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Asymptotic statistics for multilayer perceptron with

ReLU hidden units

Rynkiewicz, J.a

aSAMM, Universite Paris 1,
90 Rue de Tolbiac, 75013 Paris, France

Abstract

In numerous tasks, deep networks are state of the art. However, they are still
not well understood from a statistical point of view. In this article, we try
to contribute to filling this gap, and we consider regression models involving
deep multilayer perceptrons (MLP) with rectified linear (ReLU) functions
for activation units. It is a difficult task to study the statistical properties
of such models. The main reason is that in practice these models may be
heavily overparameterized. For the sake of simplicity, we focus here on the
sum of square errors (SSE) cost function which is the standard cost function
for regression purposes. In this framework, we study the asymptotic behavior
of the difference between the SSE of estimated models and the SSE of the
theoretical best model. This behavior gives us information on the overfitting
properties of such models. We use in this paper new methodology introduced
to deal with models with a loss of identifiability, i.e. in the case that the true
parameter cannot be identified uniquely. Hence, we don’t have to assume
that a unique parameter vector realizes the best regression function which
seems to be a too strong assumption for heavily overparameterized models.
Our results shed new light on the overfitting behavior of MLP models.

Keywords: regression models, loss of identifiability, deep neural networks,
ReLU functions, Donsker class

1. Introduction

Deep-learning allows computational models that are composed of multi-
ple processing layers to learn representations of data with various levels of
abstraction (Lecun et al. [8]). The principle underlying these models is to

Preprint submitted to Neurocomputing October 23, 2018

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0925231219301547
Manuscript_49fcb227dcbe5496c19c60904493c807

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0925231219301547
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0925231219301547


compute an objective function (cost function) that measures the error (or
distance) between the actual output and the desired output. The machine
then modifies its internal adjustable parameters (or weights) to reduce this
error. Note that, even if the number of parameters is huge, the learning al-
gorithms work very well for deep network, and poor local minima are rarely
a problem with large networks. Regardless of the initial conditions, the sys-
tem nearly always reaches solutions of very similar quality (see Lecun et al.
[8]). After training, the users are interested in the performance of the sys-
tem measured on a different set than the training set. This generalization
ability is heavily related to the overtraining (or overfitting) of the machine
on the training data. Neyshabur et al. [12] studied the overfitting from a
non-asymptotic point of view, it means if the number of free parameters of
the model is larger than the number of data. Our point of view is asymptotic;
we consider that the number of data is larger than the number of free pa-
rameters of the network. Some simulations done in the last section illustrate
the complementarity of the two points of view.

Many applications of deep learning use feedforward neural network archi-
tectures, which learn to map a fixed-size input to a fixed-size output. To go
from one layer to the next, a set of units computes a weighted sum of their
inputs from the previous layer and pass the result through a non-linear func-
tion. Currently, the most popular non-linear function is the rectified linear
unit (ReLU), which is f(z) = max(z, 0) (see Lecun et al. [8]). Indeed Neural
network with ReLU non-linearities have been highly successful for computer
vision tasks and proved faster to train than standard sigmoid units (see Dahl
et al. [4]). The ReLU have been used both as activation functions in standard
neural nets and as units in restricted Boltzmann machines (see Nair and Hin-
ton [11]), but they are more straightforward to incorporate into a standard
feed-forward neural net. Even if these networks work very well in practice,
very few theoretical results are available about such complex models even
from an asymptotic point of view. We propose in this paper to contribute to
filling this gap, and for the sake of simplicity, we will focus on quadratic cost
function in the framework of regression. The present manuscript generalizes
our previous results in Rynkiewicz [14] which only deal with single hidden
layer networks with sigmoid transfer functions and Gaussian noise.

Let us assume that we observe a random sample of identically distributed
independent variables (X1, Y1), · · · , (Xn, Yn), from the distribution P of a
vector (X, Y ), with Y a real random variable and X a random vector in Rh.
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A regression model can be written as:

Y = fθ0(X) + ε, E (ε |X ) = 0, E
(
ε2 |X

)
= σ2 <∞. (1)

where θ0 is a parameter realizing the best theoretical regression function:

θ0 = arg min
θ∈Θ
‖Y − fθ(X)‖2. (2)

Here,

‖g(Z)‖2 :=

√∫
g(z)2dP (z)

is the L2-norm for an square integrable function g and Θ the set of possible
parameter vectors. According to the theory of probability, the true regression
function is the conditional expectation of the target variable Y with respect
to the explicative variables X. In this paper, we will assume that the law of
X has a density strictly positive with respect to the Lebesgue measure (the
law of X does not degenerate) this implies that the true regression function
will be unique. If the true regression function is in the set of possible models,
it is then evident that it is unique and is equal to fθ0 . If the true regression
function is not in the set of possible models, the nearest function of the true
one in the set of possible functions, fθ0 is the projection of the true function
on this set (with respect to the L2-norm). If the set of possible functions is
convex (i.e. if f1 and f2 are in the set then for 0 < a < 1, a×f1 +(1−a)×f2

is in the set), then it is well known that this projection will be unique. Since
the output layer of MLPs is linear is is very easy to guaranty that the set of
possible models is convex. So, in both cases, the best regression function is
unique and will be denoted f0 in the following.

