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Linguistically Characterizing

Clusters of Database Query Answers

Aurélien Moreau, Olivier Pivert, Grégory Smits∗

Univ Rennes, CNRS, IRISA – UMR 6074
F-22305 Lannion, France

Abstract

This article describes ClusterXplain, an approach helping users to better
understand the results of their queries. These results are structured with a
clustering algorithm and described using a personal vocabulary. We present
a crisp and a fuzzy version of this approach. The goal is to find what the
elements of a cluster have in common that also differentiates them from the
elements of the other clusters. The data considered for characterizing each
cluster of answers are not limited to attributes used in the query, revealing
unexpected correlations to the user. We provide users with characterizations
using terms from the natural language to describe the obtained clusters.

Keywords: Databases, Cooperative Answering, Clustering, Fuzzy Logic

1. Introduction

The general issue of providing answers with additional information is one
of the aspects of the domain known as cooperative query answering (Gaaster-
land et al., 1992), a challenging research direction in the database domain.
Several types of approaches have recently been proposed that share that gen-5

eral objective. Helping users explore databases is a form of cooperative an-
swering, along with handling failing queries (Koudas et al., 2006), or queries
yielding a plethoric answer set. Another example of explanation needs is
when the set of answers obtained can be clustered in clearly distinct subsets
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of similar or close answers. Then, it may be interesting for the user to know10

what meaningful differences exist between the tuples leading to the answers
that may explain the discrepancy in the result (De Calmès et al., 2003). For
instance, if one looks for possible prices for houses to let obeying some (pos-
sibly fuzzy) specifications, and that two clusters of prices are found, one may
discover, e.g., that this is due to two categories of houses having, or not,15

some additional valuable equipment such as a swimming pool.
Several approaches consider clustering to tackle the many answer prob-

lem such as the one in Liu & Jagadish (2009). In this case the authors
allow the users to refine their results by presenting the most representative
answers. However they do not provide any additional information regarding20

the formed clusters beyond the attributes used by the user. In the approach
presented in Pivert & Prade (2012), the suspect nature of some answers
(involved in the violation of one or several functional dependencies) to a re-
quest is identified through auxiliary queries. This may be viewed as a form
of cooperative answers where additional information (here, the suspect na-25

ture of an answer, possibly with a degree) is provided to the user. In Meliou
et al. (2010), the authors take advantage of the lineage of answers for finding
causes for a query result and computing a degree of responsibility of a tuple
with respect to an answer, as a basis for explaining unexpected answers to
a query. The idea there is that “tuples with high responsibility tend to be30

interesting explanations to query answers.” Providing end users with a mech-
anism to understand the answer set and possibly narrow it down according
to unexpected criteria is one of our objectives.

In the following we propose ClusterXplain: an approach that first uses
a clustering algorithm to detect groups of answers (a group corresponds to35

elements that have similar values on the attributes from the projection clause
of the query), before describing these clusters with a fuzzy vocabulary —
this is the description step. Then we look for common properties between
the elements of each cluster (that are not possessed by elements from other
clusters) for the other attributes — this is the characterization step. Our40

objectives include:

1. Robustness (providing explanations to most user queries to enable users
to understand the characteristics shared by groups of answers);

2. Interpretability (the explanations produced must be easily understand-
able by an end-user;45

3. Automatization of the detection of groups of answers.
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We first outline our approach in Section 2, and we position it wrt. related
work and close research issues in Section 3. We detail the three steps of
ClusterXplain, namely detection (Section 4), description (Section 5), and
characterization (Section 6). We present and discuss experimental results50

in Section 7. Finally, Section 8 recalls the main contributions and outlines
perspectives for future work.

2. General Principle

Let R denote the relation concerned by the selection-projection query Q
(R may be the result of a join operation on multiple relations). A being the55

set of the q attributes of R, let us denote by Aπ the subset of A made of the
attributes onto which R is projected, by Aσ the subset of A concerned by
the selection condition, and let us denote Aω = A\(Aπ ∪ Aσ).

A fuzzy vocabulary on R is defined by means of fuzzy partitions of the
q domains. This work being focused on a cooperative strategy to answers60

explanation, we consider that these partitions are predefined. To ease the
definition of such partitions, that correspond to a subjective interpretation
of the definition domains of interest, graphical tools as ReqFlex Smits et al.
(2013) may be used or semi-automatic technics of vocabulary elicitation from
the data Smits et al. (2017).65

A fuzzy partition Pi associated with the domain Di of attribute Ai is
composed of mi fuzzy sets {Pi,1, Pi,2, . . . , Pi,mi

}, such that for all x ∈ Di:
mi∑

j=1

µPij
(x) = 1

where µPij
(x) denotes the degree of membership of x to the fuzzy set Pij.

Straightforwardly, one has: C(F ) = F1 and S(F ) = F0.
In practice, the membership function associated with F is often of a trape-

zoidal shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F ) =
[A, B] and S(F ) = [A − a,B + b], see Figure 1.

Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff
µF (u) ≤ µG(u), ∀u ∈ U . The complement of F , denoted by F c, is defined by
µF c(u) = 1 − µF (u). Furthermore, F ∩ G (resp. F ∪ G) is defined the following
way: µF∩G = min(µF (u), µG(u)) (resp. µF∪G = max(µF (u), µG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and
complementation operator correspond respectively to the conjunction ∧, dis-
junction ∨ and negation ¬. See [5] for more details.

