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A new Reduced-Reference (RR) image quality metric based on statistical models in the complex wavelet transform domain is proposed. The magnitude and the relative phase information of the complex wavelet coefficients is modeled by using probability density function, and a strategy based on the information criterion is proposed to optimally approximate the distribution. To further improve the accuracy of the metric, a comparison of the candidate models is studied, and the inverse Gaussian distribution and the wrapped Cauchy distribution are selected to model the magnitude and the relative phase distributions, respectively. The Kullback-Leibler divergence between the distributions of the reference image and the distorted one serves as the RR feature to measure the distortion. Finally, a generalized regression neural network is employed to map the RR feature into an objective score. Experimental studies confirmed that the proposed RR image quality metric is quality-aware and highly correlated with the human visual system.

Introduction

Thanks to the rapid development of computer, communication and network technologies, Image Quality Assessment (IQA) has become an important issue in many applications, such as image acquisition system, storage medium, processing system or transmission equipment. Therefore, to maintain and control the quality of the images, it is important for IQA to be able to identify and quantify the image quality degradation. According to the availability of a reference image, objective evaluation methods can be classified into three subcategories: (1) Full Reference IQA (FR-IQA) methods [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF][START_REF] Zhang | FSIM: a feature similarity index for image quality assessment[END_REF][START_REF] Sheikh | Image information and visual quality[END_REF][START_REF] Ding | Image quality assessment based on multi-feature extraction and synthesis with support vector regression[END_REF][START_REF] Bosse | Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment[END_REF], in which full information of a reference image should be available to evaluate the quality of distorted images, (2) Reduced Reference IQA (RR-IQA) methods [START_REF] Wang | Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[END_REF][START_REF] Wang | Qualityaware images[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF][START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF][START_REF] Zhang | Reduced-reference image quality assessment based on distortion families of local perceived sharpness[END_REF][START_REF] Li | Reduced-reference image quality assessment using divisive normalization-based image representation[END_REF], where only partial statistical information is necessary, and (3) No Reference IQA (NR-IQA) methods [START_REF] Mittal | No-reference image quality assessment in the spatial domain[END_REF][START_REF] Li | Blind image quality assessment using a general regression neural network[END_REF][START_REF] Moorthy | Blind image quality assessment: From natural scene statistics to perceptual quality[END_REF][START_REF] Saad | Blind image quality assessment: A natural scene statistics approach in the dct domain[END_REF], by which one can evaluate the image quality without a reference image. In general, the FR-IQA methods have the highest accuracy since they use more reference-image information than the other two methods. However, their use is limited to the occasion where a reference image can be obtained. RR/NR IQA methods have drawn more attention due to the often-impractical requirement of providing a full reference image by FR-IQA methods, particularly in communication applications [START_REF] Zhang | Reduced-reference image quality assessment based on distortion families of local perceived sharpness[END_REF]. We are quite interested in RR-IQA methods since RR-IQA methods may approach the state-of-the-art FR-IQA methods in terms of the accuracy of image quality evaluation, particularly considering that the human visual system has visual redundancy and is more sensitive to the macroscopic features of the image.

The RR-IQA methods are the practical and convenient tool for quality evaluation in real-time visual communication over wired or wireless networks. They can achieve high accuracy with less information, by extracting some reliable statistical features from the reference image as a basis for quality assessment. The framework for the deployment of an RR-IQA method in real-time visual communications is shown in Fig. 1. The system includes a feature extraction process at the transmitter side, a feature extraction and analysis process at the receiver side. The extracted RR feature usually has a much lower data rate than the image data and is typically transmitted to the receiver side by an auxiliary and robust channel. The auxiliary channel is assumed error-free (for this, we use error-correcting code).

The key issue of RR-IQA methods is to find RR features which can summarize the image and are sensitive to various image distortions. Over the last decade, some researchers have contributed in RR-IQA methods and developed a number of algorithms. Based on the underlying design philosophy, these approaches can be roughly divided into three classes: (1) the approaches to create a reduced version of an FR-IQA method [START_REF] Zhang | Reduced-reference image quality assessment based on distortion families of local perceived sharpness[END_REF][START_REF] Rehman | Reduced-reference image quality assessment by structural similarity estimation[END_REF], [START_REF] Zhang | FSIM: a feature similarity index for image quality assessment[END_REF] the approaches based on the models of the human visual system [START_REF] Carnec | An image quality assessment method based on perception of structural information[END_REF][START_REF] Carnec | Visual features for image quality assessment with reduced reference[END_REF], and (3) the approaches based on the statistical models of images [START_REF] Wang | Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[END_REF][START_REF] Wang | Qualityaware images[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF]. For the first class, the successful FR methods are utilized to find the corresponding RR features. In [START_REF] Rehman | Reduced-reference image quality assessment by structural similarity estimation[END_REF], Rehman et al. proposed the RR-SSIM method based on the successful FR-IQA method SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF]. Inspired by the fast wavelet-based image sharpness algorithm and the local standard deviation map, Zhang et al. [START_REF] Zhang | Reduced-reference image quality assessment based on distortion families of local perceived sharpness[END_REF] proposed the S4RR method. These RR methods have high accuracy but high RR data rate (for example 4.88% of the reference image for the S4RR method) which will cause inconvenience to the communication systems. The second class employs computational models of psychophysical and/or physiological vision studies to evaluate the images. These methods are limited to the applications of the JPEG and JPEG 2000 distortions [START_REF] Carnec | An image quality assessment method based on perception of structural information[END_REF][START_REF] Carnec | Visual features for image quality assessment with reduced reference[END_REF] since it is complicated to model the human visual system. The third category of methods is based on a prior statistical model of the natural images. The model parameters summarize the image information in an efficient way, which results in the RR-IQA algorithms with a low RR data rate. These methods are considered to have more potential to be extended for general-purpose applications, since the statistical and perceptual features employed are not restricted to any specific distortion process [START_REF] Rehman | Reduced-reference image quality assessment by structural similarity estimation[END_REF]. In [START_REF] Wang | Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[END_REF] and [START_REF] Wang | Qualityaware images[END_REF], Wang et al. proposed a wavelet-based RR method with a two-parameter general Gaussian distribution to summarize the image information, and the parameters had a quite low data rate (around 0.05% of the reference image). This RR-IQA method has a good performance in evaluating single type of distortions but is of low accuracy and poor robustness in detecting mixed distortions. Li et al. [START_REF] Li | Reduced-reference image quality assessment using divisive normalization-based image representation[END_REF] proposed an improved method based on a nonlinear divisive normalization transform but the improvement is limited, compared with the state-of-the-art FR-IQA methods. Moreover, the computational complexity increases significantly, due to the use of the divisive normalization transform. Thus, the previous approaches are often subject to two restrictions: either the distortions they can detect are few, or the accuracy is limited due to the small size of the RR feature. In this paper, we focus on the method based on statistical models to seek an RR-IQA method which can (1) detect various distortions, (2) be competitive with the state-of-the-art FR-IQA methods, and (3) summarize image information in a low data rate and a low computational complexity.

