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Abstract

Recently, the measurement of conflict between belief functions has been given
an axiomatic foundation by Destercke and Burger, resulting in conflict be-
ing measured as the inconsistency of their conjunctive combination and ex-
cluding metric distances as suitable candidates for conflict measures. The
contribution of this paper is twofold. First, we define a parameterised fam-
ily of consistency measures which encompasses three existing definitions of
consistency of a belief function. An induced family of conflict measures be-
tween belief functions is then derived, and each of these conflict measures
is shown to satisfy the previously proposed axiomatization. The family of
conflict measures defines several shades of conflict as it encompasses the clas-
sical measure of conflict, associated to the weakest definition of consistency,
as well as two other conflict measures associated, respectively, to a stronger
definition of consistency by Yager and to the strongest definition of consis-
tency by Destercke and Burger. The different measures are illustrated on a
toy example of vessel destination estimation. Second, we provide a geometric
view on consistency measures as well as on the associated conflict measures.
In particular, we show that the consistency of a belief function (whatever
the considered definition of consistency) is its distance to the belief function
representing the state of total inconsistency. This geometric view is then
transposed to conflict measures, shedding some new light on the relation

IThis paper is an extended and revised version of [1]. Section 4 is an extension of the
results of [1] encompassing a parameterised family of conflict measures, itself presented in
Section 3.
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between conflict and distances.

Keywords: Belief functions, Evidence theory, Consistency, Inconsistency,
Conflict, Norm, Distance.

1. Introduction

Intelligent systems need to be able to cope with large amount of informa-
tion that often displays different dimensions of imperfection. In particular,
inconsistent evidence is a challenging problem that may arise when an in-
formation source is partially reliable and provides inaccurate or aberrant
information. When inconsistent information needs to be merged, a particu-
lar attention should be paid to characterising, measuring and understanding
the conflict. The conflict can be used as an indicator of a lack of reliabil-
ity of some source and further used to discount the corresponding piece of
information in the overall fusion process or to choose the most appropriate
combination rule (see, e.g., [2]). Besides its importance in deriving relevant
overall belief, the conflict can be used to support decision making. For in-
stance in maritime security, inconsistency may reveal maritime anomalies
such as vessels deviating from normalcy (e.g., “off-route vessels”, “too fast
vessels”) and those possibly spoofing the Automatic Identification System
(AIS) signal to hide suspect behaviour [3, 4].

Investigating methods to characterise and measure conflict in informa-
tion fusion has attracted particular attention in the setting of belief func-
tions [5, 6]. To clarify the semantics of conflict measures for belief functions,
axiomatic foundations have been recently provided in [7] and [8] and corre-
sponding measures proposed: Martin’s measure combines a degree of inclu-
sion with a distance, whereas Destercke and Burger measure conflict between
belief functions as the inconsistency yielded by their conjunctive combination.
The uniqueness of these measures with respect to their set of axioms was not
addressed though. Besides, although the two sets of axioms of [7] and [8]
highly overlap, they differ notably by the identity axiom present in [8] and
not in [7]. Whether a conflict measure between two identical belief functions
should be null or not has been discussed in several work [7, 8, 9, 10, 11], ques-
tioning the appropriateness of the classical conflict measure in belief function
theory [6] to quantify conflict in all situations, and led to alternative con-
siderations of conflict. Liu [9] proposes to complement the classical conflict
measure with a distance measure, Daniel [10, 12] distinguishes between inter-
nal, external and total conflict, Destercke and Burger [7] consider knowledge
about source dependence, and Burger [11] investigates the suitability of dis-
tance measures and other geometrical objects for conflict measurement.
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In this paper, we follow the axiomatization proposed by Destercke and
Burger [7] for conflict measures, which encompasses the classical measure of
conflict, and revisit and extend some of their results. Specifically, we tackle
two research questions: (1) the uniqueness of the proposed measures, and
(2) whether geometrical objects may be relevant for this kind of measures of
conflict.

Our starting point are the two different definitions (one being stronger
than the other one) of the notion of nonconflicting belief functions proposed
in [7]. We define a new parameterised family of conflict measures that cap-
tures gradual notions (“shades”) of conflict. The proposed family satisfies
Destercke and Burger’s axiomatic approach, and interestingly, subsumes their
definitions of nonconflict as extreme cases. In particular, we show that so-
called strong nonconflict can be captured by a sound measure which is an
alternative to the original contour-based measure proposed in [7]. We also
show that this family is compatible with a geometric view and shed some
new light on the relation between conflict and distances.

The study in [7] is quite general and considers the whole spectrum from
unknown dependence to known dependence between the sources providing
the belief functions. We do not tackle these more general situations in this
paper, and consider only the case where it can be safely assumed that the
sources are independent, although we note that our results can readily be
extended to the more general case of known dependence.

This paper is organised as follows. Necessary concepts of belief func-
tion theory, as well as Destercke and Burger’s axiomatic approach to conflict
measurement, are recalled in Section 2. In Section 3, a parameterised family
of conflict measures is unveiled and its special cases and properties are dis-
cussed. A geometric perspective on the proposed measures is presented in
Section 4, before concluding in Section 5.

2. Preliminaries

In this section, necessary concepts of belief function theory are first re-
called. Then, the axiomatic approach to conflict measurement of Destercke
and Burger [7] is presented.

2.1. Belief function theory

The theory of belief functions is a framework for uncertainty modeling
and reasoning. It was originally introduced by Dempster [13, 5] in the con-
text of statistical inference, as a theory of imprecise probabilities. It was
extended by Shafer [6] and then by Smets and Kennes [14] to handle subjec-
tive uncertainty related to fixed quantities. In this latter interpretation of
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this framework, called Transferable Belief Model (TBM) and considered in
this paper, the beliefs held by an agent about the actual value x taken by
a variable defined on a finite domain X = {x1, . . . , xK} (called frame), are
modeled by a so-called mass function defined as a mapping m : 2X → [0, 1]
verifying

∑
A⊆X m (A) = 1 with m(∅) ≥ 0. The mass m(A) represents the

amount of belief allocated to the fact of knowing only that x ∈ A. The set
of all mass functions on X is denoted by M.

Subsets A of X such that m(A) > 0 are called focal sets of m, and the
set of focal sets of m is denoted by F . In order to simplify some expressions,
the number |F| of focal sets of m is denoted by F. Several specific cases of
mass functions are often distinguished. A mass function m is called:

• categorical if m(A) = 1 for some A ⊆ X , in which case it defines a
classical set and will be denoted by mA in the following;

• vacuous if m(X ) = 1 and denoted by mX . It represents total ignorance;

• empty if m(∅) = 1 and denoted by m∅. It represents total inconsistency
in the agent’s beliefs about the set of values that are conceivable for
x [15];

• normalised if m(∅) = 0.

Equivalent representations of a mass function m are the plausibility func-
tion and the belief function, defined respectively as, for all A ⊆ X ,

pl(A) =
∑

B∩A 6=∅

m(B), (1)

and

bel(A) =
∑
∅6=B⊆A

m(B). (2)

That is, pl(A) is the amount of belief consistent with x ∈ A, and bel(A) is
the amount of belief implying x ∈ A. The plausibility function restricted
to the singletons of X is the contour function π : X → [0, 1] such that
π(x) = pl({x}), for all x ∈ X . Due to the one-to-one correspondence between
functions m, bel and pl, any of these functions may be loosely referred to as
“belief function” for simplicity – it should nonetheless always be clear from
the context what is meant from a technical point of view.

We note that in the imprecise probabilistic interpretation of belief func-
tion theory, the belief and plausibility measures bel and pl represent bound-
aries on an ill-known probability measure P on X and m is associated to the
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set P(m) of compatible probability measures defined by P(m) = {P |∀A ⊆
X , bel(A) < P (A)}.

