministic. This may be performed with
another fault. OpenSSL nevertheless uses the PKCS #1 type 1 padding that is
deterministic.

Moreover, message blinding does not preclude Bellcore attack from working.
The Bellcore attack requires to have two signatures Sy, So of the same message
M, namely a correct one (S1) and a faulted one (say faulted signature S5 of
S3). The correct signature is computed with blinding message Mr§ to get the
signature S; = (Mr§)% " mod n = M¢ mod n. Clearly, the blinding factor r;
cancels out in the final signature S7. The second signature is a faulted version
Sy of signature Sy = (Mr§)%r; ' mod n, meaning that Sj # So and, since Sy =
M?mod n = S it results in S5 # S;. Thus, if the fault only occurs on the
computation of the signature modulo p, the following is true:

S5 = S1 mod g, S5 — 81 =0mod q,
Sy # 51 mod p. Sy — 51 # 0 mod p.

Thus, even with blinding, ¢ = ged (S5 — S1,n). Note that this is true for any rq
and r5. For convenience, and since So = S7, S design both the correct signature
and S’ the faulted one.

3.5 OpenSSL implementation of RSA signature

The version 1.1.0f of OpenSSL is considered in this paper. At the time of sub-
mission of this paper, the latest stable version of OpenSSL is 1.1.0h. This version

has no difference with version 1.1.0f about the way an RSA signature is gener-
ated. OpenSSL is compiled with default configuration using the OpenSSL script
./config shared -d. By default the code is compiled with -03 gcc optimiza-
tion class. Note that some of the described faults can disappear while others can
appear whether one changes option of the compilation.

number representation in OpenSSL. OpenSSL represents a big number
with the following C structure.

struct bignum_st {
BN_ULONG xd;
int top;
int dmax;
int neg;
int flags;

}s

Listing 1.1. Structure that represents numbers in OpenSSL
Here, the important fields of this structure is given for the purposes of this paper.

— d points to a memory location that contains the raw binary form of the
number.

— top contains the size of the number. If it is zero, the number is considered
to be equal to zero.

— neg is used to specify whether the number is negative or not.

Note for ARM processors. Since some OpenSSL variables have the same
names as ARM registers the rest of this paper precises at each time if it deals
with variables or registers. Moreover, registers are written with uppercase and
variables with lowercase.

RSA signature. The main function that computes RSA signature in OpenSSL
is rsa_ossl_private_encrypt. It is used to pad the message and blind the
padded message before performing the modular exponentiation by calling rsa_ossl_mod_exp.
This function implements Alg. 2. It computes the modular exponentiation us-
ing CRT and, as a protection against the Bellcore attack, it checks whether the
computation is performed correctly. Otherwise, the modular exponentiation is
computed without CRT, as it is resilient to the Bellcore attack.

One of our fault focuses on the function used to reduce the message M modulo
p and g. To do this reduction, rsa_ossl mod_exp calls the function BN_mod.

An other fault focuses on the subtraction operation used both in Garner’s
recombination and in the conditional branch used for the Bellcore fault attack
protection in step (B.7) of Alg. 2. To perform this subtraction,rsa_ossl_mod_exp
call the function BN_sub.

The way the parameters of those functions are retrieved and passed by
rsa_ossl mod_exp is the core of the discovered faults in this paper. The end

of this section explains how those parameters are handled. For simplicity, the
notation used are the same defined in section 3 instead of OpenSSL variable
names.

BN.mod. This function takes 4 arguments:

— The first one is the variable where the reduction result will be stored.

— The second one is the variable to be reduced. In our case it is the message
M to sign.

The third one is the modulus. In the case of CRT-RSA it is either p or q.
— The fourth one is a context that is out of the scope of this paper.

BN_mod is actually a macro to BN_div that computes an Euclidean division. This
latter function takes five arguments:

— The first one is the variable where the quotient is stored. In our case, it is
not used.

— The second one is the variable where the reduction result takes place.

— The third one is the variable to be reduced. In our case it is the message M
to sign.

— The fourth one is the modulus. In our case it is either p or q.

— The fifth one is a context (ctx irrelevant for this paper).

Hence the reduction of M modulo p is computed using
BN.mod(M,, M, p, ctx),
that is actually
BN div(NULL, M,, M, p, ctx).

A symmetric operation is performed to reduce M modulo gq.

The function rsa_ ossl mod exp passes parameters to the function BN div
by using x86_64 or ARM calling conventions explained in Sec. 2.2. For x86_64
processor, this is performed by the assembly instruction sequence illustrated in
Fig. 1. Similar instructions are used for ARM processor.

BN_sub. This function takes 3 arguments:

— The first one is the result of the subtraction.
— The second one is the variable to subtract from.
— The third one is the variable to subtract to.

BN_sub is called twice by the function rsa ossl mod exp. The first one is
called for the Garner’s recombination ((B.5) in Alg. 2) when computing S, — S,
by doing BN_sub(S,,5,,S5,). The second one is performed to check whether

mov 0x40 (%rax) ,%rcx ; Getting variable g stored at address 0x40 (%rax).
mov -0x80(%rbp) ,%rsi ; Getting variable ctx stored at address -0x80 (%rbp) into rsi register temporally.
mov -0x28(%rbp) ,%rdx ; Getting variable M stored at address -0x28(%rbp) into rdx register
; used as the third argument of the function.
mov -0x50 (%rbp) ,%rax ; Getting variable M, stored at address -0x50(%rbp) into rax register temporally.

mov %rsi,%hr8 ; Copying value of register rsi into r8 register used as a fifth argument of
; the function.

mov Y%rax,hrsi ; Copying value of register rax into rsi register used as a second argument of
; the function.

mov $0x0, %rdi ; Setting register rdi, used as a first argument of the function, to 0 .

callq 88790 <BN_div@plt> ; Calling function BN_div.

Note: The message M is actually represented by two variables stored at -0x28 (%rbp) and -0x70(%rbp).
They only differ by a flag (related to constant time operations) that is irrelevant in this paper. Since
those two variables contain a pointer to the same number, they can be considered as identical.