2.2 Fuzzy Partitions

In the approach we propose, it is assumed that the user specifies a vocabulary
defined by means of fuzzy partitions. Let R be a relation containing w tuples
{t1, t2, . . . , tw} defined on a set Z of q categorical or numerical attributes
{Z1, Z2, . . . , Zq}. A fuzzy vocabulary on R is defined by means of fuzzy partitions
of the q domains. A partition Pi associated with the domain of attribute Zi is
composed of mi fuzzy predicates {Pi,1, Pi,2, ..., Pi,mi

}, such that for all Zi and
for all t ∈ R :

mi∑

j=1

µPij
(t) = 1.
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Fig. 2. A partition over the domain of attribute year

More precisely, we consider partitions for numerical attributes (Fig. 2) com-
posed of fuzzy sets, where a set, say Pi, can only overlap with its predecessor
Pi−1 or/and its successor Pi+1 (when they exist). For categorical attributes,
we simply impose that for each tuple the sum of the satisfaction degrees on all
elements of a partition is equal to 1. Each Pi is associated with a set of linguistic
labels {Lp

i,1, Lp
i,2, . . . , Lp

i,mi
}.

Figure 1: A partition over the domain of the attribute year
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More precisely, we consider Ruspini partitions (Ruspini, 1969) for numer-
ical attributes (Fig. 1) composed of fuzzy sets, where a set, say Pi, can only
overlap with its predecessor Pi−1 or/and its successor Pi+1 (when they ex-
ist). For categorical attributes, we simply impose that for each value of the70

domain the sum of the satisfaction degrees on all elements of a partition is
equal to 1. These partitions are specified by an expert during the database
design step and represent “common sense partitions” of the domains. Each
Pi is associated with a set of linguistic labels {Li1, Li2, . . . , Limi

}.

Table 1: A partition over the domain of the attribute make
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American 1 1 ... 0 ... 0 0 0 0 ... 0 0 ... 0 0 ...

Asian 0 0 ... 1 ... 0.6 0 0 0 ... 0 0 ... 0 0 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

French 0 0 ... 0 ... 0.4 1 1 0.4 ... 0 0 ... 0 0 ...
East-European 0 0 ... 0 ... 0 0 0 0.6 ... 1 1 ... 0 0 ...

German 0 0 ... 0 ... 0 0 0 0 ... 0 0 ... 1 0.6 ...
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

The three main steps of the approach are:75

1. detection of the clusters: applying a clustering algorithm on the data
projected (attributes from Aπ) from the query (Section 4);

2. description of the clusters: projecting them on the vocabulary defined
on the domains of the attributes from Aπ (Section 5);

3. characterization of each cluster in terms of the vocabulary defined80

on the domains of the attributes from Aω (Section 6).

Step 1 identifies groups of answers having distinctive properties on the at-
tributes onto which the query result is projected. Step 2 is about using a
fuzzy vocabulary to describe each group of answers identified during step 1.
Step 3 aims at providing one or several characterizations for each of these85

clusters. A characterization is considered as additional information as it con-
cerns attributes that do not appear in the query, and as such that were not
specified by the user. Descriptions and characterizations both appear in the
form of a conjunction of fuzzy terms taken from the vocabulary, the only
difference being in the origin of the attributes considered. The objective is90

to find properties that will permit to describe the clusters with attributes
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used to produce them (from Aπ) and then characterize them with attributes
not involved in the query (from Aω).

Let us denote by C = {C1, . . . , Cn} the set of clusters obtained.

Definition 1. A (fuzzy) description (resp. candidate characteriza-
tion) ECi

attached to a cluster Ci is a conjunction of couples (attribute,
(fuzzy) set of labels) of the form

ECi
= {(Aj, Fi,j) | Aj ∈ Aπ(resp. Aω) and Fi,j is a (fuzzy) set of

linguistic labels from the partition of the domain of Aj}.
Example 1. Let us consider a query looking for the year and mileage of95

second-hand cars (Aπ = {year, mileage} and Aω = {price, consumption,
make, . . .}) and such that its result set may be separated into two groups
(Step 1). Then, step 2 provides discriminative linguistic descriptions of these
two groups on the attributes from Aπ, as e.g.:

• Cars in group 1 possess the following properties: “(year is recent or100

medium) and (mileage is small)”;

• Cars in group 2 possess the following properties: “(year is old or very
old) and mileage is high”.

You may also be interested to know that:

• Cars in group 1 are also characterized by the following properties:105

“(consumption is medium) and (price is expensive or medium)”;

• Cars in group 2 are also characterized by: “(consumption is high or
medium) and (price is low or very low)”.

Remark 1. In the fuzzy version of the approach, a degree is attached to
each label to quantify the extent to which the label is specific to the given110

characterization. For the sake of clarity, these degrees, that may also be
linguistically described, as e.g. 0.9→ very specific, are discarded in this first
example.�

The objective of providing the user with interpretable descriptions and
additional characterizations of his/her query results raises many underlying115

problem that are addressed in this work: How to cope with the fact that
all the answers from a same group do not possess common and distinctive
properties? How to quantify the relative discrimination power of the different
linguistic terms appearing in the descriptions and characterizations?
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3. Related Work120

Fuzzy approaches to answer explanations have been previously proposed
in Amgoud et al. (2005); De Calmès et al. (2003). In Amgoud et al. (2005),
the answers to a fuzzy query are ranked according to an overall aggregation
function and additional information (positive and negative) is provided about
the different results. Case-based reasoning is at the heart of De Calmès et al.125

