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, and also provide a Pareto optimal allocation scheme that is bene…cial and fair for the two players.

Introduction

A private bad is a commodity that causes its owner disutility. Garbage, a local pollutant and a hazardous material are examples of private bads. Some of these commodities can be exchanged, with the receiving agent being compensated in return. Agents will engage in this bad-good exchange when their disutilities for bad and/or their utilities for good di¤er among themselves. An illustrative example is the trade of solid municipal waste (SMW) between cities and countries. According to UN Comtrade data on municipal waste (6-digit HS code 382510), countries reported 1:05 million tons of municipal waste exports worldwide in 2017. These deals cost the waste exporter less than it would to stash its waste in land…lls or to use other disposal methods. Kellenberg [START_REF] Kellenberg | Trading wastes[END_REF] provides an extensive empirical analysis of the waste trade around the world.

This paper analyzes bilateral exchanges of bads using a game-theoretic framework. First, we investigate the outcomes of the …rst-best scenario, and next, the outcomes in a two-player noncooperative game. We provide results on the relationships between these scenarios, and then characterize a fair Pareto-optimal allocation scheme.

Number of theoretical studies dealt with the management of waste trade between countries Corresponding author Email addresses: baris.vardar@gerad.ca (Baris Vardar), georges.zaccour@gerad.ca (Georges Zaccour) (e.g., [START_REF] Cassing | Strategic environmental policies when waste products are tradable[END_REF][START_REF] Dubois | E¢ cient waste management policies and strategic behavior with open borders[END_REF]). These contributions consider the price of exchanging waste to be endogenous and determined by waste supply and demand. However, there are cases in which the price of exchange is …xed, and the trade partners must decide and agree only on the quantity. An example is when the contracts are too costly to renegotiate and modify in the short-run, thus agents decide over a …xed price that has been set at an earlier date (see, e.g., [START_REF] Walls | How local governments structure contracts with private …rms: economic theory and evidence on solid waste and recycling contracts[END_REF] for an examination of contract schemes for solid waste collection and recycling in various regions). Price-taking behavior is studied in another stream of literature focusing on whether or not a competitive equilibrium can exist when bads are in play (see, e.g., [START_REF] Hara | Existence of equilibria in economies with bads[END_REF][START_REF] Hara | Core convergence in economies with bads[END_REF][START_REF] Hirai | Coalition-proof Nash equilibria and cores in a strategic pure exchange game of bads[END_REF]). To the best of our knowledge, this paper is the …rst to look at strategic noncooperative behavior in a bilateral exchange of a bad.

We consider the quantity of exchange (q) to be a decision variable, with no assumption on its sign (i.e., the agent can be a buyer or a seller of bads) and suppose that the price (p) is exogenously given. Agent i's decision depends on the utility of good from exchange u i (pq i ) and the disutility of bad from exchange d i (q i ). In the …rst-best scenario, there is a market for what the welfaremaximizing agent wants to buy or sell, and the optimal quantity is obtained by equalizing the marginal utility and marginal disutility resulting from the exchange. In a bilateral exchange, the quantity traded must suit the interest of both agents, not only the seller's.

An important issue is how to make sure that both parties reach an agreement on the quantity to exchange. There may exist situations in which the seller's supply is greater than the buyer's demand. Also, it may well be the case that both agents are sellers of bads. This work approaches agreement problem using the normalized (or generalized Nash) equilibrium introduced by Rosen [START_REF] Rosen | Existence and Uniqueness of Equilibrium Points for Concave N-Person Games[END_REF], which has been applied in operations research (see the survey in [START_REF] Facchinei | Generalized Nash equilibrium problems[END_REF]) and in environmental economics (see, e.g., [START_REF] Bahn | A cost-e¤ectiveness di¤erential game model for climate agreements[END_REF][START_REF] Krawczyk | Coupled constraint Nash equilibria in environmental games[END_REF][START_REF] Tidball | An environmental game with coupling constraints[END_REF][START_REF] Tidball | A di¤erential environmental game with coupling constraints[END_REF]).