As mentioned earlier, Wang et al. proposed a low-data-rate RR-IQA method based on the discrete wavelet transform. However, over the last two decades, it has been demonstrated that the Complex Wavelet Transform (CWT) has better performance in signal and image processing than the discrete wavelet transform. In this paper, we dedicate to finding an RR metric based on statistical models in the CWT domain. The main advantages of the CWT over the discrete wavelet transform are its shift invariant property and good directional selectivity [START_REF] Selesnick | The dual-tree complex wavelet transform[END_REF]. The CWT is suitable for many applications, such as image coding [START_REF] Selesnick | Video denoising using 2D and 3D dual-tree complex wavelet transforms[END_REF], image denoising [START_REF] Vo | Image denoising using shiftable directional pyramid and scale mixtures of complex gaussians[END_REF], motion estimation [START_REF] Magarey | Motion estimation using a complex-valued wavelet transform[END_REF], image quality measures [START_REF] Wang | Translation insensitive image similarity in complex wavelet domain[END_REF], and image retrieval [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF]. Some approaches to deploying CWT have been proposed in the literature, for example, the Dual-Tree Complex Wavelet Transform (DT-CWT) [START_REF] Kingsbury | Image processing with complex wavelets[END_REF][START_REF] Kingsbury | Complex wavelets for shift invariant analysis and filtering of signals[END_REF], pyramidal dual-tree directional filter banks [START_REF] Nguyen | The shiftable complex directional pyramid-Part I: Theoretical aspects[END_REF], and uniform discrete curvelet transform [START_REF] Nguyen | Uniform discrete curvelet transform for seismic processing[END_REF]. We choose the DT-CWT as a decomposition tool, which is a very efficient numerical algorithm. Hereafter, we mainly introduce the DT-CWT.

Although several RR-IQA methods based on the DT-CWT have been proposed, these methods just used partial information, for example, the phase information or average directional information (mean magnitude of the intercoefficient product). The comprehensive method based on the fusion of the magnitude and the phase information of the DT-CWT wavelets has not been proposed yet. The reason is twofold: (1) the distribution of the phase is uniform, where we cannot extract valuable features, and (2) the magnitude distribution is difficult to model with a low error. In [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF] , it is indicated that the relative phase can be modeled and applied to texture segmentation and retrieval. The relative phase is a phase difference with a clearer statistical characteristic than the phase. By utilizing the relative phase concept [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF], two RR-IQA methods based on the relative phase feature [START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF] and the average directional information [START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF] were presented respectively. However, another important information, the magnitude was not used in these methods. In our method, the magnitude is exploited as a complementary to the relative phase. Our conjecture is that the magnitude is sensitive to some distortions, including white noise, Gaussian blur and JPEG compression distortions, while the relative phase is sensitive to other distortions, such as fast-fading and JPEG 2000 compression distortions. Moreover, we adopted the Information Criteria (IC) to reduce the modeling errors of the magnitude and the relative phase information.

So, the main contribution of the paper is the implementation of an RR-IQA metric based on the magnitude and the relative phase of DT-CWT wavelets. For this, we first analyzed how the magnitude and the relative phase information change with image degradations. Secondly, we designed a strategy based on the IC to optimally approximate the distributions of the magnitude and the relative phase. The strategy helps to reduce the modeling error and can also be used in other RR-IQA metrics based on statistical models. Thirdly, we compared the candidate models and selected the appropriate models for the magnitude and the relative phase modeling. The models can be applied to other image applications, such as image texture segmentation, image retrieval, and pattern recognition etc.

The remainder of this paper is organized as follows. In Section 2, the complex wavelet transform, relative phase, magnitude and IC are reviewed. The proposed metric FMRP is detailed in Section 3. Section 4 introduces the simulation details and experimental results. Finally, in Section 5, a brief conclusion is reached.

Background

Dual-Tree Complex Wavelet Transform (DT-CWT)

The DT-CWT was proposed by Kingsbury [START_REF] Kingsbury | Image processing with complex wavelets[END_REF][START_REF] Kingsbury | Complex wavelets for shift invariant analysis and filtering of signals[END_REF]. Its filters employed in the two trees are designed in such a way that the aliasing in one branch in the first tree is approximately cancelled by the corresponding branch in the second tree. In [START_REF] Kingsbury | Complex wavelets for shift invariant analysis and filtering of signals[END_REF], Kingsbury focused on designing of a two-channel filter bank having filters satisfying the half-sample phase delay condition with respect to an existing filter bank. Directional selectivity was achieved in the 2-D case by combining the outputs of the filter bank in such a way that the equivalent complex filters have supports in only one quadrant of the frequency plane [START_REF] Kingsbury | Image processing with complex wavelets[END_REF]. The wavelet functions from two trees play the role of the real and the imaginary parts of a complex analytic wavelet. In this way, the 2-D DT-CWT has six directions at approximate -15 • ,-45 • ,-75 • ,+75 • ,+45 • ,+15 • . One may refer to [START_REF] Selesnick | The dual-tree complex wavelet transform[END_REF] as an excellent tutorial overview of the DT-CWT.