Fig. 1. Passing parameters to BN_div to compute M, = M mod q.

mov -0x48 (%rbp) ,%rdx ; Getting variable S; stored in -0x48 (%rbp) into rdx register used as
; the third argument of the function.

mov -0x68 (%rbp) ,%rcx ; Getting variable S, stored in -0x68(%rbp) into rcx register temporally.

mov -0x68 (%rbp) ,%rax ; Getting variable S, stored in -0x68 (%rbp) into rax register temporally.

mov %hrex,hrsi ; Copying value of register rcx into rsi register used as the second argument of
; the function.

mov Y%rax,%hrdi ; Copying value of register rax into rdi register used as the first argument of

; the function.
callg 89620 <BN_sub@plt> ; Calling function BN_sub.

Fig. 2. Passing parameters to BN_sub in the context of (B.5) in Alg. 2.

CRT-RSA is computed correctly by computing S.—M ((B.7) in Alg. 2) and check
whether the result is 0. The subtraction is computed by calling BN_sub (S, , S, , M).

Figure 2 gives the assembly instruction sequence, for Intel x86_64 processors,
used for the first call to BN_sub. The second call is performed in the same way.
A similar code is used for ARM processors.

In order to retrieve those parameters the function BN_sub reads the content
of registers rdi, rsi, rdx for Intel processors(RO, R1 and R2 for ARM processors)
and stores them in its stack frame that contains function local variables. This is
performed by the following three assembly instructions for Intel processors

mov Y%rdi,-0x28(%rbp),
mov %rsi,-0x30(%rbp),
mov %rdx,-0x38(%rbp),

and the following three for ARM processors:

STR RO, [FP, #-24]
STR R1, [FP, #-28]
STR R2, [FP, #-32]

Internally BN_sub checks if a < b by using BN_ucmp function. If it is the case,
it actually computes r = b — a and set a negative flag to the result variable r. If
it is not, it computes 7 = a — b and ensures that the negative flag of the result
variable r is not set as explain in the listing 1.2. Note that the two differences
r=b—a and r = a — b are performed using the BN_usub function.

if (BN.ucmp(a, b) < 0) {
if (!BN_usub(r, b, a))
return 0;
r—>neg = 1;
} oelse {
if (!BN_usub(r, a, b))
return 0;
r—>neg = 0;

Listing 1.2. Internal of BN _sub function

4 Faults research automation

Despite this paper aim is not to release a fault analysis tool, this section gives
the methodology used to find the exploitable faults described in the next section.
In this aim, a signature oracle and a control process are required.

On the one hand, the signature oracle process aim is to sign a message with
a faulted OpenSSL cryptographic library.

On the other side, the control process is responsible for creating a fault.
More specifically, the fault consists in flipping a bit from 1 to 0 (or from 0 to 1
depending of the model) in OpenSSL cryptographic library .text section, and
run the signature oracle process using fork() and execv() POSIX functions
available on GNU Linux Operating System. The fault is simulated by modifying
directly the bits in the OpenSSL file on the hard disk. This operation is repeated
for each bit equal to 1 in the OpenSSL shared library. Since there are 16398352
bits equals to 1 (or 0 depending of the model) in the version of OpenSSL that
is studied in this paper, this exhaustive methodology can take a lot of time. To
reduce this time, the analysis is directly performed in memory in order to prevent
disk accesses and disable any core dump generated by the operating system.

One other aim of the control process is to handle errors raised by the signing
oracle process due to a fault. Indeed, some faults will result in a crash of the sig-
nature oracle padding process that can be due to multiple reasons. For example
the fault can transform an instruction into a non-existing one that results in an
illegal instruction signal.

Some faults can also result in an infinite loop in the signature oracle pro-
cess. To prevent it, the control process implements a watchdog that forces the
signature oracle process to terminate after a certain amount of time.

Finally, if the signature oracle process terminates without error, the control
process checks whether the fault is exploitable to recover a cryptographic key.
In our case, this check is performed by computing a GCD, as per Eqn. (1).

The 2D color map represented in Fig. 3 gives a view of faults results for
OpenSSL compiled on Intel processors. This figure has to be read from left to
right and from top to bottom. Each pixel of this figure represents one bit of the
library that, if this bit is equal to 1, has been flipped to 0. The bits equal to
0 simply remain unchanged. The white color corresponds to bit flips for which
ged(S” — S,n) € {p,q}. This matches the two faults. The size of those points
in the figure was intentionally increased for a better visualization. The black
color represents the faults that have no effect during the computation of an RSA
signature. Other colors are related to different errors or watchdog timeout. A
similar method is used for the 0 to 1 model where the bits equal to 0 are flipped.

5 Fault on CRT-RSA implementation of OpenSSL
compiled on Intel

5.1 Fault in BN_mod call

In this section details are given on the first fault that both restore the Bellcore at-
tack and break the OpenSSL protection intended to thwart it. Interestingly, this
fault works because of this protection at lines (B.7) and (B.8) of Alg. 2. This fault
occurs at bit offset 3866 from the beginning of the function rsa_ossl mod_exp
that calls BN_mod.

As illustrated by the red color and with the lightning symbol in step (D.1) in
Alg. 4, the fault occurs during storing the result of the reduction of the message

500

1000

fl

\ '.
BN_sub BN_div

1500

2000

2500

Least Significant bit

3000

3500

4000
0 1000 2000 3000 4000 5000
Most Significant bit

Fig. 3. Cartography of faults. The white color represents the locations of the exploitable
faults. Other colors are a classification of errors including unexpected exit values, Linux
signals SIGILL, SIGSEGV and watchdog timeout.

M modulo ¢ in the variable M instead of M,. This induces a faulted M’ =
M mod q and a propagation of the fault on other variables. This is represented
in orange in Alg. 4. Indeed, since M, does not contain the result of the reduction,
one can consider this variable to be faulted with M; # M mod ¢. This in turn
leads to a fault on S, denoted S;. The reduction of the message modulo p in
step (D.3) in Alg. 4 is also badly computed because the reduction is performed
from the faulted message M’ instead of the good one. From this last reduction
it results an incorrect signature S;, and leads to an incorrect final signature S’.
Since S; # S, and S}, # S, are both incorrect, if the algorithm would return
directly after the step (D.6) on the Alg. 4, just before the verification, the Bellcore
attack would not work.