In our analysis, an agreement is reached when both parties want to exchange the same quantity but with opposite signs. If agent i wants to import quantity q of bad (q i = q) and agent j wants to export the same quantity (q j = q), then we say that both parties agree on making that exchange. Therefore, the coupled constraint q i + q j = 0 represents the agreement points in the joint strategy space of agents i and j. Then, all agents maximize their payo¤s by taking into account that constraint. The resulting exchange quantity must make each player better o¤ compared to the noexchange case. Applying Rosen's theorems, we show that the game of exchanging a bad has a unique agreement point that is a normalized equilibrium. A similar application of a normalized equilibrium to a bilateral exchange problem can be found in [START_REF] Flam | Noncooperative games, coupling constraints, and partial e¢ ciency[END_REF].

In the normalized equilibrium the two agents are assigned weights (r 1 ; r 2 ) and each agent's weighted penalty from being constrained is equalized with the other's. The equilibrium consists of an agent who is willing to buy (or sell) more bad and a counterpart who is willing to sell (or buy) less bad. This equilibrium exists if the …rst-best choices of the agents are in opposite signs; otherwise, not exchanging is the outcome of the noncooperative game. In the last part of the analysis, we characterize a Pareto-optimal allocation scheme that is bene…cial and fair for the two players.

Before proceeding further, we make the following:

Remark 1. We assume that the price is given, and determine the exchange in three setups: (i) competitive market; (ii) duopoly, with the equilibrium quantities being obtained using Rosen equilibrium; and (iii) joint optimization (or cooperative game). Clearly, in (i) the price is exogenous and in (iii) it cannot be determined endogenously, because the revenues of the seller are equal to the cost of the buyer and their sum cancels out in the joint objective. Consequently, the price is also exogenous in the joint optimization problem. Therefore, our simplifying assumption of …xed terms of trade is a concern only in (ii). Interestingly, the multiplier computed in Rosen equilibrium is in fact playing (qualitatively) the role of a price.

The next section describes the framework, Sec-tion 3 presents the …rst-best scenario and Section 4 studies the two-player game. Section 5 concludes.

The framework

Consider a commodity that is a bad. Agents, which can be countries, municipalities, or individuals, can exchange it among themselves. Let there be two agents indexed by i = 1; 2. Agent i's endowment in bad is b i . We denote by q i the quantity of exchange and by d i (q i ) the corresponding disutility. The exchange can take place in both directions, that is, q i 2 [ b i ; +1). We make the following assumptions on the disutility function:

Assumption 1. d i : R 7 ! R is increasing and strictly convex in ( b; +1) with d 0 i (0) = ' i 2 (0; +1) and d 0 i ( b i ) = 0.
The convexity of the disutility function is common in the literature dealing with pollution or other bads. The assumption d 0 i ( b i ) = 0, meaning that the agent sells all the bad in her possession, ensures that the …rst-best quantity will always be interior.

The bad can be exchanged with other agents at price p > 0 per unit, which denotes the quantity of good to be given in exchange for a unit of bad. The agent selling a quantity q i of a bad pays the buyer pq i quantity of goods (considered the numéraire), which provides utility u i (pq i ).

Assumption 2. u i : R 7 ! R is increasing and strictly concave in ( pb i ; +1) with u 0 i (0) = i 2 (0; +1). This shape of the utility function is consistent with the common approach of preferences with diminishing marginal utility of income and satiation. The payo¤ (or welfare) function of the agent is given by

v i (q i ) = u i (pq i ) d i (q i );
which is similar to the one commonly used in models of public bads and other classical problems, e.g., production of a …rm. In the next section, we explore the …rst-best scenario, then, proceed to the game between two agents.

First-best scenario: Single agent vs. the market

Suppose there is a market for this commodity and its price p is exogenously given. The agent's optimization problem is given by max q v(q) = u(pq) d(q): Maximization yields pu 0 (pq ) = d 0 (q ); that is, the agent is willing to exchange q (p) quantity of the bad that equalizes marginal utility to marginal disutility. As both u ( ) and d ( ) are strictly increasing, then, for any given price of exchange, there exists a unique q (p) that satis…es the …rst-order condition.