The informative contents of two mass functions can be compared using
the notion of specialisation [16]: a mass function m1 defined on X is said
to be a specialisation of another mass function m2 defined on X , which is
denoted by m1 v m2, if and only if there exists a non-negative square matrix
S = [S(A,B)], A,B ∈ 2X , verifying∑

A⊆X

S(A,B) = 1, ∀B ⊆ X ,

S(A,B) > 0⇒ A ⊆ B, A,B ⊆ X ,

m1(A) =
∑
B⊆X

S(A,B)m2(B), ∀A ⊆ X .

The term S(A,B) may be seen as the proportion of the mass m2(B) which
“flows down” to A. The specialisation relation extends the relation of inclu-
sion between classical sets. Let us also recall that we have [16]

m1 v m2 ⇒ pl1(A) ≤ pl2(A), ∀A ⊆ X . (3)

Another useful notion is that of refined mass function. Recall that a
refinement of a space X to a space Y is formally defined as a function ρ :
2X → 2Y such that the set {ρ({x})|x ∈ X} is a partition of Y , and ρ(A) =⋃
x∈A ρ({x}),∀A ⊆ X . If ρ is a refinement function from X into Y , the

refined mass function ρ(mi), denoted by miρ for short, of some mass function
mi is defined such that for any A ∈ Fi, with Fi the set of focal sets of mi,
we have mi(A) = miρ(ρ(A)).

The TBM is appealing because it makes it possible to combine multiple
pieces of information about a variable. One of the most classical combina-
tion rule of the theory is Dempster’s unnormalised rule [13], also known as
conjunctive rule. Let m1 and m2 be two mass functions representing pieces
of information about x. Their combination by the conjunctive rule, denoted
by ∩©, results in the mass function m1 ∩©2 defined by, for all A ⊆ X ,

m1 ∩©2(A) =
∑

B∩C=A

m1(B)m2(C). (4)

This combination is appropriate when m1 and m2 have been provided by
two independent and reliable sources. Furthermore, the rule ∩© is commuta-
tive and associative, and admits the vacuous mass function mX as neutral
element.
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In the TBM, conditioning of a mass function m by some B ⊆ X is equiva-
lent to conjunctive combination of m with the categorical mass function mB.
The result is denoted by m[B], with m[B] = m ∩©mB. The conjunctive rule
admits a simple expression using conditioning:

m1 ∩©2(A) =
∑
B⊆X

m1(B)m2[B](A),∀A ⊆ X . (5)

2.2. Axiomatic approach to conflict measurement

The axiomatic approach to conflict measurement of [7] relies on the notion
of consistency of a mass function, which is recalled first.

2.2.1. Consistency of a mass function

Although a totally inconsistent information state is uniquely represented
as the empty mass function m∅ [7, 15], total consistency of an information
state represented by a mass function can be understood differently. Specifi-
cally, two different definitions of total consistency are considered in [7]:

Definition 1 (Logical consistency [7]). A mass function m is logically con-
sistent iff

⋂
A∈F A 6= ∅.

Definition 2 (Probabilistic consistency [7]). A mass function m is proba-
bilistically consistent iff m(∅) = 0 ( i.e., m is normalised).

Logical consistency of m corresponds to logical consistency between the
focal sets of m, hence its name. Probabilistic consistency takes its name
from the fact that m(∅) = 0 is equivalent to P(m) 6= ∅. We note that a logi-
cally consistent mass function is normalised and thus is also probabilistically
consistent. Hence, logical consistency is a stronger form of consistency than
probabilistic consistency.

Based on these notions of total inconsistency and total consistency, two
properties that a measure of consistency φ of a mass function should obey
have been defined in [7]:

Property 1 (Bounded [7]). A measure of consistency should be bounded,
i.e., possess minimal and maximal values.

Property 2 (Extreme consistent values [7]). A measure of consistency should
reach its maximal value if and only if information is totally consistent (ac-
cording to the considered definition), and its minimal value if and only if
information is totally inconsistent.
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Property 2 depends thus on the definition of total consistency considered.
Remarking that

⋂
A∈F A 6= ∅ ⇔ ∃x ∈ X s.t. π(x) = 1 [7, Lemma 1], two

consistency measures φπ and φm from M to [0, 1] are proposed in [7]:

φπ(m) = max
x∈X

π(x),

φm(m) = 1−m(∅).

The measure φπ(m) has been proposed originally in [10] to quantify the
internal conflict of a belief function. As detailed in [7], measure φπ satisfies
Property 1 and Property 2, in the case where total consistency is understood
according to Definition 1. Measure φm on the other hand satisfies Property 1
and Property 2, in the case where total consistency is understood according
to Definition 2. Furthermore, we have φm(m) ≥ φπ(m) for any m ∈ M [7,
Lemma 2].

Measure φπ agrees with the TBM interpretation of belief functions since
a mass function is totally logically consistent if and only if it considers that
at least one value in X is totally plausible [7]. Furthermore, it is argued
in [7] that φm is in accordance with the imprecise probabilistic interpretation
of belief functions since a mass function is totally probabilistically consistent
if and only if its associated set P(m) is not empty. Yet, as reported in [7,
Section VII.A], the correlation between φm and φπ is high enough in some
cases, to consider φm as a good approximation of φπ.

Despite Destercke and Burger [7] position about measure φm, we remark
that this measure has been justified by Smets [15] as a measure of consistency
in the TBM interpretation of belief functions, using an argument based on
the notion of belief updating. Smets concludes in [15] that φm quantifies the
amount of consistency present in the mass function representing the agent’s
beliefs about the set of values X that are conceivable for x by the agent.
This can simply be seen by remarking that pl(X ) = 1 − m(∅) = φm(m),
that is φm(m) is the amount of belief consistent with the proposition that
the actual value x is in X (we also have bel(X ) = φm(m)). In particular,
we have m(∅) = 0 ⇔ pl(X ) = 1 so that we could also name the notion
of probabilistic consistency as frame consistency (in contrast, φπ(m) is the
maximum amount of belief consistent with x = x for some x ∈ X , and logical
consistency corresponds thus to consistency with at least one value in X ).
This view on φm is totally in line with the so-called open-world assumption
of the TBM, where m(∅) quantifies the belief that x does not lie in X .
Overall, φm and φπ seem thus both relevant in the TBM interpretation of
belief functions (φm being in addition relevant in the imprecise probabilistic
interpretation).
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Let us finally remark that besides φπ and φm, another measure of consis-
tency of a mass function has been proposed by Yager in [17]:

φY (m) =
∑

A∩B 6=∅

m(A)m(B). (6)

This measure reaches its maximum, that is a mass function m is considered
totally consistent according to Yager, if and only if the focal sets of m have a
pairwise non-empty intersection. This alternative view on total consistency
will be called in this paper pairwise consistency :

Definition 3 (Pairwise consistency). A mass function m is pairwise consis-
tent iff ∀(A,B) ∈ F2, A ∩B 6= ∅.

It is easy to check that measure φY satisfies Property 1 and Property 2,
in the case where total consistency is understood according to Definition 3.

2.2.2. Conflict between mass functions

As rightfully remarked in [7], two mass functions can be considered as
totally conflicting if none of their focal sets intersect. Formally:

Definition 4 (Total conflict [7]). Let m1 and m2 be two mass functions
with sets of focal sets F1 and F2 respectively. Let Di = ∪A∈FiA denote the
disjunction1 of all focal sets of mi. m1 and m2 are totally conflicting when
D1 ∩ D2 = ∅.

However, there does not seem to be a unique way to define totally noncon-
flicting mass functions. As a matter of fact, two2 definitions of nonconflicting
mass functions are considered in [7]:

Definition 5 (Strong nonconflict [7]). Two mass functions m1 and m2 are
said to be strongly nonconflicting if and only if⋂

A∈{F1∪F2}

A 6= ∅.

Definition 6 (nonconflict [7]). m1 and m2 are said to be nonconflicting if
and only if ∀(A,B) such that A ∈ F1, B ∈ F2, we have A ∩B 6= ∅.