With six 2-D analytic wavelet sub-bands, for one scale, we have six magnitude and phase information as features. The magnitude information indicates the discontinuities, which is used as a crucial feature in many image processing areas, such as image coding, image denoising and texture retrieval [START_REF] Selesnick | The dual-tree complex wavelet transform[END_REF][START_REF] Selesnick | Video denoising using 2D and 3D dual-tree complex wavelet transforms[END_REF][START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF]. For image quality evaluation, the magnitude is suitable for detecting the distortions with significant energy changes, such as white noise and Gaussian blur.

The phase is another important feature, which provides structural information, such as edge, texture and ridge. However, it is difficult to directly obtain the statistical property of the phase since the phase distributions in some decomposition scales are uniform [START_REF] Rahman | Statistics of 2-D DT-CWT coefficients for a Gaussian distributed signal[END_REF]. In [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF], An suggested extracting the statistical property from the relative phase rather than the phase. Definition 1 The relative phase is a phase difference of two adjacent complex wavelet coefficients. For a spatial location (i, j) within a particular complex sub-band, the relative phase is expressed as [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF] θ(i, j) = ∠y(i, j) -∠y(i, j + 1) or θ(i, j) = ∠y(i, j) -∠y(i + 1, j), [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF] where ∠y(i, j) is a coefficient at position (i, j).

The relative phase can represent the orientation feature very well and has been applied to texture retrieval and segmentation [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF]. In this paper, the relative phase as an important feature is employed to detect the image distortions that disturb the structure information or the orientation details.

Distortion measure

For the RR-IQA methods based on statistical models in the wavelet domain, the Kullback-Leibler Divergence (KLD) is typically employed to quantify feature changes and measure image degradation [START_REF] Wang | Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[END_REF][START_REF] Wang | Qualityaware images[END_REF][START_REF] Li | Reduced-reference image quality assessment using divisive normalization-based image representation[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF]. We review its definition in this section. Definition 2 The KLD is the Kullback-Leibler Divergence between the distributions of wavelet coefficients of the reference image and the distorted one. Let x = {x 1 , ..., x N } be a set of N selected coefficients in the DT-CWT domain. Let I(x) and Î(x) denote the Probability Density Function (PDF)

of the DT-CWT coefficients in the same sub-band of the original image and the distorted one, respectively. The log-likelihoods of x being calculated via I(x) and Î(x) are

l(I) = 1 N N n=1 log I(x n ) and l( Î) = 1 N N n=1 log Î(x n ), (2) 
respectively. It is assumed that I(x) is the true PDF of the coefficients.

Based on the law of large numbers, if N is large enough, the difference of the log-likelihood-ration between I(x) and Î(x) asymptotically approaches the KLD between I(x) and Î(x),

d(I Î) = I(x) log I(x) Î(x) dx. (3) 
The relation between KLD and log-likelihood function has been found and was used to compare images in the applications of image classification, image retrieval and image evaluation [START_REF] Wang | Qualityaware images[END_REF][START_REF] De Bonet | Texture recognition using a non-parametric multi-scale statistical model[END_REF][START_REF] Do | Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance[END_REF].

Proposed approach

The new RR-IQA method is based on the statistical model in the complex wavelet transform domain. It is named FMRP (Feature of Magnitude and Relative Phase) metric. In this section, the global scheme, preprocessing, modelselection and some other details will be introduced.

Global scheme

As illustrated in Fig. 2, the reference image I is first decomposed into 18 sub-bands with a three-scale six-orientation DT-CWT. Selecting three scales is because the influences of the degradation mainly lie on these scales. Secondly, the magnitude and the relative phase of each scale are modeled, and the Information criterion (IC) is employed to reduce modeling errors. The parameters of the models serve as the crucial features, i.e., RR features X. Next, the image I and the RR features X will be transmitted to the receiver via a transmission channel and an auxiliary channel, respectively. Generally, the transmission channel introduces distortions into the received image Î and the auxiliary channel is assumed to be distortion-free (for this, we can use error-correcting code). At the receiver, the features Y are extracted from the received image Î with the same processing used in the reference image. Finally, the features X and Y are compared to quantify the distortion and a generalized regression neural network is utilized to map the RR features into the objective score.

Preprocessing

Threshold preprocessing is necessary before modeling, since the magnitude has some near-zero values, after the filtering operation of filter bank in the DT-CWT. These near-zero coefficients are caused by the uniform area and may lead to difficulty and error for modeling (because the numerical estimation of the phase value is inconsistent). It occurs frequently when the transform is performed on natural scenery images. These images often contain some scenes with the same pixel intensity such as the sky, grass and sea. As shown in Fig. 3,(a) is a natural scene image with uniform areas such as sky and grass, (b) and (c) are respectively the histograms of the magnitude and the relative phase of DT-CWT. For the histograms in (b) and (c), there are mutations located at the near-zero values of the horizontal axis, which caused by the uniform area (sky and grass). Considering the mutations may lead to difficulty in modeling, we should remove these near-zero values.

A thresholding process is designed to eliminate these coefficients in the magnitude and the relative phase. The purpose of setting the threshold is to remove the near-zero coefficients and keep the image information as much as possible. For the magnitude, we studied the coefficients of all the images in the LIVE 2 database and found that the threshold will increase with the decomposition scales. For example, for the 1-scale, 2-scale and 3-scale decom-position, the thresholds are respectively around 10 -6 , 10 -4 and 10 -2 . The process to set the threshold is as follows:

1. Dividing the images into two parts: images with uniform areas and the one without. 2. Performing the DT-CWT coefficients and sorting all the elements of the coefficient. 3. After sorting, the near-zero coefficients will cluster together and it is easy to determine the threshold.

For the relatvie phase, the coefficients of the uniform areas are equal to zero. Thus, it is easy to select the value of zero as the threshold of the relative phase. The relative phase coefficients with zero value should be eliminated.

After the thresholding operation, the histograms of the magnitude and the relative phase are easy to model by a specific distribution, as shown in Fig. 3 (e) and (f).