Note that, even if this cost function is designed for regression models,
it may also be used for classification tasks (Bayes classifier) if the data to
predict are in the set {0, 1}. Let us first recall some historical results on
regression models with MLP.

Known asymptotics for MLP regression models

Historically, the first works on MLP focus on models with only one hidden
layer because these networks have been shown to be universal approximators.
Let k be the number of units in the hidden layer and θ ∈ RD the parameter
vector of the MLP model, where D is the dimension of θ. A natural estimator
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of a function f0 in model (1) is the MLP function parameterized by the least
square estimator (LSE) θ̂n that minimizes the SSE:

θ̂n = arg min
θ∈Θ

n∑
t=1

(Yt − fθ(Xt))
2. (3)

If the smallest number of hidden units of an MLP function realizing the
best theoretical regression function f0 is k0 = k then, up to a finite set of
permutations, the model will be identifiable, and White [17] has shown that
the asymptotic behavior of the difference of SSE is the classic one:

lim
n→∞

(
n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(
Yt − fθ̂n(Xt)

)2

)
= σ2χ2(D). (4)

The mean of the SSE of a model is an estimator of the expectation of the
square error of this model (under the probability law of variables (Xt, Yt)).
The difference of SSE between the best and the estimated models is then
an indicator of the artificial improvement we can get by using an overpa-
rameterized model. However, the asymptotic overfitting can be larger than
in regular parametric models. Indeed, if k is large enough, the assumption
that the smallest number of hidden units of the best theoretical regression
function is k0 = k seems very optimistic. For example, if the variable X is
not explanatory enough of Y , then the relationship between X and Y may
be not so complicated, and the best regression function may be written as an
MLP function with k0 hidden units, with k0 < k. In this case, an MLP with
k hidden units has redundant hidden units for realizing the best theoreti-
cal regression function f0, and Fukumizu [5] has shown that the asymptotic
overfitting may be much substantial:

lim
n→∞

(
n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(
Yt − fθ̂n(Xt)

)2

)
= O(ln(n)). (5)

The main point in the result of Fukumizu [5] is the loss of identifiability for
MLP with redundant hidden units so that the redundant hidden units can
be dedicated to overfitting only. Suppose, for example, that for real inputs,
we want to estimate an MLP with two hidden units:

fθ(x) = a1φ(w1x+ b1) + a2φ(w2x+ b2) + b0,
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with x ∈ R, φ be a transfer function like φ(z) = tanh(z), and
θ = (b0, b1, b2, w1, w2, a1, a2) be the parameter vector of the MLP. Suppose
also that the best function f0 is given by an MLP with only one hidden unit,
say f0 = a0φ(w0x). Then, any parameter vector θ in the set

{θ |w2 = w1 = w0, b2 = b1 = b0 = 0, a1 + a2 = a0}
∪ {θ |w1 = w0, b1 = b0 = 0, a1 = a0, (w2, b2) ∈ R2, a2 = 0}
∪ {θ |w2 = w0, b2 = b0 = 0, a2 = a0, (w1, b1) ∈ R2, a1 = 0} ,

(6)

realizes the function f0. The first set of the union is a consequence of the
duplication of the hidden unit φ(w0x), the second and the third ones are
consequences of the cancellation of the output weights. Hence, classical sta-
tistical theory for studying the asymptotic behavior of the SSE cannot be
applied because it requires the identification of the parameters (up to some
permutations and sign symmetries).

To get strong asymptotic overfitting, the parameters, of the estimated
MLP, need to go to infinite. For example, Hagiwara et al. [6] investigate
relations between overfitting and weights size in a simple neural networks
regression problem with Gaussian noise. They show that the degree of over-
fitting is strongly related to the size of the input weights. That is the reason
why regularization techniques like “weight decay” (see Ripley [15]), which
penalizes the model by the size of the parameters, work so well and in prac-
tice. Following pioneering works of Dacunha-Castell and Gassiat [3] and Liu
and Shao [9] on models with a loss of identifiability, Rynkiewicz [13] has
shown that, if the set of possible parameters of the MLP regression model is
bounded, the effect of redundant hidden units on overfitting is less significant.
Hence, for an MLP with one hidden layer and sigmoidal transfer functions,
a centered Gaussian process {W (d), d ∈ D} with continuous sample paths
exists so that

lim
n→∞

(
n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(
Yt − fθ̂n(Xt)

)2

)
= σ2 sup

d∈D
(max{W (d); 0})2.

This result shows that the degree of over-fitting is bounded in probability, but
depends on the size of the asymptotic set of index functions D. Our goal in
this paper is to generalize the result of Rynkiewicz [13] to MLP functions with
arbitrarily large number of hidden layers and ReLU activation functions. The
paper is organized as follows: Firstly, we give general results for the behavior
of the difference of the sum of square errors (SSE) of the estimated regression
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model and the SSE of the theoretical best regression function. Then, we
show that the conditions needed for such results are fulfilled by MLP with
ReLU activation functions. An experimental study investigates the practical
consequences of our theoretical results in the next section. Finally, we discuss
the consequences of our findings on the overfitting behavior of MLP models.

