N
N

N

HAL

open science

Data-types definitions: Use of Theory and Context
instantiations Plugins

Peter Riviere, Neeraj Kumar Singh, Yamine Ait-Ameur

» To cite this version:

Peter Riviere, Neeraj Kumar Singh, Yamine Ait-Ameur. Data-types definitions: Use of Theory and
Context instantiations Plugins. 9th Rodin User and Developer Workshop collocated with the ABZ

2021 Conference, Jun 2021, Ulm (virtual), Germany. pp.1-6. hal-03487183

HAL Id: hal-03487183
https://hal.science/hal-03487183
Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-03487183
https://hal.archives-ouvertes.fr

Data-types definitions: Use of Theory and
Context instantiations Plugins

Peter Riviere, Yamine Ait-Ameur, and Neeraj Kumar Singh

IRIT/INPT-ENSEEIHT
2 rue Charles Camichel 31071 Toulouse cedex 7. France
{peter.riviere,yamine,neeraj.singh}@toulouse-inp.fr

1 Introduction

In the context of the French national research agency (ANR) EBRP-EventB-
Rodin-Plus [4]E| (Enhancing Event-B and Rodin) project, an extension of the
Rodin platform [2] supporting the design of Event-B [I] models has been de-
signed in the form of a plugin [6], namely the context Instantiation plugin. Tt
allows the definition of generic contexts and their instantiation to define generic
and reusable theories. Instantiable Sets and Constants with their axioms and
theorems are defined in a context has been designed. A mechanism for instanti-
ating such generic contexts by importing useful axioms and theorems in another
context. A language for describing such instantiations has been defined. It is
parsed in order to generate instantiated contexts.

In the work of [3l5], a mathematical extension of Event-B allowing the defi-
nition of theories was proposed and implemented in the so-called Theory Plugin.

In this paper, we investigate the correspondence between theories formalised
in the theory plugin and those formalised in the context instantiation plugin.
We present transformation rules that allow us to describe theories through con-
texts and their instantiation. The goal of these transformations is to provide an
additional way to model theories in the core Event-B modelling language.

These correspondences for possible data-type definitions are described further
below.

2 Direct definitions of data-types

The correspondence between data-types (non-inductive) and operators defined
as direct definitions in the Theory Plugin is presented in this section.

2.1 Data-type transformation

Figures and show the correspondence between a data-type defined in a
theory with type parameters and constructors (parameterised or not) and a
context. Only two type parameters and two constructors have been defined for
the sake of clarity in the presentation.

! mttps://www.irit.fr/EBRP/

https://www.irit.fr/EBRP/

CONTEXT Data-Type-Schema
SETS T1, T2, Struct

THEORY Data-Type-Schema CONSTANTS consl, cons2, cons2Type, ell
TYPE PARAMETERS T1, T2 , el2
DATATYPES AXIOMS
Struct azm1: Partition(Struct, {consl}, cons2Type)
consl //base case 1 azm2: cons2 € T1 X T2 — cons2Type
cons2(ell:T1, el2:T2) //basc azm3: ell € cons2Type — T1

case 2 azmj: el2 € cons2Type — T2

(a) Type parameters and constructor (b) A corresponding context with sets
definitions and constants

Fig. 1: Data-type correspondence

2.2 Direct definitions of Operators: expressions

As shown on Figures [2a] and [2B] theory based direct definitions of operators
correspond to partial functions (defined using a lambda expression) where typ-

ing and the Well-definedness conditions are used to define the domain of these
functions.

CONTEXT Direct-Expr-Schema

THEORY Direct-Expr-Schema SET T1,T2
TYPE PARAMETERS T1, T2 CONSTANTS op
OPERATORS AXIOMS
op <exzpression > azmn: op = (Aargsl — args2-
(argl: T1,arg2: T2) argsl € T1A
well—definedness WDI1,WD2 args2 € T2A
direct definition WD1AWD2 |

Eap(argl, arg2...) Eaxzp(argsl, args2))

(a) Theory based Direct definitions of (b) A context for operators definitions:
operators: expression expression

Fig. 2: Direct definitions of operators: expression

2.3 Direct definitions of Operators: predicates

The same principle applies to operators defining predicates as it does to operators
defining expressions. The correspondence for operators defined as predicates is

shown in Figures [3a] and

CONTEXT Direct_-Predicate_.Schema

THEORY Direct-Predicate-Schema SET T1,T2
TYPE PARAMETERS T1,T2 CONSTANTS op
OPERATORS AXIOMS
op <predicate > azmn: op = (Aargsl — args2-.