1The disjunction of all focal sets is called the core of the belief function by Shafer [6].
2In [7], three definitions of nonconflicting mass functions are considered (Definitions 4,

5 and 6 in [7]). However, in the case of independent sources, which is assumed in this
paper, Definitions 5 and 6 in [7] are equivalent.
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Definition 5 requires that all focal sets of m1 and m2 have a non-empty
intersection, which is stronger than requiring each focal set of m1 to have a
non-empty intersection with each focal set of m2 as required by Definition 6.

Based on these notions of totally conflicting and totally nonconflicting
mass functions, five properties that a measure of conflict κ between two mass
functions defined on X and provided by two independent sources, should
satisfy are provided in [7]. The five properties are the following (further
details on the motivations of these requirements can be found in [7]):

Property 3 (Extreme conflict values [7]). κ(m1,m2) = 0 if and only if
m1 and m2 are nonconflicting (according to the considered definition) and
κ(m1,m2) = 1 if and only if m1 and m2 are totally conflicting.

Property 4 (Symmetry [7]). κ(m1,m2) = κ(m2,m1).

Property 5 (Imprecision monotonicity [7]). If m1 v m1′, then κ(m1,m2) ≥
κ(m1′ ,m2).

Property 6 (Ignorance is bliss [7]). If m2 is vacuous, then κ(m2,m1) =
1− φ(m1).

Property 7 (Insensitivity to refinement [7]). If ρ is a refinement function
from X into Y, then κ(m1,m2) = κ(m1ρ,m2ρ).

As Property 2 for consistency measures, which depends on the definition
of total consistency considered, Property 3 for conflict measures depends
on the definition of nonconflict considered (i.e., either Definition 5 or Def-
inition 6). Property 5 states that the conflict should not increase as the
imprecision (defined in terms of specialisation) of a mass function increases.
Property 6 states that a state of ignorance should not conflict with any other
state of information represented by a mass function m1, whilst accounting
for the fact that this state of information m1 may be partially inconsistent
itself – we note however that this property does not specify which kind of
consistency (e.g., logical or probabilistic) should consistency measure φ sat-
isfy. Property 7 states that the refinement of a mass function should not
change its conflict value with any other mass function refined in the same
way.

In [7], the authors propose to evaluate the conflict between two mass
functions as the inconsistency of their conjunctive combination, where in-
consistency is the “inverse” of consistency (i.e., 1 − φ(·). More precisely,
they propose two measures of conflict satisfying Properties 3-7, induced by
consistency measures φπ and φm:

κπ(m1,m2) = 1− φπ(m1 ∩©2) = 1−max
x∈X

π1 ∩©2(x),

κm(m1,m2) = 1− φm(m1 ∩©2) = m1 ∩©2(∅).
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Measure κπ satisfies Properties 3-7, when nonconflict in Prop. 3 is under-
stood in terms of Definition 5, whereas κm satisfies these properties when
nonconflict is understood in terms of Definition 6. We note that with κπ,
Prop. 6 is satisfied for φ = φπ, whereas with κm this property is satisfied for
φ = φm. Let us finally stress that κm(m1,m2) is nothing but the classical
measure of conflict m1 ∩©2(∅) in the TBM.

3. N -consistency and induced conflict

The previous section has reviewed the axiomatic approach to conflict
measurement proposed in [7]. It was recalled that the measures κπ and κm
satisfy this approach. In particular, measure κπ, which relies on the measure
φπ of logical consistency, is suitable as a measure for strong nonconflict. In
this section, it is shown that there exists an alternative measure of logical
consistency (i.e., a measure φ satisfying Property 2 for Definition 1) and that
its induced conflict measure (defined as the inconsistency of the conjunctive
combination) is an alternative measure for strong nonconflict (i.e., a measure
κ satisfying Property 3 for Definition 5). More generally, a parameterised
family of consistency measures capturing different forms of consistency in-
cluding logical, pairwise and probabilistic consistency is introduced and is
shown to induce a family of conflict measures satisfying the axiomatic ap-
proach of [7] for a family of definitions of the notion of nonconflicting mass
functions subsuming strong nonconflict (Definition 5) and nonconflict (Defi-
nition 6).

3.1. N-consistency

Let us start by introducing the following definition:

Definition 7 (N -consistency). A mass function m is said to be consistent
of order N (N -consistent for short), with 1 ≤ N ≤ F, iff its focal sets are
N-wise consistent, i.e., ∀F ′ ⊆ F s.t. |F ′| = N , we have⋂

A∈F ′
A 6= ∅.

In addition, let φN denote the measure from M to [0, 1] such that, for
1 ≤ N ≤ F and all m ∈M,

φN(m) := 1−mN(∅), (7)

where mN denotes the mass function resulting from the combination of m
by itself N times, i.e.

mN := mN−1 ∩©m,
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with m0 := mX . Hence, we have m1 = m, m2 = m ∩©m and more generally
mN = ∩©N

1 m. Note that mN(∅), i.e., the mass associated to the empty set
after N combinations of m by itself, is called auto-conflict of order N of mass
function m in [18].

We will show in the following that the family φN measures gradual notions
(“shades”) of consistency of m as N varies and in particular encompasses the
three forms of consistency already defined in the literature and recalled in
Section 2.2.1.

3.2. 1-consistency

Let us first remark that probabilistic consistency (Definition 2) of a mass
function m is nothing but 1-consistency, since we have

m(∅) = 0 ⇔ A 6= ∅, ∀A ∈ F .

In addition, we have φm(m) = φ1(m), for all m ∈ M, since φ1(m) =
1 − m(∅), and thus φ1(m) is a measure of probabilistic consistency (or 1-
consistency), in the sense that it satisfies Properties 1 and 2 in the case
where total consistency is understood according to Definition 2.

Let κ1(m1,m2) := 1−φ1(m1 ∩©2), for allm1,m2 ∈M. We have κ1(m1,m2) =
κm(m1,m2), for all m1,m2 ∈ M, and κ1 is thus a measure for nonconflict
(Definition 6) in the sense that it verifies Properties 3-7, when nonconflict in
Prop. 3 is understood in terms of Definition 6,.

It will be useful to remark that the notion of nonconflicting mass functions
(Definition 6) can be equivalently presented as follows. Let m1 and m2 be any
two mass functions and let F12 := {A ∩B|A ∈ F1, B ∈ F2}. It is clear that:
m1 and m2 are nonconflicting (Definition 6) ⇔ A 6= ∅,∀A ∈ F12. In other
words, nonconflict is equivalent to each set in F12 being non-empty, i.e., to
the sets in F12 being “1-wise” consistent. Let us note that F12 = F1 ∩©2, with
F1 ∩©2 the set of focal sets of m1 ∩©2.

3.3. F-consistency

Lemma 1 below shows that the notion of logical consistency of a mass
function (Definition 1) is a particular case of that of N -consistency, when N
is the number of focal sets of m.

Lemma 1. m is logically consistent if and only if m is F-consistent.

Proof. m is F-consistent ⇔ ∀F ′ ⊆ F s.t. |F ′| = F, we have
⋂
A∈F ′ A 6= ∅.

There is only one set F ′ s.t. |F ′| = F, which is F ′ = F . Hence m is
F-consistent ⇔

⋂
A∈F A 6= ∅.

Moreover, the following results hold for any mass function m ∈M:
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Lemma 2. m is F-consistent if and only if mF(∅) = 0.

Proof. Follows from mF(∅) =
∑
∩Fi=1Ai=∅

∏F
i=1m(Ai).

Lemma 3. m is totally inconsistent if and only if mF(∅) = 1.

Proof. ⇒: m(∅) = 1, i.e., m is totally inconsistent, implies clearly mF(∅) = 1.
⇐: assume this is not true, i.e., mF(∅) = 1 and m(∅) 6= 1. We reach a

contradiction since m(∅) 6= 1 implies that ∃A ⊆ X , A 6= ∅, s.t. m(A) > 0, in
which case we have mF(A) ≥ (m(A))F > 0, and thus mF(∅) 6= 1.