Let p = d 0 (0)=u 0 (0) = '= , which is the price level that equalizes the marginal utility of an additional good to the marginal disutility of an additional bad when the quantity of exchange is null. The following proposition shows the properties of a single agent's o¤er curve for exchange: Proposition 1. The …rst-best quantity of exchange that maximizes the agent's welfare (q (p)) is given by

q (p) 8 > < > : < 0 if p < p; = 0 if p = p; > 0 if p > p:
The variation of q (p) with respect to price depends on the price level and the shape of the utility function:

dq (p) dp 8 > < > : > 0 if (p) > 1; = 0 if (p) = 1; < 0 if (p) < 1; (1) 
where

(p) = u 0 (p) pq (p)u 00 (p) ;
is the endogenous relative risk-aversion coe¢ cient, u 0 = du(pq) dq q=q and u 00 = d 2 u(pq) dq 2 q=q .

Proof. See A Proposition 1 shows that for any other price p 6 = p, the agent will buy or sell some quantity of bad. When the price is su¢ ciently low (p < p), the agent is willing to give some amount of bad she owns, and, when the price is su¢ ciently high (p > p), the marginal utility that could be gained through additional good outweighs the disutility that additional bad would cause. The agent is then willing to buy some bad from the market to bene…t from the utility of the good taken in return.

The second part of Proposition 1 shows how the …rst-best quantity of exchange varies with the price of the good. The agent's willingness to sell less (or more), or buy more (or less) of a bad when p rises depends on the shape of the utility function, and more speci…cally on the agent's relative riskaversion ( (p)). The …rst observation from condition (1) is that, when the agent is a seller (that is, q (p) < 0), a higher p implies a higher value of q (p) (a lower absolute value). Condition (p) > 1 holds if u 0 (p) > pq (p)u 00 (p):

When the …rst-best quantity of exchange is negative (q (p) < 0), an increase in p will always increase q (p) (making it less negative) because the term on the right-hand side is always negative ( pq (p)u 00 (p)) < 0) and the left-hand side is always positive (u 0 (p)) > 0). The second observation is that, if p = p, yielding q (p) = 0, then an increase in the price of good always makes the agent a buyer of bad dq ( p) dp > 0 . Accordingly, the agent's o¤er curve of exchange crosses q (p) = 0 at the single point p = p with a positive slope; therefore, it intersects only once the q = 0 axis on the (q; p) plane.

When the agent is a buyer (q (p) > 0), the e¤ect of an increase in the price is not as straightforward. It is not certain that the condition in (1) that ensures a decrease in quantity with price ( (p) < 1) could ever hold true. To understand this, we check whether the endogenous relative risk aversion coef-…cient can ever be equal to 1. The following proposition presents the result.

Proposition 2. If the marginal utility is concave u 000 0 , then there exists p > p with q 0 (p) = 0;

such that, for any p > p, we have q 0 (p) < 0 as long as q (p) + pq 0 (p) > 0.

Proof. See B. Proposition 2 shows that if the marginal utility is concave, due to the satiation e¤ect, the agent is willing to buy less of the bad after a certain price threshold. However, when the marginal utility is convex, the reduction in marginal utility decreases with the quantity of the good. Then, it is ambiguous whether a certain price threshold like that exists: it may also be the case that the agent would always buy more of the bad as the price increased.

The results presented above show the …rst-best outcome for an agent. In this analysis there is always a counterpart (the market) that enables what the agent is willing to buy or sell. The more interesting case is how two agents facing such an exchange, both having the …rst-best choices presented as above, can achieve an agreement in a noncooperative setting, which we study in the following section.

Two-player game

We now consider two agents each possessing b i amount of a bad. The disutility for bad (d i ) and the utility of good (u i ) satisfy Assumptions 1 and 2 for i = 1; 2. As before, q quantity of bad could be exchanged in return for pq quantity of good, with the price p being exogenously given. The strategy of player i is the amount of the bad that she is willing to exchange, q i 2 E i = [ b i ; b j ] for i = 1; 2 and j 6 = i. The vector q = (q 1 ; q 2 ) denotes the pair of strategies and belongs to the joint strategy space E (q 2 E = E 1 E 2 ).