Optimizing the histogram with information criterion

Before modeling the magnitude and the relative phase distributions, it is necessary to construct their histograms. The traditional method is to randomly or empirically select the number and the interval of the histogram bins [START_REF] Wang | Reduced-reference image quality assessment using a wavelet-domain natural image statistic model[END_REF][START_REF] Wang | Qualityaware images[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF]. To acquire the optimal histogram, a statistical method, information criteria (IC), is introduced. IC, also called penalized likelihood criterion, was first proposed by Akaike and used to correct the maximum likelihood ratio to avoid a tendency to select the more complex model [START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF]. In recent years, it is developed to determine which histogram is most suitable for the model estimation [START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF][START_REF] Alata | Law recognitions by information criteria for the statistical modeling of small scale fading of the radio mobile channel[END_REF][START_REF] Coq | Law recognition via histogrambased estimation[END_REF][START_REF] Birge | Statistical estimation with model selection[END_REF][START_REF] Birge | How many bins should be put in a regular histogram[END_REF]. For a histogram with equal bins, the criterion is expressed as [START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF] 

IC(k) = k j=1 n j log n j -n log k + kc n , ( 4 
) k = arg min IC(k), with k = 1, ..., (2 √ n -1), (5) 
where n j,j=1,...,k is the number of realizations of coefficients into the corresponding class j, k is the number of histogram bins, n is the number of data coefficients by sub-band, c n is the penalty function, and k is the estimation of the number of histogram bins in the sense of information criteria. The first two terms in Eq. ( 5) are the log-likelihood terms. It is also the reason why IC is regard as a penalized log-likelihood criterion. Different c n values mean different IC, for example c n = 2 defines the AIC [START_REF] Akaike | A new look at the statistical model identification[END_REF] which is the earliest IC. This criterion will bring about an over-parameterization. Two other criteria respectively named BIC and ϕ β are developed to overcome the inconsistency of AIC. The BIC criterion proposed by Schwarz [START_REF] Schwarz | Estimating the dimension of a model[END_REF] is strongly consistent, which is based on the Bayesian justification with c n = log n. The ϕ β criterion was proposed by Matouat and Hallin [START_REF] Matouat | Order selection, stochastic complexity and Kullback-Leibler information[END_REF], where c n = n β log log n. It is a strongly consistent criterion when 0 < β < 1. On the basis of the ϕ β penalty it is possible to obtain the penalties associated with the BIC and the AIC criteria: β BIC is such that n β BIC log log n = log n, and β AIC is such that n β AIC log log n = 2 [START_REF] Alata | Law recognitions by information criteria for the statistical modeling of small scale fading of the radio mobile channel[END_REF]. In addition, a refined condition: β min = log log n log n < β < 1 allows to adjust β according to the number of data coefficients by sub-band [START_REF] Alata | Law recognitions by information criteria for the statistical modeling of small scale fading of the radio mobile channel[END_REF][START_REF] Jouzel | Information criteria based edge detection[END_REF]. Furthermore, it is noted that the optimal values of β must be between Motivated by [START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF], we utilized the criterion ϕ β with β = β BIC to estimate the optimal number of classes of histograms. Fig. 4 shows a comparison of the histograms with or without using IC, where (a), (b) are the empirical histograms without using IC, and (c), (d) are the optimal histograms using IC. The KLD between the model and the distribution is used as a quantification criterion. It is obvious to see that a better estimation can be achieved with IC while minimizing the number of classes. These distribution shapes will contribute to the selection of the PDF.

Model selection

The objective of model selection is to find statistical models to capture the magnitude or the relative phase features.

Model of magnitude

The statistical property of the magnitude can be extracted directly and it is important to select an appropriate model. In [START_REF] Shaffrey | Unsupervised image segmentation via Markov Trees and complex wavelets[END_REF], the Mixture Rayleigh Distribution (MRD) is selected to model magnitude. It mixed by two Rayleigh distributions can obtain a better approximation than a single Rayleigh distribution. However, the fitting error is still a bit large and there are too many parameters. We propose to model the magnitude by the Inverse Gaussian Distribution (IGD) [START_REF] Chhikara | The Inverse Gaussian Distribution: Theory: Methodology, and Applications[END_REF], which has less error and fewer parameters than the mixture Rayleigh distribution. The expressions of the MRD and the IGD are respectively,

R(x) = k 1 x σ 2 1 exp -x 2 2σ 2 1 + k 2 x σ 2 2 exp -x 2 2σ 2 2 , ( 6 
)
where σ 1 , σ 2 are the scale parameters of the MRD, k 1 , k 2 are the weighting factor,

I(x) = λ 2πx 3 1 2 exp - λ(x -µ i ) 2 2µ 2 i x , ( 7 
)
where λ is the sharp parameter, and µ i is the mean. The comparison between the MRD and the IGD models was performed by an experimental method. The KLD value between the original distribution and the model serves as the criterion. The model with less KLD value will be selected. We took all the images in the LIVE 2 database as a test. The experimental results show that the average KLD value of the MRD model is around 0.04 and the one of the IGD model is around 0.01. Thus, we chose the IGD model as the model of the magnitude. Fig. 5 shows the fitting performance of the two candidate models, taking the image "Bikes" as an example. 

Model of relative phase

Compared with the phase, the relative phase has a clear statistical characteristic. An [START_REF] Vo | A study of relative phase in complex wavelet domain: Property, statistics and applications in texture image retrieval and segmentation[END_REF] found that the Wrapped Cauchy Distribution (WCD) fits the relative phase distribution well. From a preliminary study of the relative phase distribution of the images in the LIVE 2 database, we found that the Generalized Gaussian Distribution (GGD) also fits the distribution well. Thus, we compared the two models by an experimental way in this section.