Lemmas 1, 2 and 3 suggest to use φF(m) = 1 −mF(∅) as an alternative
measure of logical consistency of a mass function m. Indeed, these results
show that similarly to φπ, φF verifies Property 1 and Property 2, in the
case where total consistency is understood according to Definition 1 (logical
consistency). This measure appears thus as justified as φπ to evaluate logical
consistency of a mass function.

Remark 1. We note that the measures φπ and φF are not equal. For in-
stance, denoting by

m : (A1,m(A1); . . . ;AF,m(AF))

a mass function m with F focal elements Ai with associated masses m(Ai),
then if m is defined on X = {d1, d2, d3} by

m : ({d1, d2}, 0.8; {d3}, 0.2) ,

we have φπ(m) = maxx∈X π(x) =0.8 6= φF(m) = 1−m2(∅) =0.68 (since
F = 2). Further details about the relationships between these measures will
be given in Section 3.6.

The measure κπ(m1,m2) associated to the notion of strong nonconflict
(Definition 5) is derived from φπ(m1 ∩©2), which is a measure of logical consis-
tency of m1 ∩©2. Let F12 denote the cardinality of F12, i.e., F12 = |F12|. Then
φF12

(m1 ∩©2) is also a measure of logical consistency of m1 ∩©2. This prompts
us to consider the following conflict measure from M×M to [0, 1]:

κF12
(m1,m2) := 1− φF12

(m1 ∩©2). (8)

Proposition 1. Measure κF12
satisfies Properties 3-7, when nonconflict in

Property 3 is understood in terms of Definition 5 (strong nonconflict).

Proof. We show each property in turn:
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• Property 3 (Extreme conflict values): κF12
(m1,m2) = 0⇔ φF12

(m1 ∩©2) =

1⇔ mF12
1 ∩©2(∅) = 0, which is equivalent using Lemma 2 to m1 ∩©2 is F12-

consistent, which in turn is equivalent using Lemma 1 to m1 ∩©2 is logi-
cally consistent, i.e., ∩A∈F12A 6= ∅ or equivalently ∃x ∈ X s.t. x ∈ A,
∀A ∈ F12. From the definition of ∩©, we have ∃x ∈ X s.t. x ∈ A,
∀A ∈ F12 iff m1 and m2 are strongly nonconflicting.

κF12
(m1,m2) = 1 ⇔ φF12

(m1 ∩©2) = 0 ⇔ mF12
1 ∩©2(∅) = 1, which using

Lemma 3 is equivalent to m1 ∩©2 is totally inconsistent, i.e., m1 ∩©2(∅) =
1. From the definition of ∩©, m1 ∩©2(∅) = 1 iff m1 and m2 are totally
conflicting.

• Property 4 (Symmetry): We have

κF12
(m1,m2) = mF12

1 ∩©2(∅)
= ( ∩©F12

i=1m1 ∩©2)(∅)
= ( ∩©F12

i=1(m1 ∩©m2))(∅)
= ( ∩©F12

i=1(m2 ∩©m1))(∅)
= ( ∩©F12

i=1m2 ∩©1)(∅)
= mF12

2 ∩©1(∅)
= κF12

(m2,m1).

• Property 5 (Imprecision monotonicity): ∩© is monotonic with respect to
v [19, Proposition 2] and thus m1 v m1′ ⇒ m1 ∩©m2 v m1′ ∩©m2,∀m2 ∈
M. Using [2, Lemma 3], we obtain

∩©F12
i=1(m1 ∩©m2) v ∩©F12

i=1(m1′ ∩©m2).

That is mF12
1 ∩©2 v mF12

1′ ∩©2, which implies using (3) that

plF12
1 ∩©2(X ) ≤ plF12

1′ ∩©2(X )

⇔ 1−mF12
1 ∩©2(∅) ≤ 1−mF12

1′ ∩©2(∅)
⇔ κF12

(m1,m2) ≥ κF12
(m1′ ,m2).

• Property 6 (Ignorance is bliss): m2(X ) = 1 means that m2 = mX . It
is thus the neutral element of ∩© and we have F12 = F1, from which we

13



obtain

κF12
(m1,m2) = mF12

1 ∩©2(∅)
= ( ∩©F12

i=1m1 ∩©2)(∅)
= ( ∩©F12

i=1m1)(∅)
= mF12

1 (∅)
= mF1

1 (∅)
= 1− φF1

(m1).

• Property 7 (Insensitivity to refinement): We have

κF12
(m1,m2) = mF12

1 ∩©2(∅)

=
∑

∩F12
i=1 (Ai∩Bi)=∅

F12∏
i=1

m1(Ai)m2(Bi),

and

κF12
(m1ρ,m2ρ) = mF12

1ρ ∩©2ρ(∅)

=
∑

∩F12
i=1 (ρ(Ai)∩ρ(Bi))=∅

F12∏
i=1

m1ρ(ρ(Ai))m2ρ(ρ(Bi)).

∀(A1, B1, . . . , AF12
, BF12

) ∈ ×F12
i=1F1 ×F2, we have:

– either ∩F12
i=1(ρ(Ai)∩ρ(Bi)) 6= ∅, in which case since {ρ({x})|x ∈ X}

is a partition of Y , ∃x ∈ X s.t. x ∈ Ai and x ∈ Bi, i = 1, . . . ,F12,
i.e., ∩F12

i=1(Ai ∩Bi) 6= ∅;
– or ∩F12

i=1(ρ(Ai)∩ ρ(Bi)) = ∅, in which case 6 ∃x ∈ X s.t. x ∈ Ai and
x ∈ Bi, i = 1, . . . ,F12, i.e., ∩F12

i=1(Ai ∩Bi) = ∅.

Hence, ∀(A1, B1, . . . , AF12
, BF12

), when the mass
∏F12

i=1m1ρ(ρ(Ai))m2ρ(ρ(Bi))

is allocated to ∅, so does the mass
∏F12

i=1m1(Ai)m2(Bi), and when the

mass
∏F12

i=1m1ρ(ρ(Ai))m2ρ(ρ(Bi)) is not allocated to ∅, so does the mass∏F12

i=1m1(Ai)m2(Bi). Property 7 is then obtained since

F12∏
i=1

m1ρ(ρ(Ai))m2ρ(ρ(Bi)) =

F12∏
i=1

m1(Ai)m2(Bi),

∀(A1, B1, . . . , AF12
, BF12

).

14



In the proof of Property 6 of Proposition 1, we remark that if m2 is
vacuous then κF12

(m1,m2) = 1 − φF1
(m1), i.e., the consistency of m1 is

evaluated using measure φF1
, which is a measure of the logical consistency of

m1. In other words, we have a similar behaviour to that of κπ, which satisfies
Prop.6 for φ = φπ that is another measure of the logical consistency of m1.

According to Proposition 1, measure κF12
(m1,m2), which is nothing but

the auto-conflict of order F12 of the mass function m1 ∩©2, constitutes thus a
sound alternative to measure κπ(m1,m2) for evaluating the (strong) conflict
between two mass functions m1 and m2.

Let us finally note that we have the following equivalence: m1 and m2

are strongly nonconflicting (Definition 5) ⇔
⋂
A∈F12

A 6= ∅. In other words,
strong nonconflict is equivalent to the intersection of all sets in F12 being
non-empty, i.e., to the sets in F12 being F12-wise consistent.

3.4. 2-consistency

It is clear that pairwise consistency (Definition 3) of a mass function m
is equivalent to m being 2-consistent.

Furthermore, the measure φY of consistency proposed by [17] (see Eq.
(6)) is obtained with N = 2 in (7):

φY (m) = φ2(m) = 1−m2(∅), ∀m ∈M.

Hence, φ2 is a measure of pairwise consistency of m, since it satisfies Prop-
erties 1 and 2 in the case where total consistency is understood according to
Definition 3.