2. Asymptotic behavior of the SSE for regression models

Firstly, we present some definitions.

• We will use the abbreviation Pf =
∫
fdP for an integrable function f .

• For a square integrable function g,

‖g(Z)‖2 :=

√∫
g(z)2dP (z)

is the L2 norm. In the following, this norm will be denoted L2(P ).

• For a vector x = (x1, · · · , xl), let us write |x| =
√
x2

1 + · · ·+ x2
l for the

Euclidean norm.

• A family of random sequences

{Yn(g), g ∈ G, n = 1, 2, · · · }

is said to be uniformly oP (1) if, for every δ > 0 and ε > 0, there exists
a constant N(δ, ε) such that

P

(
sup
g∈G
|Yn(g)| < ε

)
≥ 1− δ

for all n ≥ N(δ, ε).

Let us introduce generalized derivative functions:

dθ(x) =
fθ(x)− f0(x)

‖fθ(X)− f0(X)‖2

, fθ 6= f0. (7)

These functions are the key tool for studying the asymptotic behavior of the
difference of SSE between the estimated model and the best one. The gener-
alized derivative functions are a convenient way to describe all possible paths
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Figure 1: Set of possible paths for the estimated parameter vector θ̂.

for the estimated parameter vector θ̂ to converge toward the best one. The
first lemma shows that the difference of the SSEs is bounded by a function of
generalized derivative functions which will converge toward all the possible
paths (see figure 1) and is proven in Rynkiewicz [13].

Lemma 2.1. Let (εt = Yt − f0(Xt))1≤t≤n be the sequence of noise for the
model (1), for all parameter θ ∈ Θ with fθ 6= f0 and dθ defined in (7):

n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(Yt − fθ(Xt))
2 ≤

(∑n
t=1 εtdθ(Xt)√

n

)2

∑n
t=1(dθ(Xt))

2

n

.

The asymptotic behavior of the SSE will depend on the limit set of all the
possible paths for fθ to converge towards f0, let us call this set D. The
limit set of derivatives D is the set of functions d ∈ L2(P ) such that one
can find a sequence (θn) ∈ Θ satisfying ‖fθn(X) − f0(X)‖2 −−−→

n→∞
0 and

‖d − dθn‖2 −−−→
n→∞

0. With such (θn), define, for all t ∈ [0, 1], fθt = fθn ,

where n ≤ 1
t
< n + 1. We thus have that, for any d ∈ D, there exists a

parametric path (fθt)0≤t≤α with α a strictly positive real number, such that
for any t ∈ [0, α], θt ∈ Θ, t 7→ ‖fθt(X)− f0(X)‖2 is continuous, tends to 0 as
t tends to 0 and ‖d−dθt‖2 → 0 as t tends to 0. Using the reparameterization

‖fθu(X)− f0(X)‖2 = u, (8)
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for any d ∈ D, there exists a parametric path (fθu)0≤u≤α such that:∫
(fθu − f0 − ud)2 dP = o(u2). (9)

Now, let us introduce some assumptions:

B-1 Let u be defined as (8), the map u 7→ P (Y − fθu(X))2 admits a
second-order Taylor expansion with strictly positive second derivative
∂2P (Y−fθu (X))2

∂u2
at u = 0.

B-2 The set of generalized derivative functions S = {dθ, θ ∈ Θ, fθ 6= f0} is
a Donsker class (see van der Vaart [16] for the definition of Donsker
class).

The assumption B-1 means that the estimated parameter is going toward
one of the best one along with a smooth path. It is an assumption on the
regularity of models which is generally fulfilled by parametric models (iden-
tifiable or not). Assumption B-2 means that the set of possible directions
for the convergence is not too big and we can apply the functional central
limit theorem.

The following theorem, proven in Rynkiewicz [13], shows that with as-
sumptions B-1 and B-2 the inequality of lemma 2.1 yields an approximation
for the estimated model.

Theorem 2.2. Under (B-1) and (B-2)

supθ∈Θ

(∑n
t=1 (Yt − f0(Xt))

2 − (Yt − fθ(Xt))
2) =

supd∈D

(
max

{
1√
n

∑n
t=1 εtd(Xt); 0

})2

+ oP (1).

Now, define (W (d))d∈D the centered Gaussian process with covariance the
scalar product in L2(P ), Gaussian processes can be seen as an infinite-
dimensional generalization of multivariate normal distributions. It means
that for a finite collection (d1, · · · , dn), (W (d1), · · · ,W (dn)) is a Gaussian
vector with covariance function Cov(W (di),W (dj)) =< di, dj >:= E(didj),
so < di, dj > is a scalar product in L2(P ). d are functions belonging to
the limit set of derivatives D where D describes all the possible paths for
the convergence of the estimated parameter vector toward one of parameter
vector realizing the best regression function. The following corollary is the
asymptotic version of Theorem 2.2 when the number of observations goes
toward infinite.
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Corollary 1. Under (B-1) and (B-2),

sup
θ∈Θ

(
n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(Yt − fθ(Xt))
2

)

converges in distribution to

σ2 sup
d∈D

(max {W (d); 0})2 .