In the previous scenario, the agent could …nd a taker-or a giver-(the market) for what she wanted to exchange. Now, we have two agents engaged in a bilateral relationship, and what one proposes may not correspond to what the other wants. Consequently, a solution materializes only if the agents are willing to exchange the same quantity in opposite signs (q 1 = q 2 ). Therefore, R = fq 2 Ej q 1 + q 2 = 0g denotes the set of agreement points in the joint strategy space of agents 1 and 2. The set R is convex, closed, and bounded.

The payo¤ function of each player is denoted as v i (q) = u i (pq i ) d i (q i ). By Assumptions 1 and 2, v i (q) is concave in q i and does not depend on the other player's strategy q j . However, to execute an exchange, the agents need their counterpart to agree. Hence, this is a class of game in which the players'objective functions are decoupled, but the strategy sets are coupled due to the dependence on the counterpart's will.

Noncooperative solution

Our aim is to characterize an equilibrium point at which the two agents exchange in a noncooperative way, and to study its link with the …rst-best solution. In the noncooperative game, each agent aims to maximize her individual payo¤. Unlike in the …rst-best or cooperative cases, the counterpart's agreement is not taken as given. A noncooperative solution exists only when the pair of strategies belongs to the set of agreement points (q 2 R). The agents'payo¤s are concave and there is a coupled constraint that restricts the agents' actions, therefore the game at hand is a concave game à la [START_REF] Rosen | Existence and Uniqueness of Equilibrium Points for Concave N-Person Games[END_REF]. The noncooperative equilibrium point of this two-player game is given by a point q 0 that satis…es the following: v i (q 0 ) = max qi v i (q i ; q 0 j )j(q i ; q 0 j ) 2 R; j 6 = i ; i = 1; 2:

(2) Rosen introduced the notion of normalized equilibrium for the class of N -person concave games. In this type of equilibrium, all agents maximize their payo¤s while satisfying the coupled constraint, leading to having a multiplier associated to this constraint (denoted i below) that re ‡ects the constraint's e¤ect on the payo¤ of agent i. Consider an exogenous vector r that assigns each agent i a weight r i . The normalized equilibrium is de-…ned as the point where the weighted values of coupled constraint multipliers are equalized among all agents (here i =r i = j =r j ). Rosen provides the conditions for the existence and uniqueness of a normalized equilibrium for any given positive r (r > 0), which are given by: (i) the joint payo¤ function is diagonally strictly concave, de…ned below, and (ii) the coupled constraint R is convex, closed, and bounded. These conditions are suitable to many economic problems (see [START_REF] Krawczyk | Coupled constraint Nash equilibria in environmental games[END_REF] for a discussion and their interpretation). In the following lemma, we verify that they are satis…ed for the game we address. De…nition 1. Let (u; r) = r 1 v 1 (q) + r 2 v 2 (q). The function (q; r) is diagonally strictly concave on R if the following condition, (q 2 q 1 ) T g(q 1 ; r) + (q 1 q 2 ) T g(q 2 ; r) > 0; (3) holds for every q 1 and q 2 in R, where g(q; r) is the pseudo-gradient of this function, that is,

g(q; r) = 0 B @ r 1 @ @q 1 v 1 (q) r 2 @ @q 2 v 2 (q) 1 C A : (4) 
Lemma 1. For any given r > 0, the equilibrium of the two-player game of exchanging bad, when it exists, is a unique normalized equilibrium à la Rosen.

Proof. A su¢ cient condition for (u; r) to be diagonally strictly concave is that the symmetric matrix [G(q; r)+G(q; r) T ] be negative de…nite for any q in R, where G(q; r) is the Jacobian of g(q; r) with respect to q (see [START_REF] Haurie | Games and dynamic games[END_REF]). It is clearly the case here as

[G(u; r) + G(u; r) T ] = 0 @ 2 u 00 1 (pq 1 ) d 00 1 (q 1 ) 0 0 2 u 00 2 (pq 2 ) d 00 2 (q 2 ) 1 A ;
is a diagonal matrix with all negative elements. For existence, we still need to verify that at the point given by the generalized Nash equilibrium both players are better o¤ compared to the noexchange case.