(2003), as the authors study the similarities between situations and their
resulting outcomes. To do so, queries with a single output attribute are con-
sidered and the result is presented in the form of 1) a possibility distribution
reflecting the values taken by this attribute, and 2) a function giving the num-
ber of cases supporting a particular outcome attribute value. The fact that130

a single attribute is considered makes it relatively easy to detect clusters of
answers (they correspond to distinct peaks of the distribution) by looking at
the associated curve. However, the authors do not give any detail about how
this detection process could be generalized and automated (which we do by
using a clustering technique). To find explanations for a given distribution,135

they propose to look for attribute values that are shared by elements in one
peak and different in the others, through the use of fuzzy sets, membership
functions and similarity measures. The authors point out that the explana-
tions found may not always be meaningful with sets containing values that
are too different. Our use of a vocabulary helps the user understand which140

ranges of values are considered. Also the authors do not make clear how to
compute “joint ranges” to find explanations based on several attributes (in
the case no single attribute can explain a peak).

In Roy & Suciu (2014), explanations based on causality and provenance
are defined. The objective of the authors is different from ours insofar as145

they do not provide any insight regarding the structure of the results of the
queries but rather illustrate causality with “intervention”, i.e. removing tu-
ples from the database and assessing how the results are modified. A close
research direction deals with “why not” answers in Herschel (2013), looking
for explanations for missing elements in an answer set. Causality and prove-150

nance are here the keys to figuring out which tuples and which conditions
prevented some tuples from being part of the result. Three kinds of expla-
nations have been used separately to deal with the missing answer problem:
instance-based in Herschel & Hernández (2010), query-based in Chapman &
Jagadish (2009), and modification-based in Tran & Chan (2010). Instance-155

based explanations consist in updating the data source so that running the
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query again will yield the missing answer. Query-based explanations con-
sist in finding which query operator(s) removed the expected tuple from the
result. Modification-based explanations first verify whether or not the ex-
pected answer can be computed from the data sources, and then modify the160

original query so it includes the missing answers. In Herschel (2013), Her-
schel introduces hybrid explanations mixing all of the above with the Conseil
algorithm. In this article we analyze the clusters of answers to provide users
with descriptions and characterizations of their results, and do not consider
answers out of the result set.165

To help the user understand the queried data, and not a particular query
result, the approach described in Singh et al. (2016) also relies on a clustering
algorithm to identify the inner structure of a dataset that is then described,
using value ranges. However the authors do not use terms from the natural
language to describe the answers, and require the user to know exactly how170

many clusters should be obtained to apply the k-means algorithm.

3.1. Bridges with Formal Concept Analysis and Rough Sets

In Farreny & Prade (1984) the authors propose a method to designate
objects so as to differentiate them from other objects. Their main focus is
on providing discriminating designations, that are specific to a (set of) given175

object(s). They define a designation as a class, possibly with adjectives
and expressions of relations. They term a designation as correct “if it is
strictly discriminating and it does only use properties and relations known or
observable by the addressee.” The authors favor finding “small” designations,
suggesting that a shorter designation favors understandability.180

Rough set theory (Pawlak, 1991) provides a framework to study sets of
items which lack strict discriminating properties. A given set X has a lower
approximation and an upper approximation. Rules induced from the lower
approximation are certain while rules induced from the upper approximation
are possible. Elements with the same projection on vocabulary attributes in185

our (fuzzy) characterization approach are equally indiscernible. By using
labels from the vocabulary to describe clusters of elements, we fulfill two
objectives:

• We compare clusters based on their projection on attribute modali-
ties, and thus remove computations over all elements when looking for190

characterizations;
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• We formulate explanations with terms from the natural language that
are understandable by users.

In formal concept analysis, a formal context can be viewed as a Boolean
table representing the binary relation R between a set of objects O and their195

sets of properties P (Dubois & Prade, 2016). For each object x ∈ O, R(x)
denotes the set of properties of P in x, and for each property y ∈ P , R−1(y)
denotes the set of objects of O having the property y. An operator R∆ is
defined, so that R∆(X) represents the set of properties shared by all elements
in X. R−1∆ is also defined, such that R−1∆(Y ) represents the set of objects200

that share all properties of Y .
A formal concept is a pair (X , Y) where X ∈ O is a set of objects —

the extension of the concept — and Y ∈ P is the set of properties that are
shared by these objects — the intension of the concept (Gaume et al., 2013)
— such that R∆(X) = Y and R−1∆(Y ) = X.205

When considering bridges between formal concept analysis and our ap-
proach, O is akin to the content of the database, and P to the attribute
labels. Assuming that all the elements of a cluster C satisfy a given set
of properties D, and that no other elements in the database satisfy all the
properties of D, then (C, D) can be viewed as a formal concept. While this210

may be the case in our approach, characterizations with a specificity degree
of 1 are expected to be rare. Our objective is rather to find independent sub-
contexts. By construction, clusters are independent sets of points — insofar
as we consider crisp clustering. However their properties — the modalities
they satisfy — are not necessarily independent from other clusters. Find-215

ing such independent sub-contexts is akin to finding characterizations. Let
us note that these independent sub-contexts may in turn contain “smaller”
formal concepts.

3.2. Bridges with Data Mining Techniques

The first step of our approach is based on clustering, a classic data mining220

technique. We consider numerical and categorical attributes, each associated
with a vocabulary. By rewriting each cluster with the (fuzzy) projection of its
elements on the vocabulary partitions, we obtain a table clusters/attributes.