To get these results for MLP with ReLU activation functions, we have to
check the assumptions (B-1) and (B-2) in this framework. Assumption (B-
1) asserts that the model is, almost surely, regular along parametric paths.
The difficult one is the assumption (B-2) on the Donsker property of the set
of generalized derivative functions S.

Donsker property for S
First, we recall the notion of bracketing entropy. Consider the set S

endowed with the norm ‖·‖2. For every η > 0, we define an η-bracket by
[l, u] = {f ∈ S, l ≤ f ≤ u} such that ‖u− l‖2 < η. The η-bracketing en-
tropy is

H[·] (η,S, ‖·‖2) = ln
(
N[·] (η,S, ‖·‖2)

)
,

whereN[·] (η,S, ‖·‖2) is the minimum number of η-brackets necessary to cover
S. With the previous notations if∫ 1

0

√
H[·] (η,S, ‖·‖2)dη <∞,

then, according to the Theorem 19.5 of van der Vaart [16], the set S is
Donsker. The intuition behind the Donsker property is that the number
of η-brackets can go toward infinite, but it has to go not to fast toward
infinite. It can be seen as a measure of the infinite size a set of functions.
For example, if the number of η-brackets necessary to cover S, N[·] (η,S, ‖·‖2),
is a polynomial function of 1

η
, then S will be Donsker (see van der Vaart [16]).

3. Application to MLP models

In the following, the structure of the networks refers to the way its units
are arranged. It is specified by the dimension d0 = h of input x, the number
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of layers L, and the number of units or width dl of each layer. Following the
notations of Montufar et al. [10] an MLP is composed of layers which define
functions fθ : Rh → R of the form

fθ(x) = fout ◦ φL ◦ fL ◦ · · · ◦ φ1 ◦ f1(x), (10)

where fl is a linear preactivation function and φl is a nonlinear activation
function. The parameter θ is composed of input weight matrices Wl ∈
Rdl×dl−1 and bias vectors bl ∈ Rdl for each layer l ∈ {1, · · · , L}. The output
of the l-th layer is a vector xl = (xl1 , · · · , xl,dl)

T of activations xl,i of the units
i ∈ {1, · · · , dl} in that layer. This is computed from the activations of the
preceding layer by xl = φl (fl(xl−1)). Given the activation xl−1 of the units
in the (l − 1)-th layer, the preactivation of layer l is given by:

fl(xl−1) = Wlxl−1 + bl,

where fl = (fl,1, · · · , fl,dl)
T is a vector of Rdl . The activation of the i-th unit

in the l-th layer is given by

xl,i = φl (fl,i(xl−1)) .

From now, we assume that for all l, φl is the ReLU activation function, fout
is just a linear function of the activation of the last layer xL:

fout(xL) = WT
outxl−1 + bout,

where Wout ∈ RdL and bout ∈ R.
We consider MLP with fixed structure. The parameter vector of an MLP

is
θ = (W1,b1, · · · ,Wout,bout) ,

and we denote by Θ, the set of possible parameters.
Let us introduce some assumptions for the regression models (1) with

MLP functions:

H-1: Let fθ, θ ∈ Θ be MLP functions with a fixed structure. We assume
that Θ is a compact subset of RD for some strictly positive integer D
and that the set {fθ, θ ∈ Θ} is convex. Moreover, the set of parameters
Θ0, realizing the best regression function, is assumed to be a subset of
the interior of Θ.
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H-2: The explicative random vector X admits a strictly positive density
with respect to the Lebesgue measure of Rh and P (|X|2) <∞.

In this framework, we will show that the number of η-brackets necessary to
cover the set of generalized derivative functions S = {dθ, θ ∈ Θ, fθ 6= f0} is a
polynomial function by considering a reparameterization of MLP functions.
Namely, the previous parameterization of MLP models is not suitable to
study the identifiability issues of these models, but it can be done by using
the representation of these models in terms of piecewise linear continuous
functions. Indeed a neural network with ReLU activation function can be
seen as a linear spline in more flexible since the knots are placed using a
training algorithm, and without the constraint of being equal to the functions
it interpolates at certain points (see Hansson and Olsson [7]).

Reparameterization

Following the presentation of Montufar et al. [10], we remark that ReLU
functions have two types of behavior; they can be either constant 0 or linear,
depending on their inputs. A hyperplane Hj =

{
βj
Tx+ αj = 0

}
gives the

boundary between these two behaviors, where βj = (βj1, · · · , βjh)T ∈ Rh and
αj ∈ R. The collection of all the hyperplanes coming from all units in an MLP
forms a hyperplane arrangement. The hyperplanes in the arrangement split
the input-space into several regions. Formally, a region P of a hyperplane
arrangement {H1, · · · ,Hn} is the closure of a connected component of the
complement Rh\ (∪jHj), i.e. a set of points delimited by these hyperplanes
(possibly open towards infinity). Hence, for any region Pµ ⊂ Rh in a hy-
perplane arrangement, a set of parameter vectors µ = {(β1, α1), · · · , (βl, αl)}
exists such that Pµ may be written as a finite intersection of half-spaces
delimited by hyperplanes:

Pµ = ∩j∈1,··· ,l
{
x, βj

Tx+ αj ≥ 0
}
. (11)

Let us write IP the indicator function of the region P , and denote by N the
total number of hidden units of the MLP. According to Montufar et al. [10],
a integer q ≤ 2N exists such that, for any θ ∈ Θ, fθ can be written:

fθ(x) =

q∑
i=1

(
βi
Tx+ αi

)
× IPµ(i)(x), (12)
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Figure 2: Set of parameters realizing the best function f0.

with (βi, αi) ∈ Rh+1, µ(i) a set of parameters and
(
IPµ(1)(.), · · · , IPµ(q)(.)