(argl: T1,arg2: T2) argsl € T1A
well—definedness WD1,WD2 args2 € T2A
direct definition WD1AWD2 |

P(argl, arg2...) bool(P(argsl, args2)))

(a) Theory based Direct definitions of (b) A context for operators definitions:
operators: predicate predicate

Fig. 3: Direct definitions of operators: predicates

3 Axiomatic data-types definitions

Axiomatic definitions on Figures [fa] and [4B] correspond to direct definitions in
Section[2] except that the expression or predicate is not given in the function def-
inition. In axiom axmDefOp, an axiomatically defined operator is formalised as
a total function on the domain restricted by the well-definedness conditions and
a resulting type (Res-T'ype). Then, in the theory, each axiom that characterises
this operator is translated as an axiom in the context.

THEORY Axm._Schema CONTEXT Axm._Schema

TYPE PARAMETERS T1, T2
AXIOMS OPERATORS

op <exzpression >

(argl: T1,arg2: T2) : res : Res_type
well—definedness WD1,WD2. ..

AXIOMS

azml : Ezpl(op,...)
azmn : Exzpn(op,...)

SET T1,T2
CONSTANTS op
AXIOMS
azmDefOp op € {argsl — args2-
argl € T1 Aarg2 € T2 AN WD1 A WD2}
— Res_type
azml : Ezpl(op,...)
azmn : Exzpn(op,...)

(a) A theory based definition of ax-
iomatic operators.

(b) A context based definition of ax-
iomatic operators.

Fig. 4: Correspondence for axiomatic definitions of operators.

4 Inductive data-types definitions

In the Event-B modelling language, inductively defined data-types do not have
their direct correspondence. This correspondence requires the introduction of a
generic definition for inductive structures.

4.1 Generic context for inductive definitions by JR. Abrial and D.
Cansell

To define Theory based inductive data-types correspondence, we use the generic
definitions introduced by J.R. Abrial and D. Cansell in the EBRP project.

CONTEXT SchemaRecGen
SETS S_type, B_type
CONSTANTS wellfounded , fix, FrSB, S, B
AXIOMS
axm0: S C Spype
axm6: B C Biype
@axmi1: wellfounded ={r-re€ S+ SAVp - pCSApCrlp]l=p=0}
@azm2: fiz € (P(S x B) — P(S x B)) — P(S x B)
@azm3: Yh-h €P(Sx B 3P(SxB)AGb-aCbAbC Sx B = h(a) C k(b)) = fiz(h) = h(fiz(h))
azm{: FrSb={r+w g fr|rc wellfounded Ag € S x (S + B) -» BA
Ve, f-x € SAf eSS+ BAr[{z}(f) = x— f &€ dom(g))A
fr=fiz(Ap-p € S < B |
{z,h -z € SAr{z}]<h CpAr{z}]<her{z}] - B|xz— glxz— r[{z}] <h)})} ~
lem1: FrSbe {rw g|rc wellfounded A g € S(S - B) » BA (Va,f -2 € SAfES - BAr[{z} Cdom(f)
= x — f € dom(g))} — (S + B)
THEOREMS
thmi: Vr,g,fr-r—gw— fr € FrSB= freS — B
thm2: Vr,g,fr-rw— g~ fr€ FrSB= (Vo -z € S = fr(z) = g(z — r[{z}] < fr))

Fig.5: A generic context with inductive sets definition operator FrSb.

The context SchemaRecGen of Figure [5 uses the definitions of well-founded
relations and the fixpoint operator from contexts not shown in this paper. They
are brought up for clarity.

The most important feature is the constant FrSB allowing to define the
semantics of operators defined on inductive types. It use the type constructors
and the fixpoint operator. This function is further applied to formalise the theory
based defined inductive types and operators.

4.2 Correspondence schema

Inductive definitions are given in two steps: first the data-type definition using
inductive sets definitions and second the operators manipulating this data-type.

Inductive data-type definition. A recursive definition is based on an in-
ductive type, which is depicted in Figures [6a] and [6D] as a set comprehension in
which the inductive properties are encoded and the constants are elements of
this set. The IndType theory data-type corresponds to the set IndType, which
is defined from the carrier set IndTypelY PE. The IndTypeSET defines the
set of n-uplets corresponding to the n constructors of the data-type. In our case,
consl_El — cons2_El — consinducl_El — consinduc2_FEl.