The WCD is obtained by wrapping the Cauchy distribution on the real line with density f (x) around the circle, where

f (x) = σ w π[σ 2 w + (x -µ w ) 2 ] , -∞ < x < ∞. (8) 
It has the probability density function [START_REF] Kingsbury | Complex wavelets for shift invariant analysis and filtering of signals[END_REF][START_REF] Nguyen | The shiftable complex directional pyramid-Part I: Theoretical aspects[END_REF] 

p(θ) = 1 2π 1 -ρ 2 1 + ρ 2 -2ρ cos(θ -µ w ) , -π ≤ θ ≤ π, ( 9 
)
where ρ = e -σw is the sharp parameter, µ w is the mean. The GGD model is defined as

G(x) = A 2 exp[-(|A 1 (x -µ g )| α )], (10) 
where

A 1 = 1 σg Γ(3/α) Γ(1/α) and A 2 = A 1 α 2Γ(1/α)
, α > 0 is the sharp parameter, σ g is the standard deviation, µ g is the mean, Γ(•) is the Gamma function.

Note that the histogram of the relative phase of natural image is usually a concave curve rather than a bell curve, and the relative phase values are defined between -π and π. Thus, by considering GGD model is aperiodic symmetry, it is necessary to shift the curve before constructing the histogram.

The shifting processing and a curve fitting example for image "Bikes" are shown in Fig. 6, where (a) is the original histogram and the curve fitting of WCD model (WCD model is periodic symmetry), (b) and (c) are the π shift histograms, respectively fitting by WCD and GGD models. To select the more suitable model, we compared the two models in the same way used in Subsection 3.4.1. The experimental results show that the average KLD value of the GGD model is 0.0042 and the one of the WCD model is 0.0025. Thus, the WCD model is selected as the model of the relative phase.

Summarily, we have selected the IGD model for the magnitude and the WCD model for the relative phase, respectively. The IGD model has two parameters, i.e., the sharp parameter λ and the mean µ i . The WCD model has the sharp parameter ρ and the mean µ w . In the next part, we will demonstrate the influence of image degradation on RR features and the implementation of FMRP metric.

Influence of the degradation on the proposed DT-CWT features

To show the influence of image degradation on RR features, we extract the features from a set of images with different types of distortions and observe how these features vary with the distortions. The results are illustrated in Fig. 7. It is easy to observe that the PDFs of the magnitude and the relative phase vary in different ways for different types of image distortions. For the magnitude, the variation of the PDF due to the white Gaussian noise and Gaussian blur distortion is larger than other distortions, and this causes the magnitude feature more sensitive to these types of distortions (random error or information removing). The relative phase can detect local structural attacks like JPEG 2000, JPEG, and fast fading distortions.

As defined in section 2.1, the KLD between the distributions of wavelet coefficients of the reference image and the distorted one is employed to measure the image degradation. To make an effective estimation, the histograms of the DT-CWT coefficients of the two images must be available. The histogram, Î(x), is easy to compute from the distorted image but it is impossible to obtain the original histogram of the reference image at the receiver side. However, we have verified that the histograms of the DT-CWT coefficients of the reference image can be estimated from the well-selected models (namely the IGD and the WCD models). Thus, we just need to transmit the parameters of the models to the receiver side.

Motivated by [START_REF] Wang | Qualityaware images[END_REF], we computed the KLD between the PDF of the original image and that of the distorted image,

d(I Î) = I m (x) log I(x) Î(x) dx = d(I m Î) -d(I m I), ( 11 
)
where I m (x) is the model density function, d(I m Î) is the KLD between the model and the distorted image, and d(I m I) is the KLD between the model and the original image, namely modeling error calculated at the transmitted side. The modeling error should be sent to the receiver side to define a more precise estimation. Finally, the objective scores are computed by a machine learning regression method according to the features of the distorted images. To get an appropriate range of values for the training model, we normalize the value of the features with a logarithmic function,

M i or R i = log 10 (1 + k di (I i Îi )), ( 12 
)
where i = 1, ..., 18 is the index of the features, M i and R i are respectively the KLDs of magnitude and relative phase between the reference image and the distorted one, di (I i Îi ) is calculated according to Eq. ( 12), and k = 0.001 is a constant to control the scale of the distortion metric. The image is decomposed with a three-scale six-orientation DT-CWT.

Machine learning method for regression

After obtaining the features from the magnitude and the relative phase, the next step is to map the features into a subjective score. The goal is to find a function f (•) that uses the calculated indices as inputs and predicts an objective score S 0 for each image. The function f (•) is expressed

S 0 = f (M 1 , R 1 ; M 2 , R 2 ; ...; M i , R i ). ( 13 
)
In recent years, researchers have tended to employ machine learning methods to develop regression function, such as support vector regression (SVR) [START_REF] Ding | Image quality assessment based on multi-feature extraction and synthesis with support vector regression[END_REF][START_REF] Cakir | Image quality assessment using two-dimensional complex melcepstrum[END_REF] and general regression neural network [START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF][START_REF] Li | Blind image quality assessment using a general regression neural network[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF][START_REF] Qureshi | A fast no reference image quality assessment using laws texture moments[END_REF]. Considering the time consumption and the complexity of implementation, we select the generalized regression neural network as a regression tool.

The generalized regression neural network is a kind of radial basis networks that is often used for function approximation based on a linear or non-linear regression. Its main function can be represented as [START_REF] Specht | A general regression neural network[END_REF] Ŷ

(x) = n i=1 Y i exp D 2 i 2σ 2 n i=1 exp - D 2 i 2σ 2 , ( 14 
)
where

D 2 i = (X -X i ) T (X -X i ), D 2
i is the Euclidean distance between the measured value X and the sample observation X i , Y i is the score associated with X i , n is the number of sample observations of training database, and σ is the standard deviation of radial kernal (a larger σ may bring a smoother regression surface but less accuracy while a smaller one may provide higher approximation accuracy but a worse smooth surface [START_REF] Song | A globally enhanced general regression neural network for on-line multiple emissions prediction of utility boiler[END_REF]).

We implement the generalized regression neural network by a Matlab function newgrnn(). The only parameter involved is the spread parameter p ∈ [0, 2], linked with the standard deviation σ. To set this parameter, we optimize the value of p with the 10-fold method. The process of the 10-fold method is as follows:

1. Dividing the database into 10 sub-sets according to the 10-fold method. 2. Computing the prediction data with p = 0 : 0.1 : 2.