However, OpenSSL verifies whether the CRT-RSA is computed correctly by
checking whether (5S¢ — M) = 0 that becomes (5’ — M') = 0 with the fault.

Due to this last fault, the following is true:

§'¢ = (S;" mod q) = (M, mod q).
M’ = M mod q.

Moreover, one can remark the following implication
S —M' =0 = M, — (M mod q) = 0.
This last equation can be written

M; — (M mod q) #0 = S"* — M’ #0.

Since M; # M mod g, the condition S*®— M in step (D.7) in Alg. 4 is always
true and OpenSSL then computes M’® mod n. Since M’ = M mod g,

S’ — S = ((M mod ¢)% mod n) — (M mod n),
S’ — S =0mod q.

It results that ¢ = ged(S” — S, n).

Note that this is possible since M # (M mod ¢q) mod p. Indeed, if this was
not true, S’ — S would also be equal to 0 modulo p and the computation of the
greater common divisor would not yield either ¢ or p.

Input : Message M, key (p,q,d,dp,dq,1q)
Output: Signature M? mod n

1 (D.1) £ My M’ = M mod q [M, is replaced by M]
2 [My # M mod q]
3 (D.2) 5, = M.* mod q
4 (D.3) = M’ mod p
5 (D.4) 5, = My* mod g
6 (D5) 5" =8, +q- (ig- (S, = S) mod p)
7 (D.6) 5. =5"° mod n
8 (D?) if Sé - M % 0/True condition] then
9 (D.8) 5" = M' mod n
10 [$" =S = (M mod ¢)* mod n — M? mod n]
11 [S" —S =0 mod]
12 [g = ged(S’ — S, n), as per Eqn. (1)]

13 return

Algorithm 4: CRT-RSA (D.1~5) with verification (D.6~8). Red color and
lightning indicate the location of the fault. The orange color indicates the
variables that are affected by the fault. In blue, some lines are commented.

As explained in Sec. 3.5 the modular reduction is computed using the BN_div
function. Without the fault, this function is called by

BN_div(NULL,M,,M ,q,ctx).
The fault then changes this last call by
BN _div(NULL,M ,M ,q,ctx).

According to Fig. 1, the second parameter is passed from rsa ossl mod_exp
to BN_div by using the following assembly instructions.

mov -0x50(%xrbp) ,%rax,

mov %rax,jrsi.

Note that -0x50(%rbp) and -0x70(%rbp) are respectively the address of the
variable M, and M. Thus the fault changes the previous assembly instructions
to

mov -0x70(%rbp) ,%rax,

mov %rax,jrsi.

In a C level, since the variable that contains the message M is located at
offset -0x70 from the address pointed by %rbp register and since M, is located at
offset -0x50 from the address pointed by this same register, the faulted replaced
My = M mod ¢ by M = M mod q. All then behave as the message to sign is
M mod q instead of M pointed by %rbp register that makes the attacks work
as described above.

5.2 Fault in BN_sub function

In this section the second fault is explained. This fault is also used to both restore
the Bellcore attack and break the OpenSSL protection against this attack. This
fault occurs at bit offset 147 from the beginning of the function BN_sub.

As illustrated in step (E.5) and (E.7) of Alg. 5, the fault takes place at the
two locations where a subtraction operation occurs.

Input : Message M, key (p,q,d,dp,dq,iq)
Output: Signature M? mod n

1 (E.1) My = M mod ¢

2 (BE.2) S; = M mod q

3 (E.3) Mp = M mod p

4 (E4) S, = M{” mod q

5 (E5) 75" =844q- (iq- (Sp — SpSg) mod p)
6 [S" = 5]

7 (E.6) 5. =5° modn

8 (E.7) if f(Sé - SLM) # 0[Always False] then
9 L (E8) S = M9 mod n[Never reached]

10 return

11 [S' =S =5, —5]

12 (S’ — S =0 mod ¢]

13 [¢ = gcd(S’ — S, n), as per Eqn. (1)]

Algorithm 5: CRT-RSA (E.1 to E.5) with verification (E.6 and E.7).Red color
and lightning indicate the location of the fault. The orange color indicates the
variables that are affected by the fault. In blue, some lines are commented.

More specifically, the fault works by transforming this operation to the null
function(i.e., the function always returning 0) by replacing the second operand
of the subtraction by the first one.

The first call of the subtraction operation is in the Garner’s recombination
in which the subtraction S, — S, is faulted to S, — S, = 0 that leads to a faulted
signature S’ = S;. The attacker can therefore compute ¢ = ged(S’ — S, n).

The second one takes place in the OpenSSL protection against CRT-RSA
fault attacks. Indeed, OpenSSL checks whether S¢ — M # 0 in order to verify if
the CRT-RSA is badly computed. Due to the fault, this subtraction is replaced
by S’¢ — S’¢ which is always equal to zero. By this way, OpenSSL fails to detect
the fault.

As explained in Sec. 3.5, OpenSSL uses the BN_sub function in order to make
the subtraction operation. For the first call, the fault consists in modifying the
function

BN,sub(Sp > Sp s Sq))

to

BN_sub(S,,S,,5p).

As described in 3.5, the third argument of BN_sub is retrieved by this function
by getting the value of rdx register. Moreover, looking at Fig 2, one can note
that the register rsi used for passing the second parameter to BN_sub has the
same value than the register rax.

In assembly level the fault is then performed by modifying a register in the
instruction that read the third argument:

mov %rdx,-0x38(%rbp),

to

mov %rax,-0x38(%rbp).

Note that one can directly modify the register rdx to rsi. However, this
requires more than one bit flip which is out of topic of this paper.

Since the fault is performed inside the BN_sub function, and not in the caller
function, the fault also applies in the same way to the subtraction that takes
place in the OpenSSL protection (lines (E.7) and (E.8) of Alg. 5).

5.3 Overview of complete attack
A complete attack scenario is described below:

— Step 1: Attack preparation phase. The adversary characterizes which
bits lead to exploitable effects if they are reset. This identification phase (in
Common Criteria wording) is the main contribution of this paper.