)
are linearly independent indicator functions of regions of hyperplane arrange-
ment. Note that, for some θ, the integer q is maybe too large, but we allow
some parameter vectors (βi, αi) ∈ Rh+1 to be null vectors.

Now, for the best regression function f0,
(
(β0

1 , α
0
1), · · · , (β0

q0
, α0

q0
)
)

and a
set of set of parameters {µ0(1), · · · , µ0(q0)} exist such that f0 may be written:

f0(x) =

q0∑
i=1

(
β0
i
T
x+ α0

i

)
× IPµ0(i)(x), (13)

with
(
IPµ0(1)(.), · · · , IPµ0(q0)(.)

)
linearly independent indicator functions of

regions of hyperplane arrangement, and q0 chosen as the smaller integer pos-
sible such that (13) realizes the best regression function. Note that a lot of
sets of parameters µ0(i) can define the region Pµ0(i), but since the regions(
Pµ0(1), · · · ,Pµ0(q0)

)
are fixed, we will denote them by

(
P0

1 , · · · ,P0
q0

)
. Now,

the loss of identifiability (see figure 2) occurs in a way a little bit different
than in the case of MLP with one hidden layer and sigmoid activation func-
tions (see (6)). Namely, suppose, for example, that q = 2 , q0 = 1, x ∈ R,
and that the best function f0 is given by

f0(x) =
(
β0x+ α0

)
× IP0(x).
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Then, any parameter vector in the set:

{µ1, µ2, (β1, α1), (β2, α2)} with
Pµ(1) = Pµ(2) = P0, (β2, α2) + (β1, α1) = (β0, α0), or
Pµ(1) = P0, (β1, α1) = (β0, α0), (β2, α2) = (0, 0), or
Pµ(2) = P0, (β2, α2) = (β0, α0), (β1, α1) = (0, 0), or
Pµ(1) ∪ Pµ(2) = P0,Pµ(1) ∩ Pµ(2) ⊂ {x, βT0 x+ α0 = 0},
(β2, α2) = (β1, α1) = (β0, α0),

(14)

realizes the function f0. The first condition is a consequence of duplication
of regions. The second and the third ones are a consequence of the can-
cellation of the weights. But, the fourth condition is now a consequence of
the splitting of regions. Note that, if the MLP has enough redundant units,
duplication and splitting of regions may be mixed (duplication of subsets
of regions (Pµ0(i))1≤i≤q0 may be possible too). Using this representation of
MLP functions we can show that the entropy with bracketing is a polyno-
mial function of 1

η
. The method consists in finding a new parameterization

of the MLP function fθ which exhibits an identifiable parameter vector ω
and putting other parameters in a parameter vector ψ. The following lemma
is then the first step to show the assumption B-2 in the particular case of
MLP with ReLU transfer functions. It is proven in the appendix.

Lemma 3.1. Under assumptions (H-1) and (H-2), a strictly positive inte-
ger q and parametric functions (gψ1 , · · · , gψq) exist so that we get the repa-
rameterization: θ 7→ (ω, ψ) = (ω1, · · · , ωq, ψ1, · · · , ψq), where ωi ∈ Rh+1, and
the difference of regression functions with the best one can be written:

fθ(x)− f0(x) := f(ω,ψ)(x)− f0(x) =

q∑
i=1

(ωi − ω0
i )
Tgψi(x). (15)

ω0 = (ω0
1, · · · , ω0

q ) is a fixed parameter vector, and f(ω,ψ)(x) = f0(x) if and
only if ω = ω0.

This lemma implies that the entropy with bracketing of S is polynomial.
The following proposition which is a consequence of Lemma 3.1, shows then
that assumption B-2 is true for MLP with ReLU transfer functions. The
proof of this proposition is postponed in the appendix.

Proposition 1. A positive integer Q and a constant K exist so that the

number of η-brackets N[·] (η,S, ‖·‖2) covering S is smaller than K
(

1
η

Q
)

.
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The Donsker property for the set S of generalized derivative functions for
MLP with ReLU transfer functions is then a consequence of Proposition 1.

Now, we deal with assumption (B-1). We remark that ReLU function
has a distinguished (i.e., irregular) behavior at zero. So, functions
fθ =

∑q
i=1

(
βi
Tx+ αi

)
× IPµ(i)(x) with Pµ(i) = ∩j∈1,··· ,l

{
x, βj

Tx+ αj ≥ 0
}
,

have a distinguished behavior at all inputs from any of hyperplanes Hj :={
x, βj

Tx+ αj = 0
}

. But, under (H-2), the Lebesgue measure of the reunion
U(θ) = ∪Hj of all these hyperplanes is null. Now, since for all θu in Θ:∫

Rh
(fθu − f0 − ud)2 dP =

∫
Rh\U(θu)

(fθu − f0 − ud)2 dP, (16)

the assumption (B-1) is true for MLP functions.
Thanks to equation (17) we can easily identify the asymptotic set of score

function D, and we get then the following theorem which is the transcription
of Corollary 1 for the MLP case.