Comparing the correlation coefficients between the prediction data and

actual data, and taking the value of p that maximizes the correlation coefficient as the optimal value.

The experiment results show the optimal value is around 0.8. Thus, we set the spread parameter to 0.8 in the next step.

Another important issue is to design the training and testing subsets. To have a robust evaluation of the metric, two strategies can be employed to design subsets.

Strategy 1: two-thirds of data are randomly picked out for training, while the rest data are for testing. The final result is the median value of 1000 replicates of the process.

Strategy 2: 10-fold cross-validation style. The database is randomly partitioned into 10 equally sized subgroups. A single subgroup is selected as the testing data, and the remaining 9 subgroups are used as training data, then switching the testing and training data. Each of the 10 subgroups is selected just once as the validation (testing) data.

Since the proposed metric maps the RR features into the objective scores with a generalized regression neural network, the objective score will vary with the subjective score provided by the database. If the subjective score is Mean Opinion Score (MOS), the objective score will also be MOS. In addition, if the subjective score is the Difference of MOS (DMOS), the objective score will be DMOS. The MOS measures the similarity of the reference image and the distorted one (larger MOS means less distortion) while the DMOS measures the difference (larger DMOS means larger distortion). Suppose we take the LIVE 2 database (DMOS as the subjective score) as the train-ing set, the objective score will be DMOS. Some examples will be shown in Subsection 4.5.

Experimental studies

Image quality database

To evaluate the performance of the proposed metric, four publicly available image databases are selected as test objects, including LIVE 2 [START_REF] Sheikh | LIVE image quality assessment database 2[END_REF], CSIQ [START_REF] Larson | Most apparent distortion: full-reference image quality assessment and the role of strategy[END_REF], TID2013 [START_REF] Ponomarenko | Color image database TID2013: Peculiarities and preliminary results[END_REF] and Toyama [START_REF] Tourancheau | Impact of subjective dataset on the performance of image quality metrics[END_REF]. The characteristics of these four databases are shown in Table 1. Note that CSIQ and TID2013 include some distortions, such as contrast change, change of colour saturation and intensity shift, which are utilized to test the FR-IQA metrics and usually do not occur in the communication system. Thus, we remove these types of distortions from CSIQ and TID2013, remaining 5 types of distortions of CSIQ (6 in total) and 18 types of distortions of TID2013 (24 in total), and name them CSIQ*2 and TID2013*3 , respectively. According to the suggestion given by the Vide Quality Experts Group in [START_REF]ITU-T, Objective perceptual assessment of video quality: Full reference television[END_REF], we employ three evaluation criteria to quantify the performance of our metric. The first one is the Pearson linear correlation coefficients (PLCC) used to evaluate the prediction accuracy. The second one is the Spearman rank-order correlation coefficients (SROCC) used to evaluate the prediction monotonicity. The last one is the outlier ratio (OR) to evaluate the prediction consistency which is defined as

OR = m/n, ( 15 
)
where m is the number of outlier-points, n is the number of total points, and the outlier-points satisfy

|E(i)| > 2σ s , (16) 
where E(i) is the prediction error of the i-th point, σ s is the standard deviation of subjective scores.

Decomposition scales and the features

As introduced in Section 3 the influences of the image degradation mainly lie on the first three decomposition scales of the DT-CWT. Table 2 lists the prediction accuracy of different decomposition scales for all images of the LIVE 2 database. Obviously, a 3-scale decomposition is better than a 2-scale one and almost with the same accuracy as a 4-scale one. Thus, the 3-scale decomposition is selected, which provides the best trade-off between accuracy and the size of transmitted information. To further analyze how the magnitude and the relative phase features vary with distortion types, we take magnitude and relative phase as independent metrics respectively and compare them with the feature in the Discrete Wavelet Transform (DWT) domain. The experimental results are illustrated in Table 3, where we utilize the LIVE 2 database as a test database, including JPEG compression, JPEG2000 compression, Gaussian blur, white noise and fast fading distortions. The PLCC of the prediction scores and the subjective scores served as a quantify criteria for performance. One can see that the features of magnitude and relative phase of the DT-CWT have better performance than those of the DWT. It is mainly because of the advantages of the DT-CWT, including shift invariance, non-oscillations, multi-directions and phase information. Another reason is the use of the general regression neural network in the mapping between RR features and objective scores. It is better than the logistic function used in the DWT-based metric. Moreover, Table 3 shows that the magnitude feature is sensitive to JPEG compression, white noise and Gaussian blur distortions, and relative phase feature is sensitive to JP2K compression and fast-fading distortions. Therefore, to take full the advantage of two features, we combine them to form a new image quality metric, i.e., FMRP. The FMRP metric has the highest accuracy in detecting the five distortions of the LIVE 2 database, and the best robustness in detecting all distortion mixtures. 