— Step 2: Correct signatures collection. The attacker collects signatures
for the RSA keys he intends to break next, in step 5.

— Step 3: RowHammer. The attacker installs its rowhammer code and runs
it on the addresses identifies in step 1. The code is in assembly language;
pseudo-code for this hammering is given in Alg. 6. Notice that this step is
probabilistic, since it may fail. In this case, OpenSSL server will malfunction
and the system administrator will have to restart it, and the attacker restarts
step 3, until success (as instructions are 4-bytes wide, few attempts are
needed).

— Step 4: Attack. If Alg. 6 returns success, then the attacker has successfully
installed an APT (Advanced Persistent Threat), that is a permanent fault
in the code (until restart of OpenSSL). Thus the attacker quickly launches
signatures, collects there erroneous results, and executes the GCD attack of
Eqn. (1) using genuine signatures collected at step 2.

Input : Address add where to reset one bit

Input : Genuine code instr at address add at DRAM row r

Input : Intended mutated code malicious_instr at add (see step 1)
Output: Status success or failure of hammering attempt

1 while True do

2 if *add = instr then

3 for 10,000 times do

4 Read DRAM row r-1

5 L Read DRAM row r+1

6 else if *add = malicious_instr then
7 | return success

Algorithm 6: Complete RSA key extraction from OpenSSL.

Note that the rowhammer attack requires cache eviction to force the CPU
to read data in DRAM instead of the cache.

6 Fault on CRT-RSA implementation of OpenSSL
compiled for ARM processors

The original aim of our work was to see whether OpenSSL cryptographic library
was correctly protected against fault in a monobit erase model. For that, Intel
processors were first investigated. Even whether the exploitable faults described
in the previous section can be explained in the C language and can then be
performed on any processors, the exploitability of these fault on our monobit
erase model highly depend on assembly instructions. On ARM processor, one
can always do the same fault but not not necessary by flipping only one bit.

The same research is done on ARM processor to check whether new ex-
ploitable faults can be found in our monobit erase model.

More specifically, Raspberry Pi 3 with Raspbian operating system were used
for its ARM cortex-A53 processor. Interestingly, more faults on ARM processors
were found compared to Intel processor. Here, those faults are described.

6.1 Fault in BN_sub call

One deterministic fault. From our analysis on ARM processors, the same
fault that the one found at subsection 5.2 was found. Since the instruction are
different, the only difference from 5.2 is that the fault modify

STR R2, [FP, #-32] (instead of mov %rdx,-0x38(%rbp))

to

STR RO, [FP, #-32] (instead of mov %rax,-0x38(%rbp))

Five probabilistic faults. In this section five probabilistic faults are described.
At first, four similar faults are explained
Four probabilistic faults that affect a register

The BN_sub function computes the difference » = b — a by first computing the
absolute value of it. Thus, according if a < b is true or not, it computes r = b—a
or r = a — b. Indeed, as shown in listing 1.2, the comparison is performed by
using the function BN ucmp(a,b) that lead the register R1 to contain the value
of variable b. Then, according to the listing 1.2, BN_usub is used to compute
r=b—aif a <borr=a—>if not. In the second case, this last function uses
the registers RO, R1 and R2 to pass parameters r, a, b respectively:

LDR R2, [FP, #-32]
LDR R1, [FP, #-28]
LDR RO, [FP, #-24]

The aim of each of the four faults is to change only one bit in the last assembly
instruction LDR RO, [FP, #-24] to one of the following one:

LDRVS R1, [FP, #-28]
— TST FP, IP, LSL RO
STR R1, [FP, #-28]
— LDR RO, [FP, #-28]

All of those instructions keep the register R1 unchanged. Since R1 contains the
variable b because of the BN ucmp function, the fault then transforms the call
BN_usub(r, a, b) to BN_usub(r, b, b) which is equal to 0 and have then the
same effect of the deterministic fault.

Those faults are probabilistic since the fault occurs at the BN_usub function
that performs the subtraction » = a — b where a > b and not at the one that
computes r = b — a.

Lemma 1. Without blinding, the probability that the fault is exploitable is %(1 —
q+1)
2p /°

Proof. Since the BN_sub function is called to compute the difference S, — S in
the Garner’s recombination and the difference S¢ mod N — M in the protection,
the fault works when S, > S, and S° mod N > M.

The probability that each of the probabilistic faults work should be

Pr(success) = Pr(S, > Sq and S mod N > M)
Since the two conditions are independent, it results that:
Pr(success) = Pr(S, > S,) x Pr(S® mod N > M)

Note that Pr(S® mod N > M) = 1 since S° mod N can be viewed as an RSA

encryption and then result in an uniformly random value lower than N. More-
over, Pr(S, > S;) can be computed as following

Pr(S, > Sq) = Pr({Sq =0 and S, > 0}) (2)
+ Pr({S;=1and S, > 1}) (3)
+ .. (4)
+Pr({Sq=q—1and S, >q—1}) (5)
L p—2 P—q
Pr(S,>8)=—+—+ ..+ — 6
(Sp > 5g) p o (6)
g+1
~1-45 @
The fault should then be exploitable with a probability of (1 — %}1).
O
Lemma 2. With blinding, the probability that the fault is exploitable is i(l -
atly
2p /°

Proof. This can be explained because of the blinding. Indeed, the signature is
computed over the blinded message M, = Mr® mod N and the final signature
is returned after reverting this blinding. Then, S = Sr~! mod N.

r~1 is computed using the extended Euclid algorithm that can give a negative
number. In such case, OpenSSL returns the positive representation by computing
the difference between the modulus N and r~! computed by the extended Euclid
algorithm. To do that, OpenSSL call BN_sub(r—!, N,r~1). Since, N > r~1!, this
function returns 0 because of the fault and the final signature is then equal to
0, that is not exploitable. Since r~! is negative with a probability of %, this
explains why our experimentation show that these faults appear with a 2 times
lower probability than (1 — %pl)

Note that r—! is also negative with probability % on the previous determinis-
tic fault. However, this last fault transforms BN_sub(r,a,b) to BN_sub(r,a,r)
that is equal to zero if the first and the second argument are the same. Thus, the

call BN_sub(r~ 1, N,r1) is not affected and this fault remains deterministic. O

Notice that in Lemma 1 (resp. Lemma 2) the probability of fault is about 1/4
(resp. 1/8), because in RSA, p,¢ > 1 and p/q =~ 1.