CONTEXT Ind_Data_Type_Schema
SETS IndTypeTYPE, T
CONSTANTS IndType, IndTypeSET, consl, cons2,
consinducl, consinduc2
AXIOMS
azml: IndTypeSET =
{indtype_El — consl_El +— cons2_El —
consinducl_El — consinduc2_El |
indtype-El C IndTypeTY PEA
consl_El € indtype_EIA
cons2_El € T — (indtype_El \
(ran(consinducl_El)U
ran(consinduc2_El) U {consl1_EL}))A
consinducl_El € indtype_El — (indtype_El \
(ran(cons2-El) U ran(consinduc2-El)U
{cons1_El}))A
consinduc2-El € T — (indtype-El \
(ran(consinducl_-El) U ran(cons2-El)U

{cons1_El}))A
THEORY Ind_Data.Type-Schema (Vtr - consl-El € tr A cons2_-ELl[T] C trA
TYPE PARAMETERS T consinducl_El[tr] C trA
DATATYPES consinduc22[T X tr] C tr
IndType : = indtype_El C tr)
consl) 3
//base case 1
cons2(el:T) axm2: IndType —
//base case 2 consl +— cons2 —
consinducl (el :IndType) consinducl — consinduc2
// inductive case 1 € IndTypeSET
consinduc2(ell : T, el2 IndType)
/ inductive case 2 . .
(b) Corresponding context with sets and con-

(a) Inductive type definition stants

Fig. 6: Correspondence for inductive type

Inductive data-type operator definition. The correspondence for an in-
ductively defined operator is shown in Figures [7a] and [7b] The F'rSb operator
is used for the defined inductive data-type IndType in both base (with defi-

nitions of expressions expl and exp2) and inductive cases (with definitions of
expressions ExpIndl and ExpInd?2).

CONTEXT
INSTANCIATES SchemaRecGen Ind-Data-Type-Schema
SETS T,T1,T2
CONSTANTS op
AXIOMS
azmn: op = FrSB(
e — ind_el | e € IndTypeA
ind_el € IndTypeA
(Jel - el € TA
ind_el = consinducl(el — e)V
(3el - el € TA
THEORY ind-el = consinduc2(el — e))
TYPE PARAMETERS T1,T2 =
OPERATORS {
op <ezpression> (e f o res |
argl : T1,arg2 : T2 e € IndTypeA
) f € {ind_el | ind_el € IndType A WD1 A WD2} — Res_Type
well—definedness // Function domain definition
WD1,WD2. . . (Vel,ind_el - el € T A ind-el € IndTypeAN
recursive definition (e = consinducl(el — ind-el)V
case consl — e = consinduc2(el — ind_el))
Exzpl(---) = ind-el € dom(f))A
J/base case 1 //Definition of base case
case cons2 = (
Exzp2(---) e = consl(...) = res = Expl(...)V
S bese case 2 e = cons2(...) = res = Exp2(. . .)
case consinducl = N
EzpIndl(op,---) // Definition of inductive case
/) inductive case 1 ((Jel,ind_el - el € T A ind_el € IndTypeA
case consinduc? — e = consinducl (el — ind_el) = res = ExpInd1(f,...))V
EzpInd2(op,---) (Jel,ind_el - el € T A ind_el € IndTypeA
// inductive case 2 e = consinduc2(el — ind_el) = res = ExpInd2(f,...)))
}
(a) A theory based on Re-)
cursive definition (b) A context based on Recursive definition

Fig. 7: Corresponding schema of recursive definition of operators

5 Conclusion

We provided a set of correspondences that allow theory-based data types to be
translated as contexts. Except for the inductive definitions, which require the
use of operators defining inductive sets borrowed from a generic context, this
transformation is straightforward.

When we translate theories to context, we obtain context definitions ex-
pressed in the native Event-B modeling language, but we lose the structuring
and semantic information available in the theories.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F., Voisin, L.: Rodin:
An open toolset for modelling and reasoning in event-b. Int. J. Softw. Tools Technol.
Transf. 12(6), 447-466 (Nov 2010)

. Butler, M., Maamria, [.: Mathematical extension in Event-B through the rodin
theory component (2010)

. Ebrp, https://www.irit.fr/EBRP/

. Hoang, T.S., Voisin, L., Salehi, A., Butler, M., Wilkinson, T., Beauger, N.: Theory
plug-in for rodin 3.x (2017)

. Verdier, G., Laurent, V.: Context instantiation plug-in: a new approach to genericity
in Rodin. Rodin Workshop at ABZ’2021 (2021)

https://www.irit.fr/EBRP/

	Data-types definitions: Use of Theory and Context instantiations Plugins