Comparison with other metrics

To futher assess the performance, we compared the FMRP metric with six other metrics, including two FR metrics: SSIM [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF], MS-SSIM [START_REF] Wang | Multi-scale structural similarity for image quality assessment[END_REF] and four RR metrics: Wang et al.'s RR method [START_REF] Wang | Qualityaware images[END_REF] (we call it FDWT), ADI [START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF], QWT [START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF] and Lin et al.'s RR method [START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF] (we call it RP). The implementation code of the SSIM, MS-SSIM and FDWT methods are available at the Waterloo IVC Code Repository [START_REF] Wang | Waterloo IVC code repository[END_REF]. According to the algorithms in [START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF][START_REF] Traoré | Quaternionic wavelet coefficients modeling for a reduced-reference metric[END_REF][START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF], we respectively implemented the other metrics. All the performances of these metrics are summarized in Table 4. We utilize Strategy 1 (referring to section 3.6) to design the training and testing subsets. To increase the readability of the results, we mark the first-best and the second-best metrics in bold. It is shown that the proposed metric FMRP performs quite well for the four databases. It provides better prediction accuracy (with higher PLCC), better prediction monotonicity (with higher SROCC) and better prediction consistency (with lower OR) than most other metrics. Compared with other RR metrics, the FMRP metric achieves the best results on all the databases. Compared with the other representative FR metric MS-SSIM, it also performs quite well, with a higher accuracy in the LIVE 2 database and a very close accuracy in the other databases. By recalling that the FMRP metric is an RR metric, it uses less information in image evaluation than the FR metrics. The experimental results verify that the FMRP metric is a useful and reasonable RR metric for communication systems. Further, we compared the FMRP with three other RR metrics to test their performances for different types of distortions. The results are compiled in Table 5, where we list the major distortions in communication systems. It is obvious that the FMRP metric performs better in most distortions, such as compression, transmission error, and additive noise distortions. It can be interpreted by the good perception and robustness of the magnitude and the relative phase to kinds of distortions. For additive Gaussian noise and Gaussian blur distortions, the ADI metric has the best performance. As introduced before, it is an energy method in the wavelet domain that is sensitive to changes in energy.

Robustness and cross-validation

The FMRP metric is based on machine learning regression techniques, so its performance depends upon the training sets to some extent. To evaluate the robustness of the proposed FMRP metric, cross-validation and cross-database validation are performed. The experimental results of crossvalidation in databases are listed in Table 6, where Strategies 1 and 2 are two subsets design strategies introduced in Subsection 3.6. The numerical values of the three evaluation criteria are very close. The experimental results show that the FMRP metric is not sensitive to the selection of the training subset.

Moreover, to perform a cross-database validation, we integrate all the images of four databases and unify the subjective scores. With the integration, we have around 4200 images and then carry out the training and testing process with Strategy 1. Two other methods based on machine learning, ADI [START_REF] Lin | Reduced-reference image quality assessment based on average directional information[END_REF] and RP [START_REF] Lin | Reduced-reference image quality assessment based on phase information in complex wavelet domain[END_REF], are compared with the proposed FMRP metric. The results are shown in Table 7, where stdCC and stdSR respectively are the standard deviations of 1000 PLCC and SROCC (1000 iterations for the training and testing process). Obviously, the FMRP metric performs better than the ADI and the RP metrics in cross-database validation. 

Complexity and inaccurate samples

For the complexity analysis, we enumerated memory cost and computation time of all the metrics used in the previous section, as shown in Tables 8 8. It is a proper memory cost for the communication system. In addition, the memory cost of the FMRP metric is independent to the image size. The calculation of objective scores involves two steps: (1) calculate the similarity or specific distance between the distorted image and the reference image, (2) transfer the similarity or the specific distance to objective scores by a regression function. Since most of the metrics use the same regression function and the time of this step is quite short, we compared the time of step (1) of all the metrics, as shown in Table 9. The test is performed on a PC with 2.7 GHz Intel Core i7 CPU and 8.00 GB RAM, and the soft platform is Matlab R2016a. The computation time of the FMRP is 1.3618 seconds, which is slightly more than the FDWT metric. Thus, it is an acceptable time consumption for a communication system. Some inaccurate samples of the FMRP metric are illustrated in Fig. 8, where the objective scores of the FMRP are not accordant with the MOS of assessors. Taking Fig. 8 (a) and (b) as an example, their MOSs are sorted in descending order, but their FMRP scores are in ascending order. This phenomenon is caused by the JPEG 2000 transmission error in the TID2013 database. For this distortion, image degradation mainly occurs in some local blocks (we call it local distortion), as shown with the black rectangle in Fig. 8. The local distortion is a challenge to most metrics, especially for the metrics with global statistical features. 

Conclusion

An RR-IQA metric based on the statistical model in the complex wavelet transform domain is proposed. The features are extracted from the magnitude and the relative phase of the image DT-CWT coefficients. Moreover, a strategy based on IC is designed to find a statistical model to capture the magnitude or the relative phase information. The parameters of these models are used as RR features. Thus, the metric is named as feature of magnitude and relative phase (FMRP).

It is demonstrated that the magnitude feature is sensitive to JPEG compression, white noise and Gaussian blur distortions, while the relative phase feature is sensitive to JP2K compression and fast-fading distortions. These features offer additional information for evaluating image quality degradation.

The degradation measure is obtained with the computation of the Kullback-Leibler Divergence between the sub-bands of the reference image and the distorted one. Finally, to build the relation between features and subjective scores, a general regression neural network is introduced.

Comparing with the representative FR-IQA and RR-IQA metrics, the proposed reduced-reference image quality metric performs well in prediction accuracy, prediction monotonicity, prediction consistency and robustness, and demonstrates that the features are quality-aware and the metric is highly correlated with the human visual system. Moreover, the experimental results indicate our strategy is independent on the used database for the training process.

Recently, for the image transmission in a wireless channel, some adaptive strategies have been exploited to improve the quality of service by adjusting the system parameters. However, these strategies do not consider the quality of experience. In the future, the FMRP metric will be applied to the image transmission system to improve the quality of experience.
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 1 Figure 1: Simplified framework for the deployment of RR-IQA systems.

Figure 2 :

 2 Figure 2: Outline of the proposed RR-IQA method.

Figure 3 :

 3 Figure 3: Natural scene image "Plane" and its histograms of magnitude and relative phase in DT-CWT domain. (a) Original image, (b) histogram of magnitude, (c) histogram of relative phase, (e) histogram of magnitude after thresholding, (f) histogram of relative phase after thresholding.

  β min and 1, and the values of β AIC are not in the interval [β min ; 1] [9, 41]. It confirmed the inconsistency of AIC is contrary to BIC with β BIC in [β min ; 1].

Figure 4 :

 4 Figure 4: Comparison of the histograms with or without using IC (Histograms taken from the image "Bikes", the decomposition scale is 1, and the orientation is 15 degree). (a), empirical histogram of the magnitude without using IC and (b), empirical histogram of the relative phase without using IC. (c), optimal histogram of the magnitude with IC and (d), optimal histogram of the relative phase with IC.