If the probabilistic faults does not permit to retrieve the private key, one can
try again with the same message to sign since the message blinding will change
the message passed to the modular exponentiation. Without message blinding,
an attacker can still change the message.

One probabilistic fault in BN _sub result sign
Depending whether a < b the result » = a — b can obviously be negative. The
sign of this result is defined by the neg variable of the OpenSSL structure that
represents a big number as shown in listing 1.1.

If the condition a < b is false, the result of the subtraction is positive and
the variable neg is set to 0. If @ < b then the result is negative and the variable
neg is set to 1.

This section focus on a fault that exploits the neg variable when it is set to
0 by the C instruction r->neg = 0 in BN_usub function as shown in listing 1.2.

In assembly level, setting r->neg to 0 is performed with the following assem-
bly instruction

STR R2, [R3, #12]

where the register R2 contains the value 0 and where the register R3 contains the
address of the variable r. Note that each element of the structure in listing 1.1
is four byte length. The location of the different fields of the variable r can be
easily determined as follow:

[r3,#0] is the field d of the variable r

[r3,#4] is the field top of the variable r

[r3,#8] is the field dmax of the variable r
[r3,#12] is the field neg of the variable r
[r3,#16] is the field flags of the variable r.

The fault consists in flipping one bit in the last previous assembly instruction
in order to transform the instruction

STR R2, [R3, #12] to STR R2, [R3, #4]

At C level this fault acts as changing r->neg = 0 to r->top = 0 in list-
ing 1.2.

Since r->top = 0 is one case in which OpenSSL considers the number r to
be equal to zero, the BN_sub function returns 0. The effect of this fault is then
the same of the previous faults.

This fault is also probabilistic since it targets the case where the condition
a < b is not true.

6.2 Fault in rsa ossl mod exp

Three deterministic faults on register. In our analysis on OpenSSL library
compiled for ARM processor, three deterministic faults were found. These faults

are quite similar that the one described in subsection 5.1. In this section, the
differences between this latter subsection and the three deterministic faults on
OpenSSL compiled for ARM are detailed.

As explained in 5.1, BN_div function is called to reduce the message modulo
q. The two first parameters of this function are passed from rsa ossl mod_exp
by using the following assembly instructions.

LDR R1, [FP, #-20]
MOV RO, #O

Note that [FP, #-20] is the address of the variable M.

The fault flips only one bit over one of the previous assembly instructions
to change register R1 to RO. The previous instructions are then replaced by the
following ones.

LDR RO, [FP, #-20]
MOV RO, #O

Note that other instructions such as LDRVS R1, [FP, #-20], that is a con-
ditional memory read that is performed if the overflow flag is not set, or TST
FP, R4, LSL RO can also be obtained by flipping only one bit instead of LDR
RO, [FP, #-20]

The fault does not change the register R1 which then still contains the vari-
able I (that represents the message) because of the BN_with flags function as ex-
plained previously. In C level, the fault changes BN_.div(NULL,r1,c,rsa->q,ctx)
to BN_div(NULL,I,c,rsa->q,ctx) resulting in a faulted message that leads to
a leak of a prime factor by exploiting the protection.

Two faults on execution flow. This section explains another single bit fault
that bypasses OpenSSL protection by modifying the normal instruction flow of
the RSA signature algorithm.

Inside the function rsa_ossl mod_exp, the signatures S, and S, are stored in
function variables m1 and r0 respectively. Moreover, r0 is also used as the output
variable of the function rsa ossl mod_exp that computes S = M9 mod N using
CRT before checking the correctness of the signature. Thus, if the algorithm has
returned just after the computation of S, and Sy, after (B.4) in Alg. 2, before
the Garner’s recombination and before OpenSSL protection, a wrong signature
that is equal to S, is gotten

The fault then consists in modifying the execution flow to return immediately
before the Garner’s recombination and before the protection by flipping only one
bit.

Since rsa_ossl mod_exp is called by rsa_ossl_private_encrypt, the ARM
register LR contains the return value to the rsa_ossl_private_encrypt function
where rsa_ossl mod_exp has been called.

The first assembly instruction of the function rsa_ossl mod _exp (PUSH R4,
R11, LR) pushes registers LR,R11 and R4,in this order, on the stack. Note that

the stack grows in the opposite way than the memory addresses. Since all regis-
ters are 4 bytes size, pushing a register on the stack also decrements the stack
pointer SP from 4. Moreover, the second assembly instruction of the function
rsa_osslmod exp (ADD R11, SP, #8) leads the registers R11 to point to the
stack location that contains the LR register as illustrated in figure 4. By this
way, the register R11 point to a memory location that contains this return value
to rsa_ossl_private_encrypt.

high addresses

RL
«—RI11 (points to return address stored in LR)

R11

R4

« SP (top of the stack)

low addresses

Fig. 4. Memory state at the beginning of rsa_ossl mod_exp function

Note that a BN_free function is called just before the Garner’s recombination
in OpenSSL rsa_ossl_mod_exp function. In assembly level, this is performed with
the following assembly instruction.

BL 9f788 <BN_free>

The fault consists in a single bit fault that changes the previous assembly in-
struction to

BL 9778 <BN_clear_free+0xb0>.

This new instruction causes the program to jump to a special location in function
BN_clear_free that contains the following assembly instructions:

SUB SP, R11, #4
POP R11,PC

Jumping this way is very similar to ROP attacks.

The first assembly instruction moves the stack pointer as shown in figure 5.
This instruction simply modifies the stack pointer. By this way, the second stack
element is then the return address to the rsa_ossl_private_encrypt function
that is copied in the program counter register PC by the second assembly in-
struction.