To characterize the normalized equilibrium, introduce the Lagrangian of agent i associated to problem (2) given by

L i (q; i ) = u i (pq i ) d i (q i ) i (q i + q j ): (5) 
First-order conditions are given by

pu 0 i (pq i ) d 0 i (q i ) i = 0 for i = 1; 2; (6) q 1 + q 2 =0: (7) 
The variable i in (6) denotes the multiplier of agent i associated to the coupled constraint, and it can be interpreted as the dissatisfaction or penalty that agent i experiences for being constrained by the counterpart's will on the quantity of exchange. Let q i be the quantity that maximizes the payo¤ of agent i without any constraint, as analyzed in Section 3. If the counterpart's choice is the same quantity but in opposite sign (q j = q i ), then the payo¤ of agent i is already at its maximum on the coupled constraint. In that case, the value of the multiplier is null ( i = 0). The agent exchanges her …rst-best quantity, and being constrained by the need for the counterpart's agreement does not cause any dissatisfaction or penalty.

When the counterpart's choice is di¤erent from the …rst-best choice of agent i (q j 6 = q i ), then i 6 = 0. The agent is willing to either increase or decrease the quantity of exchange, but is bound by her counterpart. To satisfy the coupled constraint, agent i's choice is going to be di¤erent than the …rst-best quantity (q i = q j 6 = q i ). This is why the agent will experience a dissatisfaction, measured by i . The di¤erence in the exchange quantity from the …rst-best quantity of agent i increases as the absolute value of i becomes larger, and vice versa.

The sign of i can be positive or negative, as the constraint can be binding from below or above. For instance, if q j = q i < q i then agent i would like to increase the quantity being exchanged, but is restricted by her counterpart. This case corresponds to i > 0 as q i < q i leads to pu 0 i (pq i ) d 0 i (q i ) > 0. In this case, agent i would like to buy more (or sell less) of the bad, but agent j does not agree to that. In the opposite case, if q j = q i > q i , then the agent is willing to decrease the quantity of exchange but her counterpart does not allow that. Then, we have pu 0 i (pq i ) d 0 i (q i ) < 0 and i < 0, corresponding to the situation in which the agent is either willing to buy less of the bad or sell more of it.

For a given vector of weights r = (r 1 ; r 2 ), the normalized equilibrium is de…ned as the quantity of exchange such that the weighted value of each agent's multiplier is equal to the other's. This is to say that each agent's weighted dissatisfaction from the exchange is equalized at equilibrium, that is,

1 r 1 = 2 r 2 : (8) 
The equality in (8) must hold; hence i attains the same sign for both agents. Using conditions ( 6), [START_REF] Hara | Core convergence in economies with bads[END_REF], and ( 8), it follows that the equilibrium quantity of exchange (q 0 ) must satisfy

pu 0 1 (pq 0 ) d 0 1 (q 0 ) r 1 = pu 0 2 ( pq 0 ) d 0 2 ( q 0 ) r 2 : (9) 
Moreover, if the resulting quantity of exchange is not improving an agent's payo¤, then not exchanging is the best choice for that player. Hence, in order to have an exchange realized, both agents must be better o¤ compared to the case of no-exchange. The quantity of exchange (q i ) has to satisfy

v i (q i ) v i (0) for i = 1; 2: (10) 
Condition ( 10) is referred to as individual rationality in the literature. The following proposition characterizes the normalized equilibrium of the noncooperative game:

Proposition 3. 1. For a given r > 0, the normalized equilibrium of the two-player game exists and is unique if (q 0 i ; q 0 j ) = (q 0 ; q 0 ) satis-…es equation [START_REF] Hirai | Coalition-proof Nash equilibria and cores in a strategic pure exchange game of bads[END_REF] and condition [START_REF] Kellenberg | Trading wastes[END_REF].

The quantity of exchange always lies within

the interval of the …rst-best choices for agents i and j, q 0 i 2 q i ; q j , and condition (10) can be satis…ed only if sign(q i ) = sign(q j ).

Proof. See C.