Theorem 3.2. Let the map Ω : L2(Q) → L2(Q) be defined as Ω(f) =
f
‖f‖2 . Under the assumptions H-1 and H-2, a centered Gaussian process

{W (d), d ∈ D} with continuous sample paths and a covariance kernel
P (W (d1)W (d2)) = P (d1d2) exists so that

lim
n→∞

n∑
t=1

(Yt − f0(Xt))
2 −

n∑
t=1

(Yt − fθ(Xt))
2 = σ2 sup

d∈D
(max {W (d); 0})2 .

The index set D is defined as D = ∪tDt, where three integers q0 ≤ q1 ≤ q exist
so that the union runs over any possible vector of integers t = (0, t1, q) ∈ N3

with q0 ≤ t1 ≤ q1 and

Dt =
{

Ω
(∑t1

i=0 IP0
i
(X)(ζTi X + αi) +

∑q
i=t1+1 IPµ(i)(X)(ζTi X + αi)

)
,

ζ1, · · · , ζq ∈ Rh, α1, · · · , αq ∈ R
}
.

P0
1 , · · · ,P0

q1
are fixed regions of Rh and Pµ(q0+1), · · · ,Pµ(q) are hyperplane

arrangements of Rh delimited by finite sets of hyperplanes.

This theorem shows that the degree of overfitting is bounded in probability,
but depends on the size of the asymptotic set D. Intuitively the set D is the
degree of freedom of the estimated model when it is very near to the best
model. The set D depends on the following hyperparameters: The number
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of hidden neurons, the number of layer and the size of the parameters. The
bigger the hyperparameters, the bigger the set D. Hence, to limit the size of
D, we can reduce any of this tree hyperparameter, but they have to be large
enough so that the best regression function f0 belongs to the set of possible
parameters.

4. An empirical investigation

In this section, we assess the effect of overparameterization on the training
set and the influence of the form of the best regression function on it. Since, in
practice, the data are often high dimensional, we chose to simulate inputs of
size 2000. Let us write 0R2000 the null vector of R2000 and IR2000 the identity
matrix of R2000 × R2000. We trained fully connected feedforward networks
with two hidden layers (three layer networks) and ReLU transfer functions
on two sets of data:

1. For the first set, the input Xt is a Gaussian random vector of size
2000, with each component centered, normalized and independent from
each other: Xt ∼ N (0R2000 , IR2000). The output Yt is a centered, nor-
malized, Gaussian variable: Yt ∼ N (0, 1), independent of Xt. We
simulate a sample of independent vectors (Xt, Yt) of length 100000:
(Xt, Yt)1≤t≤100000. In this case, the best regression function is f0(x) = 0.

2. For the second set, we first create an MLP function M0 with 2000 as
input size, two hidden layers of size 23 = 8 neurons each and randomly
chosen weights between −0.3 and 0.3. The input Xt is a Gaussian
random vector of size 2000, with each component centered, normalized
and independent from each other: Xt ∼ N (0R2000 , IR2000). The output
Yt is the sum of the MLP function M0(Xt) of the input, and a centered,
normalized, Gaussian noise εt ∼ N (0, 1), independent of Xt: Yt =
M0(Xt) + εt. We simulate a sample of independent vectors (Xt, Yt)
of length 100000: (Xt, Yt)1≤t≤100000. In this case, the best regression
function is the MLP function: f0(x) = M0(x).

Moreover, for each of the two set of data, we simulate 100000 supplementary
data for using it to assess the MSE of the models on a test set.

Models trained. On both sets, we trained 5 architectures with 2 hidden layers
of the same sizes from 23 to 27, each time increasing the number of hidden
units of each layer by factor 2. For the small architectures, 23 or 24 hidden
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units, the amount of data is greater than the number of parameters of the
MLP; it is the asymptotic framework where our results apply. For the great
architectures, 26 or 27 hidden units, the number of parameters of the MLP is
greater than the amount of data; it is the not-asymptotic framework, where
our results do not apply, but we did it for comparing with the experiments of
Neyshabur et al. [12]. Note that, since we generate the second data set with
the best function using the smallest architecture, all the MLP of the second
experiment can realize the best regression function.

For each experiment, we trained the network using Stochastic Gradient
Descent (SGD) with mini-batch size 64, momentum 0.9 and fixed step size
0.01. We did not use any technic of regularization. We stopped the training
when the number of epochs reached 1000. All the computations are done
with Torch7 using a GPU.