By this way, the Garner’s recombination and the protection are never exe-
cuted and the signature is equal to the signature modulo p that leaks the factor
D.

high addresses

RL

«—RI11 (points to return address stored in LR)
R11

« SP (top of the stack)
R4

low addresses

Fig. 5. Memory state at the beginning of rsa_ossl mod_exp function

Similar fault can be done at byte 1761048 bit 5 of OpenSSL binary library
file.

7 Discussion

In this section, variants of the described attacks are discussed. Precisely, sec-
tion 7.1 investigates what kind of additional attacks can be performed when
considering bit sets in addition to bit resets. Another cryptographic library,
namely Mbedtls, is also analysed in section 7.2, and the analyse studies the
impact of compilation options that is discussed in section 7.3. Practical con-
siderations concerning specifically the rowhammer attack are tackled next in
section 7.4. Eventually, practical fixes to the broken protection are analyzed in
section 7.5.

7.1 Monobit set model - Intel side

In the previous sections, results using monobit erase model were shown. An
attacker can obviously use a monobit set model that consists in flipping a bit
from 0 to 1. The analysis founds faults of “bit set” type allowing for a Bellcore
attack only in BN_sub function, that computes a difference » = b — a, in such
model. Contrary to the “bit reset” fault discussed in Sec. 5.2, the new fault does
not always mutate BN_sub to the constant function returning 0. Note that this
last function internally calls BN_usub. This function computes either b—a or a—b
depending whether b is larger or smaller than a. Note that, in the call of BN _sub
function, the first and the second parameters are identical. Indeed, OpenSSL
call BN_sub(a,a,b) instead of BN_sub(r,a,b). Then, internally, BN_sub(a,a,b)
calls either BN_usub(a,a,b) or BN_usub(a,b,a) according whether a > b or not.

This section details the faults on BN_usub for monobit set model on Intel
CPUs. First, note that the BN_usub function parameters are passed in two steps.
Firstly, the arguments are copied on registers rdx, rcx and rax. Secondly, in or-
der to follow the calling convention, registers rcx and rax are copied in registers
rsi and rdi respectively.

Upon each of the two steps, two faults were found in monobit set model. The
first one consists in setting a bit in the first instruction in order to modify the

instruction mov -0x38(%rbp) ,%rdx tomov -0x28(%rbp) ,%rdx. By this way, the
first parameter and the last one turn out to become identical. In the case where
a > b, the first and the second parameters are identical and then this fault have
the function to return 0, irrespective of the input parameters.

The second one consists in preventing from copying the second argument
of BN_usub to rsi register by replacing the instruction mov %rcx,%rsi by mov
%rcx,%rld. By this way, the register rsi contains the value of the second ar-
gument of function called in the previous function. This previous function is
BN_cmp(a,b). Then, in the case where a > b, the fault actually transforms the
function to BN_usub(a,b,b) that always returns 0. Therefore, the same attack
as discussed in Sec. 5.2 is possible in this case, which occurs with probability

11— %) as described with the lemmai 1.

7.2 Mbedtls - Intel side

Exploitable fault in erase and set monobit fault model in Mbedtls libraries on
Intel CPUs were also looked for. In this respect, Mbedtls has been compiled
using the default configuration at the exception that it was configured to build
a shared library instead of a static one. This has no influences on the generated
code but it allows us to speed up our research. Indeed, a static libraries require
a recompilation at each bit modification. Testing Mbedtls with monobit erase
model and monobit set model takes us less than one day. Contrary to OpenSSL,
no exploitable faults were found in our model is possible. Since our methodology
tries to find monobit fault in an exhaustive way, Mbedtls can then be considered
as correctly protected against monobit fault attack. Compared to OpenSSL, this
can be explained by two reasons.

Firstly, the fault on OpenSSL BN_sub function is possible since the first
two parameters are the same as described in the previous sections. Indeed,
BN_sub(S,,S5),,5;) is modified to BN_sub(S,,S,,S,) by copying the first ar-
gument to the third one. Because the second argument and the third one are
identical, it behaves like the third argument to be equal to the first one. Mbedtls
does not overwrite parameters and is then not vulnerable to this kind of fault.

Secondly, Mbedtls does not try to correct a badly computed signature. In
OpenSSL, this correction is, indirectly, responsible for the fault described in the
previous section.

Note that even if Mbedtls is protected against monobit faults on RSA signa-
ture using PKCS1.5 padding, a multibit model fault is still possible but difficult.
Indeed one can, for example, uses

7.3 Influence of the compilation optimization

Our experiments were performed on the OpenSSL version compiled by ourselves.
More precisely the optimization level -O3 of gcc compiler is used. That is the
default option in OpenSSL configuration scripts. Since each fault consists in
flipping bit in an instruction, one can wonder if compilation optimization level
can influence the faults that can be found. However, other optimization levels

were tested and the same faults were found. This is due to the necessity of
the compiler to respect the calling convention. Furthermore, the two functions
BN_mod and BN_sub are very frequent, hence are not inlined.

7.4 Practical considerations of Rowhammer attack

Difficulties to be overcome. This paper focus on the simulation of rowham-
mer attack in order to find vulnerabilities that can be exploited later on. Our
methodology can actually be applied to any kind of fault injection techniques
(see examples in Tab. 4). One can subsequently focus on practically injecting
the fault that triggers the vulnerabilities identified. This section details practi-
cal considerations to perform a rowhammer attack in practice.

Table 4. FLASH fault perturbation means explained in the literature

’ Fault injection mean ‘Reference‘
RowHammer (transient fault) 8
Wear-out (permanent fault) owing to excessive usage 5
Laser fault injection [11]
X-ray fault injection [1]

First of all, one has to know the mapping between a virtual address and a
DRAM structure that includes the DRAM channel, DRAM rank, DRAM bank
and DRAM row. This translation is performed by the MMU (Memory Manage-
ment Unit) that first translates the virtual to physical addresses and then to the
DRAM structure. Before the version 4.0 of Linux kernel, it was possible for an
attacker to know the mapping between virtual and physical addresses because
the Operating System knew this translation and exposed it through an API
accessible at user level. This is no longer possible as a protection against mem-
ory attacks. Moreover, the translation from the physical address to the DRAM
structure is often only performed by MMU and the operating system has no
information about it. Peter Pessl et al. [19] provides a response to this first is-
sue. They exploit the fact that memory element that are contained in the same
channel, rank and bank share the same DRAM row buffer. By using timing at-
tack, they succeed in getting to know the mapping between virtual addresses
and DRAM structure. Moreover, they performed physical probes to reverse the
way the MMU translates a physical address to the DRAM structure.