Item sets are at the heart of association rule mining. A one-item set is a
set with one attribute value for one attribute. There are as many one-item225

sets as there are attribute values. Two-item sets contain two attributes values
— one for each of two different attributes. Rule mining is done over the whole
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set of elements. In our approach, we look for characterizations (attribute
sets: there are as many one-attribute sets as there are attributes, and not
vocabulary modalities) for clusters (sets of elements) Navarro et al. (2012).230

Unlike classic association rule mining, we do not review all items to look for
characterizations but only the projection of the clusters. Furthermore, we are
interested in finding discriminating properties and not necessarily frequent
rules.

In statistics, principal component analysis aims at transforming a set235

of possibly correlated variables (here attributes) into a set of uncorrelated
variables called principal components, by obtaining a new coordinate system
with an orthogonal transformation. Its underlying objective is to reduce the
number of variables while keeping the most informative ones — that have the
highest variance. In our approach we depend on the vocabulary associated240

with the attribute partitions to describe and characterize the clusters with
linguistic descriptions. Thus we do not look for “new” attributes that present
the highest variance in the dataset, but for attribute labels related to one
cluster and not to the others.

4. Detecting Clusters of Answers245

The first step is the detection of clusters. Clustering algorithms are used
as a tool to discover the structure of a set of query answers. We focus on
two families of clustering algorithms: k-means and k-medoids. k-means is
perhaps the most famous and overused clustering algorithm.

Contrary to k-means that uses imaginary points to represent the centers250

of the clusters, k-medoids uses medoids, true points of the clusters designated
as their “center.” One direct consequence is that categorical attributes may
be used with k-medoids, provided that there exists a distance measure over
their domain. Both of these algorithms require a parameter k to partition
a dataset into k subsets. Finding the “right” k often is the main issue with255

these clustering algorithms.
Two variants, CLARA and CLARANS were designed for larger datasets.

A fuzzy variant was introduced, the Fuzzy C-Medoids (FCMed for short) in
Krishnapuram et al. (2001), considering that a point could now “more or
less” belong to a cluster. Membership functions are used to quantify the260

extent to which a point belongs to a cluster. Several parameters such as a
fuzzification coefficient as well as a minimum membership degree are also
required.

9



The cost of this algorithm is quite high (as high as k-medoids theoreti-
cally, but the computation of distance measures is more expensive in a fuzzy265

context than in a Boolean one), so this led to some optimizations such as
Linear FCMed, or LFCMed.

To optimize the clustering process, and offer more options, Lesot et al.
proposed LFCMed-Select (Lesot & Revault d’Allonnes, 2012), with two ma-
jor differences: (i) the possibility to over-estimate the number of clusters, no270

longer having to exactly specify the number of needed clusters, and (ii) the
cluster selection step. After applying the LFCMed algorithm, selection crite-
ria such as minimal cluster size (number of elements in a cluster) and cluster
compactness (maximum cluster radius) are used to cut down the inadequate
clusters. Of course, this leads to a partial clustering of the data, as the dis-275

carded data is not returned and no longer considered. The unassigned data
can be added to the selected clusters, provided that they are close enough to
one of the medoids.

All the above algorithms, except for the first one, are based on fuzzy
assignments of the items in the different clusters. It has been shown that the280

use of a partial membership at the different steps of the clustering algorithm
increases the overall robustness of the process. The overall objective of our
work being to provide synthetic and understandable explanations of a query
result, we decided to interpret the final result of the clustering process in a
Boolean way. The clustering process still relies on gradual assignments to285

stay robust, we just finally keep for each item (i.e. query answer) its most
preferable assignment.

With crisp clusters, a data point contributes to the rewriting of a cluster
w.r.t. the vocabulary once for each attribute. With fuzzy clusters, a data
point will contribute to the rewriting of each of the clusters it belongs to290

w.r.t. the vocabulary for each attribute. Adding membership degrees for
the data points to the clusters would alter the obtained descriptions and
characterizations, and make it more difficult to find specific characterizations.

Our experiments in Section 7 consider the LCMed-Select (we remove the
F to mention that its results are interpreted in a Boolean way) algorithm dis-295

cussed above. As in (Lesot et al., 2013), we use the distance measure (1) to
compare numerical attributes. For the case of categorical attributes, we use
the identity relation to compare two categorical values. This basic strategy
to compare categories is obviously very simple but also drastic. A way to
make the comparison more flexible and robust is to infer a distance between300

categorical values using the numerical values that cooccur with Marsala et al.
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(2018) or using the fuzzy partition defined on the concerned categorical do-
main Smits et al. (2018b). But such improvements are left for future works.

dist(x, y) =
|x− y|

max(x, y)
(1)

The main advantages of this algorithm are to handle large sets of hetero-305

geneous data, to not ask a priori for the exact number of clusters, and to
reduce the effect of a random cluster initialization.

5. Describing Clusters of Answers

The second step is the description of the clusters of answers according
to their values on the attributes from Aπ. To be easily understood by the310

end-user, these descriptions are linguistically formulated using terms from
the fuzzy partition-based vocabulary (Sec. 2). We present in this section two
versions of the description step: a crisp and a fuzzy one, the latter being
more robust when scattered data are considered.

5.1. Crisp Projection of Clusters on Vocabulary Partitions315

Once the clusters are formed, they are projected onto the vocabulary
in order to provide the user with a description of the answers in natural
language. When a cluster satisfies several modalities for a given attribute, a
simple way to project it is to return the disjunction of the associated labels.
A cluster ci can be “boxed up” with 2 ∗ p points (xj,min, xj,max), (one pair320

for each of the p dimensions of the clustering) so that these points indicate
which fuzzy labels the cluster satisfies (to a degree > 0.5) for the attribute
Aj. For instance in Figure 2a, cluster 2 satisfies labels 2 and 3 of attribute 1,
so the disjunction of these two labels should be considered. As to cluster 1,
it only satisfies label 1. Regarding attribute 2, cluster 2 satisfies label b only325

and cluster 1 satisfies label a. Label b is not satisfied by cluster 1 because its
degree is below 0.5.