We established that probabilistic consistency of a mass function m is
equivalent to m being 1-consistent and that logical consistency of m is equiv-
alent to m being F-consistent. Hence, pairwise consistency of m can be
situated in between the two extremes that are probabilistic consistency and
logical consistency:

• probabilistic consistency is the weakest form – it requires focal sets of
m to be “onewise” consistent, i.e., each focal set is non-empty;

• then comes pairwise consistency – focals sets need to be pairwise con-
sistent, i.e., the intersection of any two focal sets must be non-empty;

• and logical consistency is the strongest form – focal sets must be F-
consistent, i.e., the intersection of all focal sets must be non-empty.
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Similarly, we have seen that nonconflict (Definition 6) is equivalent to
each set in F12 being non-empty, whereas strong nonconflict is equivalent to
the intersection of all sets in F12 being non-empty. Considering the above dis-
cussion about the three possible definitions of total consistency, nonconflict
and strong nonconflict appear thus to be two extreme forms of nonconflict,
and Yager’s definition of consistency suggests then an alternative definition
of nonconflict:

Definition 8. m1 and m2 are said to be nonconflicting of order 2 (2-nonconflicting
for short) if and only if ∀A ∈ F12, B ∈ F12, we have A ∩B 6= ∅.

Let us denote by κ2 the measure of conflict induced by φ2, i.e., the mea-
sure κ2(m1,m2) :M×M→ [0, 1] defined by

κ2(m1,m2) := 1− φ2(m1 ∩©2).

Proposition 2. Measure κ2 satisfies Properties 3-7, when nonconflict in
Property 3 is understood in terms of Definition 8 (2-nonconflict).

Proof. We only show Property 3 (the other properties can be shown us-
ing a similar proof to that of Proposition 1 – for Property 6, we obtain
κ2(m1,m2) = 1− φ2(m2)):

κ2(m1,m2) = 0 ⇔ φ2(m1 ∩©2) = 1 ⇔ m2
1 ∩©2(∅) = 0 ⇔ m1 ∩©2 is 2-

consistent ⇔ ∀A ∈ F12, B ∈ F12, we have A ∩B 6= ∅.
κ2(m1,m2) = 1 ⇔ m2

1 ∩©2(∅) = 1, which, using a similar proof to that of
Lemma 3, is equivalent to m1 ∩©2 is totally inconsistent, i.e., m1 ∩©2(∅) = 1.
From the definition of ∩©, m1 ∩©2(∅) = 1 iff m1 and m2 are totally conflicting.

According to Proposition 2, κ2(m1,m2) is thus a measure for 2-nonconflict.

3.5. A family of conflict measures

The three definitions of nonconflict encountered so far suggest the follow-
ing generalisation, obtained by applying the notion of N -consistency to the
sets in F12:

Definition 9. m1 and m2 are said to be nonconflicting of order N (N-
nonconflicting for short), with 1 ≤ N ≤ F12, if and only if ∀Ai ∈ F12, i =
1, . . . , N , we have

⋂N
i=1Ai 6= ∅.

N -nonconflict subsumes obviously 2-nonconflict (Definition 8), which is
recovered for N = 2, but also nonconflict (Definition 6, recovered for N=1)
and strong nonconflict (Definition 5, recovered for N = F12).
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φ(m) κ(m1,m2) = 1− φ(m1 ∩©2)

Total inconsistency Total conflict
m(∅) = 1 D1 ∩ D2 = ∅

Total consistency Total nonconflict
Probabilistic
consistency

∀A ∈ F ,
A 6= ∅

φ1 =
φm [7]

1-consistency Nonconflict ∀A ∈ F12,
A 6= ∅

κ1 =
κm [7]

1-nonconflict

Pairwise
consistency

∀(A,B) ∈
F2, A ∩
B 6= ∅

φ2 [17] 2-consistency Pairwise
nonconflict

∀(A,B) ∈
F2

12,
A ∩B 6= ∅

κ2 2-nonconflict

Logical
consistency

⋂
A∈F

A 6= ∅ φF F-consistency Strong
nonconflict

⋂
A∈F12

A 6= ∅ κF12
F12-nonconflict

φπ [7] κπ [7]

Table 1: Notions of consistency and associated nonconflict.

Let κN(m1,m2) :M×M→ [0, 1] be the measure defined, for 1 ≤ N ≤
F12, by

κN(m1,m2) := 1− φN(m1 ∩©2). (9)

Proposition 3. Measure κN satisfies Properties 3-7, when nonconflict in
Property 3 is understood in terms of Definition 9 (N-nonconflict).

Proof. The proof is similar to that of Proposition 2.

Proposition 3 is a generalisation of Propositions 1 and 2. The parame-
terised family of conflict measures κN includes obviously measures κF12

and
κ2, but also the classical measure of conflict in the TBM, i.e., κm, which is
equivalent to κ1.

Remark 2. Let m1 = mA and m2 = mB, for some A,B ⊆ X . In this
case, we have F12 = 1 and thus the family of conflict measures κN reduces
to the measure κ1. Besides, if A and B are consistent, i.e., A ∩ B 6= ∅,
then κ1(m1,m2) = 0, and if A and B are inconsistent, i.e., A ∩ B = ∅,
then κ1(m1,m2) = 1. In other words, if m1 and m2 are categorical, then the
family of conflict measures κN reduces to classical inconsistency assessment
between sets.

Table 1 summarises the notions of consistency and associated conflict
together with the associated definitions and measures. The measures defined
so far in the literature are mentioned with the proper reference, while the
ones proposed in this paper are not assigned any specific reference. Only
three values of N are considered for consistency (1, 2 and F) and for conflict
(1, 2 and F12) in Table 1.
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Lemma 4. ∀m1 ∈M,∀m2 ∈M, we have κN−1(m1,m2) ≤ κN(m1,m2).

Proof. Follows from the fact that auto-conflict verifiesmN−1(∅) ≤ mN(∅) [18].

Lemma 4 shows that as N increases, the stronger the conflict measure
becomes. In particular, κF12

is the strongest conflict measure, while κ1 is
the weakest. An equivalent relationship can straightforwardly be derived
between consistency measures φN .

The following Section 3.6 further studies the relative behaviours of the
measures considered so far.

3.6. Correlation analysis

In this section, we conduct some correlation analysis of the different mea-
sures, the new φN family for N = 1, . . . ,F (including φm = φ1 and φY = φ2),
the existing logical consistency measure φπ and their counter-part conflict
measures, to illustrate and better grasp their relative behaviours. In par-
ticular, the experiments show that the measures capture different shades of
consistency (and conflict). We use the Spearman coefficient which is a rank
correlation coefficient quantifying how much two measures are monotonically
correlated. It reaches the value 1 if the two measures are linked through some
increasing monotonic function.

3.6.1. Conflict measures κN vs κπ
We first study how the family of conflict measures κN behaves relatively

to the existing (strong) conflict measure κπ, using a similar experiment to
that in [7, Section VII.A].

For a given size of the frame of discernment X , we have drawn randomly
(following Algorithm 3 of [20]) 5000 couples of normalised mass functions
(m1,m2) having 2|X |− 1 focal sets . Table 2 shows the Spearman correlation
between κπ and κN for different values of N and of |X |. The first line of
Table 2 corresponds to the first line of Table II of [7, Section VII.A] with
very similar values, while the other lines differ in the sense that our N does
not correspond to the number of sources combined as in [7]. We can observe
that for |X | = 2 and |X | = 3, for which we have F12 = 4 and F12 = 8
respectively, the correlation between κF12

and κπ is really high (0.9895 and
0.9941, respectively).