Second, since the DRAM is targeted, the cache must be bypassed. On Intel
processors, c1flush addresses this issue. One can also use a cache set eviction
strategy. Incidentally, this was used by Lipp et al. [18] to perform cache timing
attacks on ARM CPUs.

Third, some DRAM capacitor are not vulnerable to Rowhammer. Since this
paper focused on monobit faults, an attacker has to align a vulnerable cell with

the bit that he wants to flip. Since the minimal size of memory one can allocate
is the page size, it is not always possible to align a DRAM cell with a desired
specific bit of the targeted library. Moreover, in user space, the attacker cannot
control where the page is allocated in DRAM. However one can increase the
probability to make this alignment. Indeed, one can align a huge amount of
memory page in DRAM area where capacitor are not sensitive to Rowhammer
attack. This way, when the victim tries to load the target library it will be
mapped in a sensitive DRAM area. Note that this requires the attacker to be
able to allocate memory before the target application loads the cryptographic
library.

Solutions to overcome identified problems. The following methodology
can then be applied to perform practical rowhammer attack.

First, the attacker has to find a way to perform rowhammer attack. Since
rowhammer attack consists in accessing adjacent rows of the target one, an
attacker needs to know how to access those rows. Two strategies can be used. The
first one consists in allocating a big chunk of memory and containing the target
bit. The attacker then accesses two random elements of this allocated memory
and checks whether any bit flip is observed. The second strategy consists in
finding exactly what virtual addresses are associated with target’s adjacent rows.
This can be performed as Peter Pessl et al. [19] did (recall previous explanation).

Second, an attacker has to find vulnerable cells. One can simply try a rowham-
mer attack on each DRAM cell to identify them.

Third, one has to find vulnerable bits in the targeted cryptographic library.
Those are researched as explained in Sec. 5 and 6.

Finally, one has to align at least one vulnerable cell with one vulnerable bit.
This means one has to map the library in a very precise place in DRAM memory.
One way to do so is to allocate all the memory and unmap memory pages that
contain vulnerable cells. Since the minimal memory allocation is the page, that
is usually 4096 bytes, this method does not ensure that one vulnerable bit will be
align with one vulnerable cell. However, the most vulnerable bits are in a page,
the larger is the probability to have a good alignment. This is particularly true
for some cryptosystems like AES where faulting a bit in a large T-box tables
could be exploitable using Zhang et al. attack [23]. This assumes that the library
will be loaded after the attacker’s memory allocation.

7.5 Mitigation

Even though fault attacks are usually complex to thwart in practice, mitigations
still exist.

First, data scrubbing can be applied to check whether some instructions in
memory are corrupted. This solution consists in a parallel task that periodically
looks for errors by comparing potential faulted instructions with a clean version
of them. However, this incurs memory and time consumption overheads.

Alternatively, since the faults described in this paper alter target function
parameters, using inline functions could be used to mitigate the faults.

Using PSS padding should also be considered to mitigate our faults.

Finally, since the fault on BN_div is due to the attempt of OpenSSL to correct
it, a recommendation could be to return an error when CRT-RSA was badly
computed instead of trying to correct it.

Considering all those mitigations, a patch to OpenSSL developers were pro-
posed.

To mitigate the fault on BN_sub() function, BN_sub(vrfy,vrfy,I) can be
replaced by BN_cmp(vrfy,I). The fault is then well detected since BN_cmp ()
does not use BN_sub(). Note that this modification requires the message I to
be reduced modulo N. This is done before calling BN_cmp() by using BN_mod ()
function.

To mitigate the fault on BN_div() function, an error can be returned when
a signature has been badly computed instead of trying to correct it. Note that
checking whether the corrected signature is well computed is not necessarily
efficient if one compares S¢ mod N with the message since the message is faulted
and it will match with the faulted signature. Sensitive variables included badly
computed signature and modified message are also cleared. Note that clearing
the message require to have a copy of it (that is fault sensitive) since the message
in rsa_ossl mod exp() is declared with const flag. With those mitigations, no
exploitable monobit fault on RSA signature was found.

8 Conclusion and perspectives

In this paper, multiple new independent fault locations were identified on OpenSSL
that restore a Bellcore attack despite the protection.

The two notable results of this paper are that one fault is possible since
OpenSSL protection tries to correct a faulted RSA-CRT signature and another
fault leads to bypass this protection. Both of those faults tamper with with
x86_64 and ARM calling convention that specifies how parameters are given to
a function.

In this paper, fault model of our original paper was extended to include
monobit set fault model, that consist in flipping bits from 0 to 1, in addition to
monobit erase fault model that consists in flipping bits from 0 to 1.

Faults research on OpenSSL and Mbedtls compiled for Intel and ARM pro-
cessors were performed in this paper.

Other protections against CRT-RSA such as Shamir’s protection can be ap-
plied in those libraries. Even if these protections can be efficient, their imple-
mentation still can be vulnerable and needs to be evaluated thoroughly.

Conflict of interest

The authors declare that they have no conflict of interest with any of the asso-
ciate editors of the journal.

References

10.

11.

12.

. Stéphanie Anceau, Pierre Bleuet, Jessy Clédiére, Laurent Maingault, Jean-Luc

Rainard, and Rémi Tucoulou. Nanofocused X-Ray Beam to Reprogram Secure
Circuits. In Wieland Fischer and Naofumi Homma, editors, Cryptographic Hard-
ware and Embedded Systems - CHES 2017 - 19th International Conference, Taipei,
Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes in
Computer Science, pages 175—188. Springer, 2017.

. Christian Aumiiller, Peter Bier, Wieland Fischer, Peter Hofreiter, and Jean-Pierre

Seifert. Fault attacks on RSA with CRT: concrete results and practical counter-
measures. In Cryptographic Hardware and Embedded Systems - CHES 2002, 4th
International Workshop, Redwood Shores, CA, USA, August 13-15, 2002, Revised
Papers, pages 260-275, 2002.

Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whe-
lan. The Sorcerer’s Apprentice Guide to Fault Attacks. Proceedings of the IEEE,
94(2):370 —382, February 2006.

Sarani Bhattacharya and Debdeep Mukhopadhyay. Curious Case of Rowhammer:
Flipping Secret Exponent Bits Using Timing Analysis. In Benedikt Gierlichs and
Axel Y. Poschmann, editors, Cryptographic Hardware and Embedded Systems -
CHES 2016 - 18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, volume 9813 of LNCS, pages 602-624. Springer, 2016.
Simona Boboila and Peter Desnoyers. Write Endurance in Flash Drives: Mea-
surements and Analysis. In Randal C. Burns and Kimberly Keeton, editors, 8th
USENIX Conference on File and Storage Technologies, San Jose, CA, USA, Febru-
ary 23-26, 2010, pages 115-128. USENIX, 2010.

Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance of
eliminating errors in cryptographic computations. J. Cryptology, 14(2):101-119,
2001.

Eric Brier, David Naccache, Phong Q. Nguyen, and Mehdi Tibouchi. Modulus fault
attacks against RSA-CRT signatures. In Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings, pages 192-206, 2011.

Yu Cai, Saugata Ghose, Yixin Luo, Ken Mai, Onur Mutlu, and Erich F. Haratsch.
Vulnerabilities in MLC NAND flash memory programming: Experimental analysis,
exploits, and mitigation techniques. In 2017 IEEE International Symposium on
High Performance Computer Architecture, HPCA 2017, Austin, TX, USA, Febru-
ary 4-8, 2017, pages 49-60, 2017.

Sébastien Carré, Matthieu Desjardins, Adrien Facon, and Sylvain Guilley. Openssl
bellcore’s protection helps fault attack. In 21st Furomicro Conference on Digital
System Design, DSD 2018, Prague, Czech Republic, August 29-31, 2018, pages
500-507, 2018.

Pierre Carru. Attack TrustZone with Rowhammer. http://www.eshard.
com/wp-content/plugins/email-before-download/download.php?dl=
946522a084£f0f070a3acedb56bcb34£5, 04 2017.

Brice Colombier, Alexandre Menu, Jean-Max Dutertre, Pierre-Alain Moéllic, Jean-
Baptiste Rigaud, and Jean-Luc Danger. Laser-induced single-bit faults in flash
memory: Instructions corruption on a 32-bit microcontroller. TACR Cryptology
ePrint Archive (accepted at HOST 2109 conference, 2018:1042, 2018.

Harvey L. Garner. Number systems and arithmetic. Advances in Computers,
6:131-194, 1965.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Thomas Given-Wilson, Nisrine Jafri, Jean-Louis Lanet, and Axel Legay. An Auto-
mated Formal Process for Detecting Fault Injection Vulnerabilities in Binaries and
Case Study on PRESENT. In 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney,
Australia, August 1-4, 2017, pages 293-300. IEEE, 2017.

Lucien Goubet, Karine Heydemann, Emmanuelle Encrenaz, and Ronald De Keu-
lenaer. Efficient Design and Evaluation of Countermeasures against Fault At-
tacks Using Formal Verification. In Naofumi Homma and Marcel Medwed, editors,
Smart Card Research and Advanced Applications - 14th International Conference,
CARDIS 2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers,
volume 9514 of LNCS, pages 177-192. Springer, 2015.

Daniel Gruss, Clémentine Maurice, and Stefan Mangard. Rowhammer.js: A remote
software-induced fault attack in javascript. In Detection of Intrusions and Malware,
and Vulnerability Assessment - 138th International Conference, DIMVA 2016, San
Sebastian, Spain, July 7-8, 2016, Proceedings, pages 300-321, 2016.

Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji-Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM disturbance errors. In
ACM/IEEE }1st International Symposium on Computer Architecture, ISCA 201/,
Minneapolis, MN, USA, June 14-18, 2014, pages 361-372, 2014.

Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss,
and other systems. In Proceedings of the 16th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO ’96, pages 104-113, London,
UK, UK, 1996. Springer-Verlag.

Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. Armageddon: Cache attacks on mobile devices. In 25th USENIX Security
Symposium (USENIX Security 16), pages 549-564, Austin, TX, 2016. USENIX
Association.

Peter Pessl, Daniel Gruss, Clémentine Maurice, Michael Schwarz, and Stefan Man-
gard. DRAMA: Exploiting DRAM Addressing for Cross-CPU Attacks. In 25th
USENIX Security Symposium (USENIX Security 16), pages 565-581, Austin, TX,
2016. USENIX Association.

Marie-Laure Potet, Laurent Mounier, Maxime Puys, and Louis Dureuil. Lazart:
A Symbolic Approach for Evaluation the Robustness of Secured Codes against
Control Flow Injections. In Seventh IEEE International Conference on Software
Testing, Verification and Validation, ICST 2014, March 31 2014-April 4, 2014,
Cleveland, Ohio, USA, pages 213-222. IEEE Computer Society, 2014.

Mark Seaborn. Exploiting the DRAM rowhammer bug to gain ker-
nel privileges. https://googleprojectzero.blogspot.fr/2015/03/
exploiting-dram-rowhammer-bug-to-gain.html. Published: March 9, 2015
(also published at blackhat 2015).

Ingrid Verbauwhede, Dusko Karaklajic, and Jorn-Marc Schmidt. The fault attack
jungle - a classification model to guide you. In Proceedings of the 2011 Workshop on
Fault Diagnosis and Tolerance in Cryptography, FDTC ’11, pages 3-8, Washington,
DC, USA, 2011. IEEE Computer Society.

Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding, Samiya
Qureshi, and Kui Ren. Persistent Fault Analysis on Block Ciphers. JACR Trans.
Cryptogr. Hardw. Embed. Syst., 2018(3):150-172, 2018.

z Sebastien CARRE is a PhD student at Telecom Paristech. He
works on side channel attacks related to timing attacks