Figure 5 :

 5 Figure 5: The comparison of two PDF candidates (Histogram taken from the image "Bikes", the decomposition scale is 1, and the orientation is 45 degree). (a) Curve fitting of the MRD, (b) curve fitting of the IGD.

Figure 6 :

 6 Figure 6: The comparison of the two PDF candidates (Histogram taken from the image "Bikes", the decomposition scale is 1, and the orientation is 15 degree). (a) Curve fitting of WCD, (b) Curve fitting of WCD, histogram after π shift, and (c) Curve fitting of GGD, histogram after π shift.
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 7 Figure 7: The comparison of the PDFs of magnitude and relative phase from different distortions. The first column is the original image and the distorted images, the second column is the PDF of the magnitude, and the third column is the PDF of the relative phase. (The red dashed curve and the blue solid curve are the PDF of the model and that of the distribution, respectively.)
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 8 Figure 8: Four inaccurate samples of the FMRP metric in TID2013 database.

Table 1 :

 1 Information of the image quality databases.

	Database	Distortion types	Reference images	Distorted images	Distortion levels	Subjective evaluation Score type Scale
	LIVE 2	5	29	982	5-9	DMOS	[0 100]
	CSIQ*	5	30	750	5	DMOS	[0 1]
	TID2013* 18	25	2250	5	MOS	[0 9]
	Toyama	2	14	196	6	MOS	[1 5]

Table 2 :

 2 Prediction accuracy of 2, 3 and 4 decomposition scales.

	Scales	PLCC SROCC OR
	2 scales 0.9498 0.9308	0.0096
	3 scales 0.9731 0.9638	0.0035
	4 scales 0.9738 0.9640	0.0045

Table 3 :

 3 Comparison of the features of DWT and DT-CWT.

	Quantify criteria	Feature source	JP2K JPEG	WN	BLUR FADING	ALL
		Feature of DWT 0.9651 0.9407 0.9488 0.9465	0.9306	0.8478
	PLCC	Magnitude Relative phase	0.9690 0.9629 0.9719 0.9866 0.9725 0.9566 0.9589 0.9825	0.9545 0.9596	0.9300 0.9500
		Combination	0.9768 0.9730 0.9804 0.9836	0.9689	0.9731

Table 4 :

 4 Performance comparison of the objective quality metrics.

	Objective quality metrics

Table 5 :

 5 Performance comparison of RR metrics for different distortions.

	Distortion type	Database	FDWT ADI	PLCC RP	FMRP
		LIVE	0.9407	0.9068 0.9474 0.9730
	JPEG compression	Toyama CSIQ*	0.8915 0.8758	0.9110 0.8919 0.9306 0.9079 0.8978 0.9185
		TID2013* 0.8541	0.8729 0.8638 0.8934
		LIVE	0.9651	0.9447 0.9552 0.9768
	JPEG 2000 compression	Toyama CSIQ*	0.9469 0.9326	0.9222 0.9438 0.9475 0.9322 0.9308 0.9330
		TID2013* 0.9335	0.9201 0.9084 0.9254
		LIVE	0.9488	0.9877 0.9081 0.9804
	Additive Gaussian noise	CSIQ*	0.8126	0.8857 0.8851 0.8865
		TID2013* 0.6789	0.8851 0.8446 0.8214
		LIVE	0.9465	0.9719 0.9684 0.9836
	Gaussian blur	CSIQ*	0.8806	0.9086 0.9218 0.9090
		TID2013* 0.9158	0.9736 0.9552 0.9296
	JPEG 2000 trans. error	LIVE TID2013* 0.7721 0.9306	0.8702 0.9439 0.9731 0.7054 0.7263 0.8127
	JPEG trans. error	TID2013* 0.8793	0.8922 0.8277 0.9060
	Additive pink noise	CSIQ*	0.7925	0.8454 0.8427 0.8864

Table 6 :

 6 Performance of cross-validation for FMRP.

	Criteria Subsets design LIVE	Toyama CSIQ* TID2013*
	PLCC	Strategy 1 Strategy 2	0.9731 0.9322 0.9751 0.9435	0.9114 0.8504 0.9067 0.8583
	SROCC	Strategy 1 Strategy 2	0.9638 0.9313 0.9643 0.9333	0.9085 0.8549 0.8966 0.8593
	OR	Strategy 1 Strategy 2	0.0035 0.0093 0.0025 0.0066	0.0307 0.0686 0.0301 0.0654

Table 7 :

 7 Performance of cross-database validation for FMRP and two other RR metrics. The extracted parameters are quantized into 8-bit precision. As introduced in Section 3, both the magnitude and the relative phase have two parameters and one modeling error. Thus, the total memory cost is 36 × (8 + 8 + 8) = 864 bits, i.e., 0.27% of the reference image, as shown in Table

	Database	Metric PLCC	SROCC OR	stdCC	stdSR
	merge of 4 database	FMRP 0.8826 0.8806 0.0482 0.0114 0.0121 RP 0.8047 0.7964 0.0976 0.0210 0.0221 ADI 0.7705 0.7581 0.1143 0.0198 0.0225
	and 9, respectively.				

Table 8 :

 8 The size of features of different metrics.

	Metrics	SSIM	MS-SSIM FDWT ADI QWT RP	FMRP
	Bits to transmit (bit) 3145728 3145728	144	96	360	1248 864
	Percentage (%)	100.00	100.00	0.05	0.03 0.11	0.40 0.27

Table 9 :

 9 Time consumption of different metrics.

	Metrics	SSIM	MS-SSIM FDWT ADI	QWT RP	FMRP
	Time (sec.) 0.8972 0.9123	1.2454	0.2972 2.1269 1.3435 1.3618

CSIQ* includes 5 types of distortions in CSIQ with the "Contrast" distortion removed.

TID2013* is generated from TID2013 by removing 6 kinds of distortions including "Non eccentricity pattern noise", "Local block-wise distortions of different intensity", "Mean shift", "Contrast change", "Change of colour saturation", "Chromatic aberrations" distortions.
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