In the experiment of [7, Section VII.A], it was observed that the correla-
tion between κ1 and κπ is relatively high, and that this correlation increases
as the cardinality of the frame decreases and as the number of sources to be
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Size of the frame of discernment |X |
2 3 4 5 6 7

1 0.8467 0.7747 0.7268 0.6624 0.6116 0.5551
2 0.9535 0.8960 0.8451 0.7772 0.7187 0.6616
3 0.9796 0.9452 0.9024 0.8395 0.7713 0.7064
4 0.9895 0.9689 0.9373 0.8853 0.8168 0.7477

N 5 - 0.9811 0.9585 0.9175 0.8546 0.7851
6 - 0.9877 0.9716 0.9395 0.8847 0.8178
7 - 0.9916 0.9798 0.9548 0.9081 0.8457
8 - 0.9941 0.9852 0.9655 0.9260 0.8694

Table 2: Spearman correlation between κπ and κN according to |X | and N ≤ 8.

combined increases. In our experiment, a similar observation can be made:
the correlation between κN and κπ increases as |X | decreases and as N in-
creases, for the values of |X | and N considered here. This latter result can be
better observed in Figure 1, which displays the scatter plots for the specific
case of |X | = 3, whose corresponding correlation coefficients can be found in
column “|X | = 3” of Table 2.

Our experiment shows that while κ1 and κπ are quite correlated as both
are measures of conflict, the family of measures κN captures different shades
of conflict and the correlation with κπ increases with N . However, it shows
that the measures κF12

and κπ for strong nonconflict do not have a max-
imal correlation and hence are different (a fact already known thanks to
Remark 1).

3.6.2. Consistency measures φN
Here we study the correlation between φN and φπ on the one hand and

within the family φN as N varies on the other hand, by analysing the im-
pact of the number of focal elements F as well as the size of the frame of
discernment |X |. We thus prefer Algorithm 7 to Algorithm 3, both of [20],
which allows to control the number of focal elements of the mass function
generated.

As one can see from Figure 2, the correlation between φF and φπ, which
are two measures of logical consistency, is high (> 0.93) whatever the size of
the frame of discernment and the number of focal elements considered here.
Furthermore, if we consider a particular value of F, for instance F = 5, it
appears that φπ is more correlated to φF than to any φN , for all N < F,
as shown in Figure 3. Figure 3(a) displays how the correlation between φπ
and φN increases with N for different sizes of X , while Figure 3(b) is the
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Figure 1: Scatter plots of measures κπ and κN obtained from 5000 couples of randomly
generated mass functions over X such that |X | = 3.

Figure 2: Spearman correlation between φπ and φF for 5000 randomly generated mass
functions.
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corresponding scatter plot for the specific case of |X | = 4.

(a) Spearman correlation between φπ and
φN , N varying, for several |X |.

(b) Scatter plots of φπ and φN , |X | = 4.

Figure 3: Correlation between φπ and φN , 5000 randomly generated mass functions over
X with F = 5 focal sets.

We conclude this correlation analysis section with the behaviour of the
φN measures between themselves. Table 3 reports the pairwise correlation
coefficients between φN and φM , for 1 ≤ N,M ≤ F = 5 and |X | = 4. We

N
1 2 3 4 5

1 1.0000 0.6459 0.5869 0.5591 0.5438
2 - 1.0000 0.9829 0.9653 0.9520

M 3 - - 1.0000 0.9965 0.9910
4 - - - 1.0000 0.9987
5 - - - - 1.0000

Table 3: Correlation between φN and φM for 1 ≤ N,M ≤ F = 5 and |X | = 4.

observe that the correlation between successive pairs of measures (φN , φN+1)
increases as N increases. Additionally, we observe that φN is less correlated
to φN+2 than to φN+1.

The scatter plots of Figure 4 illustrate the correlation coefficients corre-
sponding to the second diagonal of Table 3. For a given m, the measures φN
are less correlated for low values of N .

We illustrated that the family of consistency measures φN allows to cap-
ture different shades of consistency, and thus that the derived family of con-
flict measures κN allows to capture different shades of conflict between two
mass functions m1 and m2. In practice, the family of measures κN offers
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Figure 4: Scatter plots of φN and φN+1 for 5000 random mass functions such that |X | = 4
and F = 5.

alternatives to evaluate the validity of the result of the combination by the
conjunctive rule ∩©, as it will be illustrated in Section 3.7.

3.7. Toy example

We illustrate some of the consistency and conflict measures, as well as
some of their relationships, described previously, on a problem of vessel des-
tination estimation and associated anomaly detection, in which we would
like to estimate a vessel’s destination while detecting any inconsistency given
different sources of information.

Let X = {d1, d2, d3, d4} = {Savona,Genova,La Spezia,Livorno} denote
the set of possible destinations for the vessel.

We consider a source S1, as an algorithm analysing the kinematic fea-
tures of the vessel, compared to some pre-extracted patterns-of-life as mar-
itime routes [21]. Once computed, the routes provide contextual information
describing some normalcy against which the current positions of vessels can
be compared. In particular, assigning a vessel to a route provides informa-
tion about its final destination [3]. However, because the routes share some
portions of the sea, some indeterminacy may occur and a subset of possi-
ble destinations may rather be deduced. Let m1 be the mass function that
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encodes the information provided by the source S1:

m1 : ({d1, d2, d3}, 0.6; {d1, d2, d4}, 0.3; {d3, d4}, 0.1).

We have:

m2
1 : ({d1, d2, d3}, 0.36; {d1, d2, d4}, 0.09; {d3, d4}, 0.01;

{d1, d2}, 0.36; {d4}, 0.06; {d3}, 0.12).

and

m3
1 : ({d1, d2, d3}, 0.216; {d1, d2, d4}, 0.027; {d3, d4}, 0.001;

{d1, d2}, 0.486; {d4}, 0.036; {d3}, 0.126; ∅, 0.108).

The mass function m1 is 1-consistent (probabilistically consistent) and 2-
consistent (pairwise consistent), but not 3-consistent (i.e., not logical consis-
tent since F1 = 3). Indeed:{

φ1(m1) = φ2(m1) = 1,

φ3(m1) = 1−m3
1(∅) = 0.892.

(10)

Consider now a second source S2 which provides a piece of evidence en-
coded by the following mass function, corresponding to the subjective as-
sessment of a human operator, knowing the maritime traffic of the area and
excluding Genova (d2) as a possible destination for that vessel, but consid-
ering as more probable the destination of Savona (d1) or Livorno (d4) than
that of La Spezia (d3):

m2 : ({d1, d3, d4}, 0.7; {d1, d4}, 0.3)

The conjunctive combination of m1 and m2 has F12 = 5 focal sets:

m1 ∩©2 : ({d1, d3}, 0.42; {d1, d4}, 0.3; {d3, d4}, 0.07; {d1}, 0.18; {d4}, 0.03)

The mass functions provided by the sources S1 and S2 are 1-nonconflicting
since κ1(m1,m2) = 0. However, they are not nonconflicting of order 2 (and
consequently higher orders) since some focal sets of m1 ∩©2 are pairwise dis-
joint (e.g, {d3, d4} ∩ {d1} = ∅):

κ1(m1,m2) = 1− φ1(m1 ∩©2) = m1
1 ∩©2(∅) = m1 ∩©2(∅) = 0,

κ2(m1,m2) = 1− φ2(m1 ∩©2) = m2
1 ∩©2(∅) = 0.0612,

κ3(m1,m2) = 1− φ3(m1 ∩©2) = m3
1 ∩©2(∅) = 0.1908,

κ4(m1,m2) = 1− φ4(m1 ∩©2) = m4
1 ∩©2(∅) = 0.2999,

κ5(m1,m2) = κF12
(m1,m2) = 1− φF12

(m1 ∩©2) = mF12
1 ∩©2(∅) = 0.3865.

(11)
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Note that, as stated in Lemma 4, the conflict does not decrease with N .
The (1-)nonconflict of the mass functions is a valid justification for con-

sidering the result of their conjunctive combination for further reasoning [22]
and based on some standard decision procedure (such as the pignistic trans-
form [23]), d1=Savona would be a sensible estimated destination.

We note also that while κ1 is null, κ2 is very small (0.0612), and κF12
,

the measure for strong nonconflict, is quite higher (0.3865). A criterion for
combination based on κF12

instead of κ1 would lead then possibly to the
decision to not combine the sources.

4. A norm-based view on conflict

Section 3 has brought to light the existence of a family of conflict mea-
sures, respecting Destercke and Burger’s axiomatization of conflict quantifi-
cation and encompassing Yager’s definition of consistency.