Proposition 4. For two given weight vectors r

A = r A 1 ; r A 2 and r B = r B 1 ; r B 2 with r A 1 > r B 1 and r A 2 = r B 2 
, the noncooperative solution B is closer to the …rst-best choice of agent 1 compared to A, q A q 1 > q B q 1 . Proof. See D.

Proposition 4 shows that the normalized equilibrium exists only if the players have the …rst best choices in opposite signs, meaning that one of them would sell and the other would buy if there was a counterpart that would accept. In that case, one can …nd a vector r > 0 such that agents agree on a quantity of exchange. In the contrary case where both …rst-best choices have the same sign, either one of the players gain worse than the case of noexchange, and thus condition (10) cannot be sat-is…ed. Therefore, there is no exchange if the two players are both sellers, or both buyers in their …rst-best choices. To sum up, in the noncooperative game, agents may or may not exchange depending on their payo¤s, on the parameters of the model, and on the choice of r. In the next subsection, we introduce an allocation scheme that is bene…cial to both players.

A Pareto optimal allocation scheme

In this subsection, we aim to characterize an allocation scheme that is Pareto optimal and fair for the two agents. We use the Nash bargaining solution to compute the scheme. Let P i v i (q i ) be the joint welfare of the two players. The optimization is carried out subject to the constraint q = q 1 = q 2 and written as follows: max q fu 1 (pq) d 1 (q) + u 2 ( pq) d 2 ( q)g : [START_REF] Krawczyk | Coupled constraint Nash equilibria in environmental games[END_REF] Maximization results in the following …rst-order condition:

pu 0 1 (pq c ) d 0 1 (q c ) = pu 0 2 ( pq c ) d 0 2 ( q c ); (12) 
which yields a unique quantity of exchange q c = (q c ; q c ) that equalizes the marginal gain from exchange for both players. The allocation scheme given in the following proposition maximizes the gain of exchange for each player:

Proposition 5. The Pareto-optimal payo¤ s are given by

v 1 = 1 2 J c + J 0 1 J 0 2 ; v 2 = 1 2 J c + J 0 2 J 0 1 ;
where J c = v 1 (q c ) + v 2 ( q c ), and J 0 i = v i (0) denotes the payo¤ of player i in the case of noexchange.

Proof. See E.

In this scheme, players exchange the quantity that maximizes their joint welfare, and the surplus generated by exchange is shared between the parties equally, that is, the allocation scheme is e¢ cient and fair.

In this scheme, players exchange the quantity that maximizes their joint welfare, and the surplus generated by exchange is shared between the parties equally, that is, the allocation scheme is e¢ cient and fair.

Conclusion

We characterized the …rst-best and noncooperative outcomes of an exchange in which two agents buy (or sell) a bad in return for receiving (or paying) a good with an exogenously given price. We note that the result in Lemma 1 can be generalized to N players. The exchange is organized in such a way that all agents decide and agree on the quantity to be exchanged and then there is a distribution of goods and bads among agents according to the agreed-upon quantities. Therefore, an agent can be transferring bads or goods from/to multiple agents. A framework consisting of a network of agents could be used in order to study a purely bilateral exchange in the presence of multiple actors.

The present work considered the price of exchange to be exogenous, but results would di¤er if there were a bidding mechanism or a reference price that the agents can manipulate over time. Another extension is to consider a more general environment in the spirit of [START_REF] Hara | Core convergence in economies with bads[END_REF] where the agent is endowed with a vector (e; b) of initial endowments of e > 0 units of the good and b > 0 units of the bad. If the agent chooses to exchange q units of the bad and the market price is p, then the overall payo¤ is v(q) := u(e + pq) v(b + q) where u and v are the two functions representing the utility of consuming the good and the disutility of consuming the bad. 1 Finally, our framework abstracts from some important determinants of bads

We would like to thank a reviewer for this suggestion. exchanges, such as transfer costs and reasons to exchange for recycling. Considering these features would be clearly of interest for future investigations.
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Appendix

A. Proof of Proposition 1

The …rst part is obtained by the …rst-order condition (pu 0 (p) = d 0 (p)). For the second part, applying implicit di¤erentiation to the …rst-order condition leads to dq (p) dp = u 0 (p) + pq (p)u 00 (p) p 2 u 00 (p) + d 00 (p) :

The denominator in ( 13) is clearly positive. Then, the sign of dq (p) dp depends on the sign of the numerator, which gives the result of Proposition 1.