5.2. Fuzzy Projection of Clusters on Vocabulary Partitions

The basic/crisp projection strategy introduced in the previous subsection
does not reflect the representativity of each modality in clusters: if the bor-330

ders (xj,min, xj,max) for attribute Aj each fully satisfy two different labels,
then the number of cluster points satisfying each of these two labels is not

11
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taken into account in the description. This is why we now propose to rep-
resent the projection of Ci onto the partition of an attribute Aj ∈ Aπ as a
fuzzy set of labels Fi,j = {µLj

k
(Ci)/L

j
k | Ljk ∈ Pj} where335

µLj
k
(Ci) =

∑
x∈Ci

µLj
k
(x)

|Ci|
(2)

and µLj
k
(x) is the degree of membership of x to Ljk. It is assumed that the

only labels that appear in Fi,j are such that µLj
k
(Ci) > 0. Note that the

fuzzy set Fi,j is not normalized in general, but this does not matter here.
The degree associated with each label is related to the number of points
verifying it and to their membership degrees.340

6. Characterizing Clusters of Answers

The final step is the characterization of clusters. This step aims at finding
additional properties (considering attributes not involved in the user query,
i.e. from Aω) that also explain the discrepancy of the answers. To quan-
tify the informativeness of the possible properties (i.e. combination of terms345

from the vocabulary), two concepts are used, namely: specificity and mini-
mality. Specificity aims at providing characterizations with attribute labels
that characterize one cluster only. Minimality aims at providing character-
izations as small as possible to avoid overwhelming the user with attribute
labels. It removes redundant labels that do not contribute to increasing the350

specificity degree. We use these properties to rank candidate characteriza-
tions and determine which ones are actual characterizations. Even if crisp
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and fuzzy characterization may also be considered, we only describe the no-
tion of fuzzy characterization.

6.1. Characterization355

Definition 2. Any conjunctive combination of vocabulary terms describing
properties on the attributes from Aω is a candidate characterization. A
characterization is a candidate characterization that is both specific and
minimal.

The first step to discovering characterizations (in the sense of Definition 1)360

consists in filling a table associating each cluster with its projection on the
attributes of Aω (cf. Formula 2, considering this time that Aj ∈ Aω). For
every Aj (j ∈ [1, |Aω|]) in Aω, we indicate which term Ljk, k ∈ [1, |Pj|] (or
fuzzy set of terms) is satisfied by each cluster and to which degree µLj

k
(Ci).

6.1.1. Specificity and Minimality365

Property 1. Specificity: the specificity degree µspec(EC) determines how rep-
resentative a characterization EC is for a given cluster C, and not so for the
other clusters.

Since the cluster projections are fuzzy sets of labels, the notion of specificity
must itself be viewed as a gradual concept. Being specific for a cluster char-370

acterization E means that there does not exist any other cluster with the
same characterization, i.e., with fuzzy sets that are not disjoint from those of
E for every attribute. It is then necessary to define the extent to which two
such fuzzy sets are disjoint. Let us first consider a characterization involving
a single attribute. Let E1 and E2 be the respective projections of the clusters375

C1 and C2 onto an attribute Aj of Aω, whose associated fuzzy partition is
denoted by Pj. One may define:

µdisjoint(E1, E2) = 1− max
Lj
k∈Pj

min(µLj
k
(C1), µLj

k
(C2)), (3)

which corresponds to the fuzzy interpretation of the constraint @L ∈ Pj such
that both C1 and C2 are L. When several attributes – let us denote by A this
set of attributes – are involved, two characterizations are globally disjoint if380

they are so on at least one attribute and we get:

µdisjoint(E1, E2) = max
Aj∈A

(1− max
Lj
k∈Pj

min(µLj
k
(C1), µLj

k
(C2))). (4)
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Finally, the specificity degree attached to a candidate characterization asso-
ciated with a given cluster C may be defined as:

µspec(EC) = min
C′ 6=C

µdisjoint(EC , EC′), (5)

where EC′ denotes the projection of C ′ onto the attributes present in EC .

Property 2. Minimality: viewing a characterization as a conjunction of385

fuzzy sets of predicates, one says that EC is a minimal characterization of
the cluster C iff @E ′C ⊂ EC so that E ′C characterizes C with a specificity
degree equal or greater than that of EC.

Formally, we use the inclusion in the sense of Zadeh (F1 ⊆ F2 iff ∀x ∈
U, µF1(x) ≤ µF2(x) where U denotes the universe on which fuzzy sets F1 and390

F2 are defined) and we get:

EC is minimal iff 6 ∃E ′C such that ∀Aj ∈ Aω, E ′C [Aj] ⊆ EC [Aj]

and µspec(E
′
C) ≥ µspec(EC)

(6)

where EC [Aj] denotes the fuzzy set related to attribute Aj in EC .