As argued in [10, 7] and further developed in [11], distances between belief
functions [24] are questionable to measure their conflict; for instance, they
do not satisfy Properties 5 (imprecision monotonicity) and 7 (insensitivity
to refinement). Still, this does not mean that geometrical objects are not
relevant to conflict quantification as will be shown in this section.

After recalling in Section 4.1 necessary material on norms and distances,
we lay bare in Section 4.2 a pseudo-norm based view on consistency measures,
which leads us to investigate the relationship between the consistency of a
mass function and its distance to the state of total inconsistency. Then,
this geometric view with respect to consistency measures is carried over to
conflict measures in Section 4.3.

4.1. Norms and distances

Any vector v of the Cartesian space RN spanned by the set of vectors
{ei, 1 ≤ i ≤ N}, can be written as v =

∑
1≤i≤N viei, with vi ∈ R the

coordinate of v along dimension ei.
By definition, a norm is a function n : RN → [0,∞) that satisfies the

following properties:

(n.1) Definiteness: n(v) = 0⇔ v = 0 (i.e., vi = 0, i = 1, . . . , N),

(n.2) Homogeneity: n(bv) = |b|n(v), ∀b ∈ R, ∀v ∈ RN ,

(n.3) Subadditivity (triangle inequality): n(v1+v2) ≤ n(v1)+n(v2), ∀v1,v2 ∈
RN .

A pseudo-norm corresponds to changing condition (n.1) in the definition of
the norm to n(v) = 0⇐ v = 0 [25].
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The function

npw(v) := (
∑
i

wi|vi|p)1/p, (12)

with p ≥ 1 and where, for i = 1, . . . , N , finite wi > 0, is an example of a
norm; if we allow some wi to equal zero, then npw is a pseudo-norm [25]. The
weights wi actually distort the space of reference by increasing or reducing the
importance of some dimensions. The (pseudo-)norm n1

w will be more simply
denoted by nw and we have nw(v) =

∑
iwi|vi|. Note also that n∞w (v) =

maxv, ∀w such that
∑

iwi = 1 [26]. As a consequence n∞ will denote any
norm n∞w with w such that

∑
iwi = 1.

A metric or distance function (called simply distance) is a function d :
RN × RN → [0,∞) that satisfies the following properties:

(d.1) Definiteness: d(v1,v2) = 0⇔ v1 = v2,

(d.2) Symmetry: d(v1,v2) = d(v2,v1), ∀v1,v2 ∈ RN ,

(d.3) Triangle inequality: d(v1,v2) ≤ d(v1,v3)+d(v2,v3), ∀v1,v2,v3 ∈ RN .

A pseudo-distance corresponds to changing condition (d.1) in the definition
of the distance to d(v1,v2) = 0⇐ v1 = v2 [25]. If n is a norm (resp. pseudo-
norm) then dn(v1,v2) := n(v1−v2) is a distance (resp. pseudo-distance) and
is called the induced distance (resp. pseudo-distance) from n. The distance
(resp. pseudo-distance) induced by the norm (resp. pseudo-norm) npw will
be denoted by dpw; d1w will be more simply denoted by dw and the distance
induced by n∞ will be denoted by d∞.

4.2. Consistency as distance to total inconsistency

Let EX denote the Cartesian space R2K spanned by the set of vectors
{eA, A ⊆ X}. Any vector v of EX can then be written as v =

∑
A⊆X vAeA,

with vA ∈ R the coordinate of v along dimension eA. A mass function
m may then be represented as the vector m of EX such that vA = m(A).
Similarly, a plausibility function pl may be represented by the vector pl =∑

A⊆X pl(A)eA, with its plausibility values pl(A) as coordinates of pl. The
vector associated to mA is denoted by mA. Special cases are the empty mass
function m∅ and the vacuous mass function mX .

Let k : 2X → [0, 1] be the function defined by k(A) := 1 − pl(A), for all
A ⊆ X . Function k may be represented by the vector k =

∑
A⊆X k(A)eA of

EX . Lemma 5 below links function k with other well-known quantities.

Lemma 5. For all A ⊆ X , we have

k(A) = κ1(m,mA) (13)

= m[A](∅). (14)
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Proof. For all A ⊆ X , we have

1− pl(A) = 1−
∑

B∩A 6=∅

m(B)

=
∑

B∩A=∅

m(B) (15)

= (mA ∩©m)(∅).

Besides, κ1(m,mA) = (mA ∩©m)(∅) and m[A](∅) = (mA ∩©m)(∅) by definition.

From (13), k(A) is the amount of conflict, according to κ1, between m
and x ∈ A. From (15), k(A) can also be interpreted as the amount of belief
inconsistent with x ∈ A. Hereafter, we will refer to k as the inconsistency
function associated to m. k is in one-to-one correspondence with m.

We are ready to show the first result of this section:

Proposition 4. For all m ∈M and 1 ≤ N ≤ F, we have

φN(m) = nmN−1(pl), (16)

mN(∅) = nmN−1(k). (17)

Proof. We have mN = mN−1 ∩©m, which using (5) yields

mN(∅) =
∑
A⊆X

mN−1(A)m[A](∅)

=
∑
A⊆X

mN−1(A)k(A)

= nmN−1(k),

and

φN(m) = 1−mN(∅)
= 1−

∑
A⊆X

mN−1(A)k(A)

= 1−
∑
A⊆X

mN−1(A)(1− pl(A))

=
∑
A⊆X

mN−1(A)pl(A)

= nmN−1(pl).
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Proposition 4 shows that the N -consistency of a mass function amounts
to the nmN−1 pseudo-norm of the vector pl and its N -inconsistency amounts
to the same pseudo-norm but of the vector k. Note that nmN−1 is in general
a pseudo-norm, and not a norm, since it is possible that mN−1(A) = 0 for
some A ⊆ X .

Corollary 1. From k = 1 − pl and φN(m) = 1 −mN(∅), we also have the
following equalities:

φN(m) = 1− nmN−1(k)

= nmN−1(1− k),

and

mN(∅) = 1− nmN−1(pl)

= nmN−1(1− pl). (18)

Corollary 1 shows that it is equivalent to compute the pseudo-norm of
the inverse of the inconsistency function (resp. plausibility function), and to
compute the inverse of the pseudo-norm of the inconsistency function (resp.
plausibility function). Briefly, the pseudo-norm and inverse commute.

Proposition 4 leads to the main result of this section, which expresses the
consistency measures φN in terms of pseudo-distances to the state of total
inconsistency:

Proposition 5. For all m ∈M and 1 ≤ N ≤ F, we have

φN(m) = dmN−1(pl,pl∅). (19)

Proof. Eq. (19) follows from (16) and pl∅ = 0.

In short, Proposition (5) shows that the N -consistency of a mass func-
tion is nothing but its pseudo-distance, induced from nmN−1 , to the totally
inconsistent knowledge state. Accordingly, the farther a mass function from
total inconsistency, the more consistent it is, which makes sense. It may be
worth noting that this proposition holds because pl∅ is a null vector in space
EX , and coincides thus with the origin of this space.

Particular cases N = 1, 2,F, of Proposition (5) yield

φ1(m) = dm0(pl,pl∅) = dmX (pl,pl∅), (20)

φ2(m) = dm1(pl,pl∅) = dm(pl,pl∅), (21)

φF(m) = dmF−1(pl,pl∅). (22)
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Example 1. Let us illustrate Eqs. (20)-(22) with mass function m1 from
Section 3.7, i.e.,

m1 : ({d1, d2, d3}, 0.6; {d1, d2, d4}, 0.3; {d3, d4}, 0.1).