Evaluations. For the trained architectures we give the number of hidden
units of each hidden layer, the corresponding number of parameters, the
MSE on the training data set and the MSE on the test data set. Note that,
without overfitting, the MSE should be 1, hence the nearest the MSE of 1
the lesser the overfitting. We summarize the results for the two data sets
on table 1. As expected by our results the training error depends not only

Table 1: Comparison of overtraining in function of architectures and data sets

Nb of Nb of MSE Data set f0(x) = 0 Data set f0(x) =M0(x)
hidden units parameters

23 16089 training 0.72 0.81
test 1.31 1.47

24 32305 training 0.47 0.54
test 1.67 1.96

25 65121 training 0.15 0.17
test 2.62 2.85

26 132289 training 0.06 0.07
test 2.16 3.11

27 272769 training 0.02 0.06
test 1.61 1.77

of the architecture of the MLP but also of the best regression function of
the data set. Indeed, for all models, for the same number of parameters and
data, the training error is closer to 1 when the best regression function is
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more complicated. However, we can see that the relationship between the
test error and the training error also depends on this best function and even
if the learning error is closer to 1 for the second data set, the test error
is more significant in this case. This fact, unexpected, remains to explain.
Finally, we can see that when the number of parameters becomes greater
than the amount of data, the test error seems to decrease when the amount
of parameters increases, as in Neyshabur et al. [12]. However, the test error
of the biggest model doesn’t reach the test error of the smallest and less
overparameterized model. Surprisingly, the behavior of the asymptotic case
seems the inverse of the behavior of the not-asymptotic case.

5. Conclusion

For one hidden layer MLP, there are no differences from a statistical point
of view between ReLU and sigmoidal transfer functions. However, few are
known for theoretical properties of MLP with two hidden layers and more
(Deep MLP). This paper gives an insight with such deep architecture when
the transfer functions are ReLU functions.

In numerous statistical models, like identifiable parametric models, the
overfitting depends solely on the complexity of the model in use. However,
for MLP functions this is no more the case since it depends on the size of set
D which is a function of the difference between the complexity of the MLP
function in use and the complexity of the best regression function f0 (the
number of redundant hidden units). This fact explains the apparent contra-
diction noticed by some authors (cf Zhang et al. [18]), where an MLP does
not overfit too much for a complex task but overfits a lot if you randomize
the output data. Moreover, in the experiments, we have seen that the rela-
tionship between the overtraining on the learning set and the error on the
test set is not obvious and seems also depends on the best regression function
f0. Finally, the behavior of the overfitting also relies on the comparison of
the amount of data and number of parameter of the model and seems differ-
ent in the asymptotic or not-asymptotic framework. It will be interesting to
understand these surprising facts which we leave for future work.

Appendix

6. Proof of lemma 3.1

If fθ = f0, it exists (up to permutations):
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• A vector of integers t = (ti)1≤i≤q0+1, so that 0 = t1 < t2 < · · · < tq0+1 ≤
q.

• A vector of integers (ni)1≤i≤tq0+1

and set of vectors of integers {(ηi,1, · · · , ηi,ni)1≤i≤tq0+1}.

• Sets of regions(
Pµ(η1+ti,1), · · · ,Pµ(η1+ti,n1+ti

), · · · ,Pµ(ηti+1,1
), · · · ,Pµ(ηti+1,nti+1

) ⊂ P0
i

)
1≤i≤q0

,

with
Pµ(ηi,j) ∩ Pµ(ηi,k) ⊂ {x, (β0

i )
Tx+ α0

i = 0}, if j 6= k, and(
∪1+ti≤j≤ti+1,1≤k≤njPµ(ηj,k) = P0

i

)
1≤i≤q0

.

• Parameter vectors
(∑ti+1

j=ti+1(βTj x+ αj) = (β0
i
T
x+ α0

i )
)

1≤i≤k0
,

so that, we can write:

f0(x) = fθ(x) =

q0∑
i=1

ti+1∑
j=ti+1

(βTj x+ αj)I{∪1≤k≤njPµ(ηj,k)}(x).

More generally, for any function fθ defined by (12), let us define s(β)ik =(∑ti+1

j=1+ti
βjk

)
and, if

∑ti+1

j=1+ti
βjk 6= 0, let us write q(β)jk =

βjk∑ti+1
j=1+ti

βjk
. If∑ti+1

j=1+ti
βjk = 0, q(β)jk will be set at 1∑ti+1

j=1+ti
1
. Let us write also s(α) =(∑ti+1

j=1+ti
αj

)
and , if

∑ti+1

j=1+ti
αj 6= 0, let us write q(α)j =

αj∑ti+1
j=1+ti

αj
. If∑ti+1

j=1+ti
αj = 0, q(α)j will be set at 1∑ti+1

j=1+ti
1
.

Moreover, let us write q(β)j = (q(β)j1, · · · , q(β)jd)
T , s(β)i = (si1, · · · , sid)T .