Example 2. Here is a toy example (discarding the gradual coverage of the
terms for the sake of clarity) to illustrate the usefulness of these two prop-
erties. If we consider houses to let, and identify a subset of answers whose395

characterization is E = price is expensive ∧ swimming pool = yes ∧ garden
is big, there should not exist a characterization e.g. E ′ = price is expen-
sive ∧ swimming pool = yes, that also specifically describes a given cluster
(µspec(E

′) > µspec(E)) and that is shorter, thus easier to understand for the
end-user.�400

6.1.2. Algorithms

Given the definition of specificity, a characterization involving every at-
tribute from Aω will have the highest specificity degree possible, denoted
maxSpec. (Elements of proof: adding attributes to characterizations will
add more terms to the aggregate maxAj∈A, in Equation (4), thus potentially405

raising the specificity degree).
The first step of the characterization process is to determine for each

cluster the maximal specificity degree maxSpec one may expect for its char-
acterizations. Clusters whose maximal specificity degree is greater than a
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predefined threshold λ are said to be fully characterizable. For the oth-410

ers, two strategies may be envisaged: to accept a less demanding specificity
threshold, or to try to find specific characterizations on subsets (of points) of
the clusters concerned. Hereafter, we investigate the second option and pro-
pose a solution based on the notion of cluster focusing. With this method,
one expects to be able to generate specific enough characterizations of an415

interesting subset of a non fully characterizable cluster. Our goal being to
characterize a set of items gathered particularly according to their closeness
to each other, it appears obvious to focus on the most central points of the
cluster concerned. It is nevertheless worth noticing that the central points of
a cluster built on the attributes from Aπ do not necessarily form a compact420

and characterizable set on the attributes from Aω.
Thus, Algorithm 1 is applied on each cluster to determine its maximal

specificity degree, and if necessary to determine the largest subset of central
points for which a characterization of a high enough specificity degree may
be found.425

This focusing step is done with the clusterFocus function, which requires
three parameters: the cluster originalCi, a focusing step α and the number of
focusing steps focus-factor. It returns a limited part of the cluster, (100−α)%
of originalCi. The new maxSpec value for this cluster is then computed (line
9). For this calculation, all clusters are considered in their entirety (whether430

some have already been focused or not) except for the current one.

Remark 2. The clusterFocus function may be altered so as to focus on the
most typical elements of a cluster, instead of the most central ones. Consid-
ering typicality means taking into account the relation of an element with the
other clusters — increasing the computation cost in the process — as opposed435

to only considering the medoid distance.

If it is still not characterizable, this step can be repeated until the cluster
is reduced to its medoid/centroid (line 6), always computing the new size
of the cluster focusing based on the original cluster Ci (line 8). In other
words, clusters are automatically truncated to provide users with the best440

characterizations possible i.e. with a specificity degree higher than λ. When
displaying characterizations, users will be informed whether or not said char-
acterizations concern a full or a focused cluster.

Once the maximal specificity degree has been computed for each cluster,
(either complete or truncated), Algorithm 2 is applied to determine for each445
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Input: n clusters C ; |Aω| attributes/values for each cluster ; specificity
threshold λ ; focusing step α ;

Output: one maxSpec for each cluster ;
1 begin
2 foreach cluster Ci do
3 compute maxSpec;
4 focus-factor← 0;
5 originalCi ← Ci;
6 while maxSpec < λ ∧ |Ci| > 1 do
7 focus-factor← focus-factor + 1;
8 C ′i ← clusterFocus(originalCi, focus-factor, α);
9 compute maxSpec for C ′i;

10 Ci ← C ′i;

11 end

12 end
13 characterize each cluster (focusing) with Algorithm 2;

14 end
Algorithm 1: Cluster Characterizer

cluster all the possible characterizations of a minimal size and a maximal
specificity.

This algorithm takes as input the number of clusters, the maxSpec value
for each of them computed with Algorithm 1 as well as the result of the
projection of the data onto the vocabulary. For each cluster Ci (line 2), we450

look for characterizations (line 5) composed first of a single fuzzy set of labels
(for one attribute only), then with two of them, then three, etc., and check
whether candidate characterizations are specific and minimal. If so, they are
added to the set of characterizations (line 9).

6.2. Improving the Characterization Format455

The properties that characterizations present have diverse uses in terms
of understandability and explanation to the user:

• Specificity aims at providing characterizations with attribute labels
that characterize one cluster only;

• Minimality aims at providing characterizations as small as possible to460
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Input: n clusters C ; |Aω| attributes/values for each cluster ; one maxSpec
for each cluster ; specificity threshold λ ;

Output: a set of characterizations for each cluster ;
1 begin
2 foreach cluster Ci do
3 Charact(Ci)← ∅;
4 if maxSpec > λ then
5 for j ← 1 to |Aω| do
6 for every characterization E of size j that is not a superset

of any element of Charact(Ci) of specificity maxSpec do
7 if µspec(E) > λ then
8 if E is minimal then
9 Charact(Ci)← Charact(Ci)

⋃
E;

10 end

11 end

12 end

13 end

14 end

15 end

16 end
Algorithm 2: Characterizations Finder

avoid overwhelming the user with attribute labels. It removes unneces-
sary labels that do not contribute to increasing the specificity degree.

To “minimize” explanations even more, we propose to leverage the vocabu-
lary partitions so as to limit the size of overlong disjunctions of labels. To do
so we suggest using negative characterizations that use labels not included465

in the original characterization. Let us consider a characterization over the
attribute Aj, which is associated with a fuzzy partition Pj composed of mj

predicates. We consider that a characterization for a given attribute Aj is
overlong if it is a disjunction of more than mj/2 labels.