B. Proof of Proposition 2

We previously showed that q 0 (p) > 0 when q (p) 0. Now we consider the case in which the agent is a buyer q (p) > 0. From condition [START_REF] Bahn | A cost-e¤ectiveness di¤erential game model for climate agreements[END_REF] we have q 0 (p) = 0 i¤ (p) = 1, which is true when

We study whether condition [START_REF] Tidball | A di¤erential environmental game with coupling constraints[END_REF] holds true for a price level p > p. When p = p we have q (p) = 0, which implies that LHS(14) = and RHS(14) = 0. Then, whether condition [START_REF] Tidball | A di¤erential environmental game with coupling constraints[END_REF] holds true for a level of p depends on how LHS and RHS vary with p. The change of LHS( 14) with respect to p is written as u 00 (p) q (p) + pq 0 (p) , which is negative, and hence, LHS( 14) is decreasing in p. The change of RHS( 14) is given by (q (p) + pq 0 (p))u 00 (p) pq (p)(q (p) + pq 0 (p))u 000 (p). The …rst element is positive. So RHS( 14) is certainly increasing in p when pq (p)(q (p) + pq 0 (p))u 000 (p) 0. This is true if u 000 (p) 0. In this case, it is certain that (14) will hold true for a price level p = p > p. For p > p, the …rst-best quantity of exchange declines in price as long as q (p) + pq 0 (p) > 0.

C. Proof of Proposition 3

For the …rst part (i), by Assumptions 1 and 2, the term in the LHS of ( 9) is decreasing in q whereas the RHS is increasing in q, thus, a solution is guaranteed and is unique.

In the second part (ii), we study each possible case. In the case v 0 1 (q 0 ) > 0 and v 0 2 ( q 0 ) > 0 we have q 2 < q 0 < q 1 , and the case v 0 1 (q 0 ) < 0 and v 0 2 (q 0 ) < 0 leads to q 2 > q 0 > q 1 . If sign(q i ) = sign(q j ); i 6 = j, then these intervals include the point q = 0, and q 0 can be positive or negative depending on the payo¤ functions, the price, and r. In the case v 0 1 (q 0 ) > 0 and v 0 2 (q 0 ) > 0, we may have either q 2 < q 0 < 0 < q 1 , or q 2 < 0 < q 0 < q 1 . By concavity of the payo¤ functions, the …rst ordering results in v 1 (q 1 ) > v 1 (0) > v 1 (q 0 ) for player 1, and in v 2 (q 2 ) > v 2 ( q 0 ) > v 2 (0) for player 2, where condition ( 10) is not satis-…ed for player 1. Similarly, the second ordering yields v 1 (q 1 ) > v 1 (q 0 ) > v 1 (0) for player 1, and v 2 (q 2 ) > v 2 (0) > v 2 ( q 0 ) for player 2, which does not verify condition [START_REF] Kellenberg | Trading wastes[END_REF] for player 2. The case of v 0 1 (q 0 ) < 0 and v 0 2 ( q 0 ) < 0 can be studied in a similar way and it can be shown that condition [START_REF] Kellenberg | Trading wastes[END_REF] is not satis…ed for either one of the players if sign(q i ) = sign(q j ); i 6 = j, hence the result.

In the opposite case where sign(q i ) = sign(q j ); i 6 = j, one can …nd a set of choices for r such that condition [START_REF] Kellenberg | Trading wastes[END_REF] is satis…ed for both players, and a unique normalized equilibrium exists.

D. Proof of Proposition 4

Let q i be such that v 0 i (q i ) = 0 (as in the …rstbest case), and denote q A and q B the noncooperative solutions corresponding to weight vectors r A and r B . There can be two cases:

To satisfy the equality q B must increase, therefore, q A > q B > q i .

v

2 , then, q B must decrease to satisfy the equality, thus, q A < q B < q i .

E. Proof of Proposition 5

Introduce the following problem associated to the Nash bargaining solution:

Maximization yields the solution given in Proposition 5.