This mass function has F1 = 3 focal sets and we have seen (Eq. (10)) that
φ1(m1) = φ2(m1) = 1 and φF1

(m1) = φ3(m1) = 0.892.
Using (20)-(22), we find, respectively:

φ1(m1) = dmX (pl1,pl∅)

= nmX (pl1)

=
∑
A⊆X

mX (A)pl1(A) = mX (X )pl1(X ) = 1,

φ2(m1) = dm1(pl1,pl∅)

= nm1(pl1)

=
∑
A⊆X

m1(A)pl1(A)

= m1({d1, d2, d3})pl1({d1, d2, d3}) +m1({d1, d2, d4})pl1({d1, d2, d4})
+m1({d3, d4})pl1({d3, d4})

= 1

and

φF1
(m1) = d

m
F1−1
1

(pl1,pl∅)

= dm2
1
(pl1,pl∅)

= nm2
1
(pl1)

=
∑
A⊆X

m2
1(A)pl1(A)

= m2
1({d1, d2, d3})pl1({d1, d2, d3}) +m2

1({d1, d2, d4})pl1({d1, d2, d4})
+m2

1({d3, d4})pl1({d3, d4}) +m2
1({d1, d2})pl1({d1, d2})

+m2
1({d4})pl1({d4}) +m2

1({d3})pl1({d3})
= 0.892.

Remark 3. Similar results to Propositions 4 and 5 exist for φπ. Indeed, let
us denote by Ex the K-dimensional subspace of EX spanned by the set {ex, x ∈
X} corresponding to singletons. Then, the contour function π associated to a
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mass function m is represented by the vector π =
∑

x∈X π(x)ex of Ex. Since
φπ(m) = maxx∈X π(x) and π∅ is a null vector in space Ex, we have

φπ(m) = n∞(π)

= d∞(π,π∅). (23)

Note also that φ1(m) = 1 − m(∅) = pl(X ) = maxA⊆X pl(A) and thus we
have, besides the equality (20),

φ1(m) = n∞(pl)

= d∞(pl,pl∅). (24)

Hence, φπ(m) and φ1(m) amount to the n∞ norms of the contour and plausi-
bility functions, respectively, as well as to the d∞ distances of these functions
to total inconsistency.

Let us denote by dφ the pseudo-distance associated to consistency measure
φ, via the equalities (19) and (23) (i.e., dφN = dmN−1 and dφπ = d∞). This
section has thus shown that the consistency of a mass function amounts, for
any consistency measure φ considered in this paper, to its pseudo-distance
dφ to total inconsistency.

Note that the above results suggest that measure φpN(m) := np
mN−1(pl),

with p 6= 1,∞, i.e., p different from the values considered above, might be
interesting to investigate as a candidate consistency measure. This is left for
further research.

4.3. Geometric perspective on conflict measures

As a natural extension of the preceding results, based on the fact that a
given conflict measure is induced by a consistency measure, it is shown below
how conflict measures κN can be expressed in terms of distances to the total
inconsistency state.

Proposition 6. For any m1,m2 ∈M, we have

κN(m1,m2) = 1− nmN−1
1 ∩©2

(pl1 ∩©2)

= nmN−1
1 ∩©2

(k1 ∩©2)

Proof. Follows from Eq. (9) and Proposition 4.

Proposition 6 shows that the κN conflict between mass functions amounts
to the nmN−1

1 ∩©2
pseudo-norm of the inconsistency function of their combina-

tion. Equivalently, it is equal to one minus the nmN−1
1 ∩©2

pseudo-norm of the

plausibility function of their combination.
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As the norm is simply the distance to the origin, Proposition 5 leads to
the following relation between conflict and pseudo-distance:

Proposition 7. For any m1,m2 ∈M and 1 ≤ N ≤ F12, we have

κN(m1,m2) = 1− dmN−1
1 ∩©2

(pl1 ∩©2,pl∅).

Special cases N = 1, 2,F12, yield

κ1(m1,m2) = 1− dmX (pl1 ∩©2,pl∅),

κ2(m1,m2) = 1− dm1 ∩©2
(pl1 ∩©2,pl∅),

κF12
(m1,m2) = 1− d

mF12−1(pl1 ∩©2,pl∅).

In particular, we note that the classical conflict measure m1 ∩©2(∅) between
mass functions in the TBM is equal to one minus the pseudo-distance dmX
between the plausibility function of their combination and the plausibility
function of the empty mass function.

Informally, Proposition 7 shows that the conflict between m1 and m2

amounts to one minus the pseudo-distance between their conjunctive com-
bination and the totally inconsistent knowledge state (the counterpart to
Remark 3 for conflict measure κπ yields a similar conclusion: κπ(m1,m2) =
1− d∞(π1 ∩©2,π∅)). This shows that while a distance between m1 and m2 is
not an appropriate measure of their conflict [7, 11], distances can be used to
express it.

Conversely, conflict measures can be used to express the distance between
m1 and m2, as detailed in Remark 4 for a special case. Whether such rela-
tionships exist for other distances and conflict measures is an open question.

Remark 4. Let the Euclidean distance between the plausibility functions be
denoted d2 and defined as

d2(pl1, pl2) :=

√∑
A⊆X

(pl1(A)− pl2(A))2.

By Lemma 5, we obtain for all m1,m2 ∈M:

d2(pl1, pl2) =

√∑
A⊆X

(κ1(m1,mA)− κ1(m2,mA))2. (25)

As can be seen with (25), d2(pl1, pl2) does not evaluate how much m1 and
m2 are in conflict with each other, but rather quantifies how much they are
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in conflict (according to the classical conflict measure κ1) with the same cat-
egorical mass functions mA (sets A), A ⊆ X . This gives also some intuition
behind the property that d2(pl1, pl2) = 0 iff m1 = m2 whereas we can have
κN(m1,m2) 6= 0 for m1 = m2: if m1 = m2 = m then m1 and m2 have
the same conflict with the same sets, i.e., κ1(m1,mA) − κ1(m2,mA) = 0
∀A ⊆ X , whatever m may be, whereas κN(m1,m2) = 0 iff m1 and m2 are
N-nonconflicting, that is m2 is N-consistent.

5. Conclusions

Conflict between belief functions has been defined by Destercke and Burger
as the inconsistency of the belief function resulting from their conjunctive
combination. The three existing definitions of the consistency of a belief
function were shown in this paper to be specific cases, or shades , of a pa-
rameterised family of consistency definitions, which we called consistency of
order N . We introduced a corresponding family of consistency measures and
derived an associated family of conflict measures between belief functions.
Each of these conflict measures is shown to verify a list of desirable prop-
erties for quantifying conflict. The family of conflict measures encompasses
the classical measure of conflict in belief function theory, associated to the
weakest (“brightest”) definition of consistency, as well as two other conflict
measures associated, respectively, to a stronger (“darker”) definition of con-
sistency by Yager and to the strongest (“darkest”) definition of consistency
by Destercke and Burger (called logical consistency). In addition, a geometric
view on consistency measures as well as on the associated conflict measures
was provided. In particular, we showed that measuring the consistency of a
belief function amounts to measuring its distance to the totally inconsistent
knowledge state, whatever the definition of consistency considered. A similar
result was also obtained for conflict measures.

Our conflict measures are applicable in the case where it can be safely
assumed that the sources are independent. However, the measures can readily
be extended to the case where the dependence between sources is known and
is captured by a joint mass function as in [7]. Handling the case where the
dependence structure cannot be uniquely identified would need some further
work, but it seems possible (in particular, measure κ1 for nonconflict has
already been adapted to this case in [7]). Besides, similarly to what has been
done in [7] for measure κπ, it would be interesting to find a decomposition
of the conflict κN of two belief functions, in terms of some internal conflict
(inconsistency) of each of the belief functions and of some external conflict
between them, such that this decomposition satisfies some sensible relations
originally introduced in [10].
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Other interesting perspectives include finding theoretical or practical con-
siderations that could help in selecting in a given application, one specific
conflict measure among the κN measures, or in choosing between the two
measures for strong nonconflict κF12

and κπ. In addition, it would be in-
teresting to know whether there exist other pseudo-norms of the plausibility
vector, besides the family of pseudo-norms we have introduced and presented,
which could serve as consistency measures.
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