Example 3. Let us consider the characterization price is very cheap (0.5)470

or cheap (0.3) or medium (0.2). Its negative characterization is price is not
(expensive or very expensive). It can be reformulated as price is not expensive
and not very expensive.�
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Remark 3. By using a negative characterization, we lose some information
on the representativity of each modality for the considered cluster: in the475

above example the most representative label was very cheap with a degree of
0.5. With a negative characterization, there are no degrees attached to the
labels to qualify how “representative” they are.

To improve the understandability of disjunctions of labels, instead of dis-
playing the membership degree of each label we can use linguistic quantifiers480

such as few or most to precise which label carries the most importance. Also,
negligible labels (with a membership degree inferior to a given threshold e.g.
0.1) may be omitted from the characterizations.

Example 4. Let us consider the characterization price is very cheap (0.7)
or cheap (0.25) or medium (0.05). The medium label has a degree of 0.05485

and thus may be omitted as it is not particularly representative in the charac-
terization for the attribute price. The characterization becomes price is very
cheap (0.7) or cheap (0.25). By using linguistic quantifiers to translate the
importance of the degrees, the characterization becomes price is mostly very
cheap or sometimes cheap.�490

7. Experiments

We present illustrative examples for both approaches and assess their
performances depending on the numbers of tuples and attributes considered.
We discuss these results after having presented both approaches.

7.1. Illustrative Examples495

As discussed in Section 4, we used the LCMed-select algorithm to de-
termine the inner structure of query results.To describe and characterize the
data, we use an appropriate vocabulary that fits the domain attributes (Lesot
et al., 2013).

7.1.1. Crisp Illustrative Example (Synthetic)500

In order to check the effectiveness of the approach, we performed a pre-
liminary experimentation using a synthetic dataset with houses to let as in
De Calmès et al. (2003). The attributes considered were price, surface, gar-
den area, and swimming pool. The dataset was generated with the objective
to obtain two distinguishable subgroups, hence the convenient distribution505

of the data.
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Consider that we are interested in querying the price and surface values
of houses in a given city. The selection condition is on the attribute city, and
the attributes in the projection are Aπ = {price, surface}. The remaining
attributes are Aω = {garden-area, swimming-pool}. The results of the clus-510

tering algorithm over the price and surface attributes are in Figure 3a, and
the following characterizations may be found:

• Cluster 0 was described as: price is cheap and surface is small ;
The following characterizations were found:

– garden area is small ; swimming pool = no.515

• Cluster 1 was described as: price is expensive and surface is big ;
The following characterizations were found:

– garden area is large; swimming pool = yes.

Here, each cluster was associated with one label for each attribute. The
first two ones Aπ = {price, surface} were the ones on which the clustering520

process was carried out, while the other two Aω = {garden-area, swimming-
pool} each provided a characterization for each cluster, both specific and
minimal.

7.1.2. Crisp Illustrative Example (Real)

With a real dataset, data is usually not as well-separated as in Figure 3a525

but closer to that of Figure 3b. Real data from second-hand cars ads were
used here, with attributes (price, mileage, year, option level, security level,
comfort level, brand, model). Figure 3b is a representation of the data with
the query looking for the prices and mileage of cars that cost between 25,000
and 30,000e or below 10,000e. In this case, some outliers are present and530

the border between clusters is not as clear-cut as in the former case, making
it difficult (if not impossible) to find labels characterizing only one cluster.
This leads us to using more flexible variants of the approach.

7.1.3. Fuzzy Illustrative Examples

To test the fuzzy approach, we performed a preliminary experimenta-535

tion with a real dataset of 700k second-hand cars ads extracted from LeBon-
Coin.fr. The attributes considered were price, mileage, year, option level, con-
sumption, horse power, brand and model. The first twoAπ = {price,mileage}
were the ones according to which the groups of data were formed, while the
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Figure 3: Different clustering results
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Figure 4: Full clusters of second-hand cars over the attributes price and mileage

others Aω = {year, horse-power, ...} were used to find characterizations for540

each cluster, both specific and minimal. Several examples are presented il-
lustrating different situations.

Querying for the prices and mileage of cars of make ‘Audi’, from 2010
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onwards and costing less than 15,000e (Query 1), the clusters obtained on
the result of that query are presented in Figure 4a. We empirically chose545

λ = 0.7 and got:

• Cluster 1: description: (price is medium (0.69) or expensive (0.31))
and (mileage is very low (0.68) or low (0.32); characterization: speci-
ficity 0.83, (year is recent (0.15) or very recent (0.85));

• Cluster 2: description: (price is expensive (0.77) or medium (0.23))550

and (mileage is medium (0.85) or high (0.15); characterization: speci-
ficity 0.71, (option level is high (0.70) or medium (0.13) or low (0.13))
and (consumption is high (0.76) or low (0.12) or medium (0.11);

• Cluster 3: description: (price is medium (1)) and (mileage is medium
(0.78) or high (0.22); characterization: specificity 0.75, (year is recent555

(0.83) or very recent (0.17)) and (option level is medium (0.5) or low
(0.28) or high (0.22));

but no characterizations for cluster 0. After a double focusing (62%), we got:

• Cluster 0 (62%): specificity 0.71, (year is recent (0.87) or very recent
(0.13)) and (consumption is low (0.33) or medium (0.33) or high (0.3).560

We then considered cars of make ‘BMW’, ‘Seat’ or ‘Volkswagen’ costing less
than 15,000e with a mileage inferior to 100,000km (Query 2). The clusters
are presented in Figure 4b.