Now, for any θ ∈ Θ, a reparameterization θ 7→ (ωt, ψt) exists with

ωt =
(

(s(β)i)
q0
i=1, (s(α)i)

q0
i=1, (βi, αi)

q
i=1+tq0+1

)
,

ψt =(
(q(β)j)

tq0+1

j=t1
, (q(α)j)

tq0+1

j=t1
, µ(η1,1), · · · , µ(ηtq0+1,ntq0+1

), µ(1 + tq0+1), · · · , µ(q)
)
,

such that, if we write diag(q(β)j) the d×d matrix whose diagonal components
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are the components of the vector q(β)j and zero elsewhere, we get:

fθ(x) =
∑q0

i=1

∑ti+1

j=ti+1 (diag(q(β)j)s(β)i)
T xI{∪1≤k≤njPµ(ηj,k)}(x)+∑q0

i=1

∑ti+1

j=ti+1 s(α)iq(α)jI{∪1≤k≤njPµ(ηj,k)}(x)+∑q
i=tq0+1+1

(
βi
Tx+ αi

)
× IPµ(i)(x)

=
∑q0

i=1 s(β)Ti
∑ti+1

j=ti+1 diag(q(β)j)xI{∪1≤k≤njPµ(ηj,k)}(x)+∑q0
i=1 s(α)i

∑ti+1

j=ti+1 q(α)jI{∪1≤k≤njPµ(ηj,k)}(x)+∑q
i=1+tq0+1

(
βi
Tx+ αi

)
× IPµ(i)(x).

(17)

With this parameterization, for a fixed t, ωt is an identifiable parameter and
all the non-identifiability of the model will be in ψt. Hence, if 0Rd+1 is the
vector with d+ 1 zeros, for a fixed t, f(ω0

t ,ψt)
= f0 if and only if

ω0
t = (β0

1 , · · · , β0
q0
, α0

1, · · · , α0
q0
, 0Rd+1 , · · · , 0Rd+1︸ ︷︷ ︸).

q − tq0+1

Finally, let us write q1 = q − qtq0+1 , then the lemma is proven with:
For i ∈ {1, · · · , q0}, ωi = (s(β)i, s(α)i),
for i ∈ {q0 + 1, · · · , q1}, ωi = (β1+tq0+1+i−(q0+1), α1+tq0+1+i−(q0+1)),
for i ∈ {q1, · · · , q}, ωi = 0Rd+1 ,
for i ∈ {1, · · · , q0},
gψi(x) =(∑ti+1

j=ti+1 diag(q(β)j)xI{∪1≤k≤njPµ(ηj,k)}(x),
∑ti+1

j=ti+1 q(α)jI{∪1≤k≤njPµ(ηj,k)}(x)

)T
,

(18)
for i ∈ {q0 + 1, · · · , q1},

gψi(x) =
(
xIPµ(1+tq0+1+i−(q0+1))

(x), IPµ(1+tq0+1+i−(q0+1))
(x)
)T

, (19)

and, for i ∈ {q1, · · · , q}, gψi(x) is a function in Rh+1:

gψi(x) =
(
xIPµ(i)(x), IPµ(i)(x)

)
, (20)

such that all the indicator functions involved in the development of fθ,(
I{∪1≤k≤n1Pµ(η1,k)}(x), · · · , IPµ(q)(.)

)
are linearly independent indicator func-

tions of regions of hyperplane arrangement. Note that, the fixed parameter
ω0 = (ω0

1, · · · , ω0
q ) of the lemma is such that ω0

i = (β0
i , α

0
i ) for i ∈ {1, · · · , q0},

and ω0
i = 0Rd+1 for i ∈ {q0 + 1, · · · , q}.
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7. Proof of proposition 1

With the notations of lemma 3.1 and its proof, let us consider the set of
functions:{

f(ω,ψ) = f0 +

q∑
i=1

(ωi − ω0
i )
Tgψi , (ω, ψ) ∈ F = Fω ×Fψ

}
,

where F is a compact subset of RL, for an strictly positive integer L. Then

‖f(ω,ψ) − f0‖2 = |ω − ω0|‖
q∑
i=1

(ωi − ω0
i )

|ω − ω0|

T

gψi‖2

Now, {∑q
i=1

(ωi−ω0
i )

|ω−ω0|

T
gψi , (ω, ψ) ∈ F , ω 6= ω0

}
∪{

limω→ω0

∑q
i=1

(ωi−ω0
i )

|ω−ω0|

T
gψi , (ω, ψ) ∈ F

}
⊂ V ,

where

V =

{
hv,ψ =

q∑
i=1

vigψi , v = (v1, · · · , vq), |v| = 1 and ψ ∈ Fψ

}
.

Note that for all hv,ψ ∈ V , ‖hv,ψ‖2 > 0. Then, using the compacity of the set
{v, |v| = 1} × Fψ and the continuity of (v, ψ) 7→ ‖hv,ψ‖2, m > 0 exists such
that

∀(v, ψ) ∈ {v, |v| = 1} × Fψ, (v, ψ) 7→ ‖hv,ψ‖2 ≥ m.

At the same time, since ∥∥∥∥∥ f(ωt,ψt) − f0∥∥f(ωt,ψt) − f0

∥∥
2

∥∥∥∥∥
2

= 1,

a constant C exists so that S can be included in the set of functions:

H =

{
f(γ,ψ) =

q∑
i=1

γigψi , γ = (γ1, · · · , γq), |γ| ≤
C

m
,ψi ∈ Fψ

}
.
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According to the definitions (18), (19), and (20) of functions gψi , this set
is a special case of piecewise polynomials functions whose VC-dimension is
bounded (see Bartlett et al. [1]). So, according to van der Vaart [16], since
VC-classes have polynomial covering number, a positive integer Q exists so

that N[·] (η,H, ‖·‖2) = O
(

1
η

)Q
.
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