• Cluster 0: description (price is expensive (0.58) or medium (0.41)) and
(mileage is low (0.62) or very low (0.38)); characterization: specificity565

0.74, year is very recent (0.65) or recent (0.27);

• Cluster 1: description (price is medium (0.64) or expensive (0.29)) and
(mileage is medium (0.73) or low (0.26)); characterization: specificity
0.74, year is recent (0.63) or medium (0.3).

Two characterizations were found for the entire clusters, however since they570

were not very well separated, descriptions and characterizations have many
labels in common, albeit with different degrees. Labels whose degree is in-
ferior to 0.1 are omitted for the sake of readability, which explains why the
sum of the description or characterization degrees is not always equal to 1.
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7.1.4. Discussion575

The crisp approach cannot characterize clusters with mixed borders, un-
like the fuzzy approach. Indeed, the fuzzy approach uses representative de-
scriptions and characterizations of the clusters (with membership degrees for
each label) so as to facilitate distinguishing clusters. Also, in the case of over-
lapping clusters, cluster focusing gives more chances for the characterization580

process to succeed. Nevertheless, there may not always be a characterization
to find for each cluster.

7.2. Performances

To assess the efficiency of the approach, we used a synthetic dataset with
randomly-generated values on a Macbook Pro with a 3GHz Intel Core i7585

processor and 16GB RAM. We checked the impact of two parameters on the
processing times: the cardinality of the dataset and the number of attributes
in Aω. |Aπ| was set to 3 for both experimentations. Let us note that the size
of Aπ does not influence the processing times for the characterization part:
only the number of clusters does so. We compare the performances of both590

crisp and fuzzy approaches.

7.2.1. Crisp Algorithm Performances

The results of the first experiment are presented in Figure 5a. |Aω| was
set to 10. Processing times for the explanation process (description and
characterization) are below one second. In the second experiment, we set the595

number of tuples to 10,000. The results, presented in Figure 5b, show that
the processing time remains negligible as long as |Aω| is under 19.

7.2.2. Fuzzy Algorithm Performances

In the first experiment (Figure 6a), |Aω| was set to 10. Processing times
for the explanation process (description and characterization) are below one600

second for answer sets of up to 10,000 tuples. The number of tuples raises
the computation times as the projection of the clusters on the vocabulary has
to be updated for every focusing. However the rest of the characterization
process is not impacted by the number of tuples considered. In the second
experiment, we set the number of tuples to 10,000. The results (Figure 6b)605

show that the processing times remain low as long as |Aω| is under 15. The
complexity of Algorithm 2 is exponential in the number of attributes |Aω|,
and follows the growth of 2|Aω |.
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7.2.3. Discussion

In both approaches the clustering times are similar but not the same be-610

cause two different sets of queries were used to compute them. By comparing
Figures 5a and 6a we can see that the explanation times are higher with the
fuzzy approach regardless of the number of tuples in the answer set consid-
ered. Comparing Figures 5b and 6b also confirms this as for any considered
number of attributes for the characterization part the explaining process is615

faster with the crisp approach than with the fuzzy approach. This higher
cost of the fuzzy approach is induced by its added intermediary steps, such
as cluster focusing, which requires that the table of correspondences between
clusters and attributes be computed again — on which the number of ele-
ments has a direct impact. Also, the computation of the specificity degree620

in the fuzzy approach is longer than in the crisp approach: with the fuzzy
approach we need to compute an exact degree while with the crisp approach
only one overlapping condition need be found to obtain the non-specificity.

In both approaches the clustering part execution times are acceptable
under 10,000 tuples of data. Let us emphasize that the clustering step is625

performed on a set of answers, not on a base relation, and one may consider
that 10,000 already corresponds to a rather large answer set. To handle very
large result sets containing millions of answers, a more efficient clustering
algorithm would be needed as well as strategies to efficiently estimate the
cardinality of fuzzy sets, as it is done in Smits et al. (2018a) and Slezak et al.630

(2018) for linguistic summarization and approximate querying respectively.

7.3. Specificity Threshold Values

The specificity threshold value λ can be set between 0+ and 1. How-
ever, let us note that characterizations with a specificity degree below 0.5
are not specific in the sense that they are not representative of their cluster635

— because they are more representative of some other cluster. The minimal
acceptable specificity threshold is then 0.5. The maximum specificity thresh-
old value 1 is reminiscent of the crisp characterization approach: all elements
of a cluster must be satisfied by this characterization. The higher the speci-
ficity threshold, the more difficult it gets to find characterizations, and the640

more chances there are that cluster focusing will be triggered. To limit the
triggering of cluster focusing — and keep the clusters in their entirety for the
characterization part — we propose to set the specificity threshold λ to 0.5.

A low specificity threshold will result in more characterizations being
found. This calls for the ranking of the obtained characterizations, which645
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can be done with the specificity degree.

8. Conclusion

In this article, we have presented an approach aimed to characterize sub-
sets of answers to database queries, using three steps: i) detection: the
answers are grouped by means of a clustering algorithm; ii) description: the650

clusters obtained are described in terms of a fuzzy vocabulary; iii) charac-
terization: other attributes (not involved in the clustering part) are used to
highlight the particular properties of each cluster.

Experimental results show that the fuzzy approach is indeed effective and
robust in finding characterizations especially in cases where the crisp ap-655

proach would fail because of its rigidity. The use of fuzzy sets to characterize
clusters offers flexibility when dealing with clusters with mixed borders, and
cluster focusing limits the impact of borderline elements. The acceptable
processing times show that the approach is realistic. Perspectives include
conducting an extensive user study to assess the understandability of char-660

acterizations.
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