Peter Riviere
email: peter.riviere@toulouse-inp.fr

Yamine Ait-Ameur
email: yamine@toulouse-inp.fr

Neeraj Kumar Singh
email: neeraj.singh@toulouse-inp.fr

Data-types definitions: Use of Theory and Context instantiations Plugins

Introduction

In the context of the French national research agency (ANR) EBRP-EventB-Rodin-Plus [4]1 (Enhancing Event-B and Rodin) project, an extension of the Rodin platform [START_REF] Abrial | Rodin: An open toolset for modelling and reasoning in event-b[END_REF] supporting the design of Event-B [START_REF] Abrial | Modeling in Event-B: system and software engineering[END_REF] models has been designed in the form of a plugin [START_REF] Verdier | Context instantiation plug-in: a new approach to genericity in Rodin[END_REF], namely the context Instantiation plugin. It allows the definition of generic contexts and their instantiation to define generic and reusable theories. Instantiable Sets and Constants with their axioms and theorems are defined in a context has been designed. A mechanism for instantiating such generic contexts by importing useful axioms and theorems in another context. A language for describing such instantiations has been defined. It is parsed in order to generate instantiated contexts.

In the work of [START_REF] Butler | Mathematical extension in Event-B through the rodin theory component[END_REF][START_REF] Hoang | Theory plug-in for rodin 3[END_REF], a mathematical extension of Event-B allowing the definition of theories was proposed and implemented in the so-called Theory Plugin.

In this paper, we investigate the correspondence between theories formalised in the theory plugin and those formalised in the context instantiation plugin. We present transformation rules that allow us to describe theories through contexts and their instantiation. The goal of these transformations is to provide an additional way to model theories in the core Event-B modelling language.

These correspondences for possible data-type definitions are described further below.

Direct definitions of data-types

The correspondence between data-types (non-inductive) and operators defined as direct definitions in the Theory Plugin is presented in this section.

Data-type transformation

Figures 1a and1b show the correspondence between a data-type defined in a theory with type parameters and constructors (parameterised or not) and a context. Only two type parameters and two constructors have been defined for the sake of clarity in the presentation. As shown on Figures 2a and2b, theory based direct definitions of operators correspond to partial functions (defined using a lambda expression) where typing and the Well-definedness conditions are used to define the domain of these functions.

CONTEXT D i r e c t E x p r S c h e m a SET T1 , T2 CONSTANTS op AXIOMS a x m n : op = (λargs1 → args2• args1 ∈ T 1∧ args2 ∈ T 2∧ W D1 ∧ W D2 | Exp(args1, args2)) (b) A context

for operators definitions: expression

Fig. 2: Direct definitions of operators: expression

Direct definitions of Operators: predicates

The same principle applies to operators defining predicates as it does to operators defining expressions. The correspondence for operators defined as predicates is shown in Figures 3a and3b.

THEORY D i

Inductive data-types definitions

In the Event-B modelling language, inductively defined data-types do not have their direct correspondence. This correspondence requires the introduction of a generic definition for inductive structures.

Generic context for inductive definitions by JR. Abrial and D. Cansell

To define Theory based inductive data-types correspondence, we use the generic definitions introduced by J.R. Abrial and D. Cansell in the EBRP project.

CONTEXT SchemaRecGen SETS S t y p e , B t y p e CONSTANTS w e l l f o u n d e d , f i x , FrSB , S , B AXIOMS a x m 0 : S ⊆ S t ype a x m 6 : B ⊆ B t ype @axm1 :

wellf ounded = {r • r ∈ S ↔ S ∧ (∀p • p ⊆ S ∧ p ⊆ r[p] ⇒ p = ∅} @axm2 : f ix ∈ (P(S × B) → P(S × B)) → P(S × B) @axm3 : ∀h • h ∈ P(S × B → P(S × B) ∧ (, b • a ⊆ b ∧ b ⊆ S × B ⇒ h(a) ⊆ h(b)) ⇒ f ix(h) = h(f ix(h)) a x m 4 : F rSb = {r → g → f r | r ∈ wellf ounded ∧ g ∈ S × (S → B) → B∧ (∀x, f • x ∈ S ∧ f ∈ S → B ∧ r [{x}](f) ⇒ x → f ∈ dom(g))∧ f r = f ix(λp • p ∈ S ↔ B | {x, h • x ∈ S ∧ r [{x}] h ⊆ p ∧ r [{x}] h ∈ r [{x}] → B | x → g(x → r [{x}] h)})} l e m 1 : F rSb ∈ {r → g | r ∈ wellf ounded ∧ g ∈ S(S → B) → B ∧ (∀x, f • x ∈ S ∧ f ∈ S → B ∧ r [{x}] ⊆ dom(f) ⇒ x → f ∈ dom(g))} → (S ↔ B) THEOREMS t h m 1 : ∀r, g, f r • r → g → f r ∈ F rSB ⇒ f r ∈ S → B t h m 2 : ∀r, g, f r • r → g → f r ∈ F rSB ⇒ (∀x • x ∈ S ⇒ f r(x) = g(x → r [{x}] f r))
Fig. 5: A generic context with inductive sets definition operator F rSb.

The context SchemaRecGen of Figure 5 uses the definitions of well-founded relations and the fixpoint operator from contexts not shown in this paper. They are brought up for clarity.

The most important feature is the constant F rSB allowing to define the semantics of operators defined on inductive types. It use the type constructors and the fixpoint operator. This function is further applied to formalise the theory based defined inductive types and operators.

Correspondence schema

Inductive definitions are given in two steps: first the data-type definition using inductive sets definitions and second the operators manipulating this data-type.

Inductive data-type definition. A recursive definition is based on an inductive type, which is depicted in Figures 6a and6b as a set comprehension in which the inductive properties are encoded and the constants are elements of this set. The IndT ype theory data-type corresponds to the set IndT ype, which is defined from the carrier set IndT ypeT Y P E. The IndT ypeSET defines the set of n-uplets corresponding to the n constructors of the data-type. In our case, cons1 El → cons2 El → consinduc1 El → consinduc2 El.

IndT ypeSET = {indtype El → cons1 El → cons2 El → consinduc1 El → consinduc2 El | indtype El ⊆ IndT ypeT Y P E∧ cons1 El ∈ indtype El∧ cons2 El ∈ T (indtype El \ (ran(consinduc1 El)∪ ran(consinduc2 El) ∪ {cons1 El}))∧ consinduc1 El ∈ indtype El (indtype El \ (ran(cons2 El) ∪ ran(consinduc2 El)∪ {cons1 El}))∧ consinduc2 El ∈ T (indtype El \ (ran(consinduc1 El) ∪ ran(cons2 El)∪ {cons1 El}))∧ (∀tr • cons1 El ∈ tr ∧ cons2 El[T] ⊆ tr∧ consinduc1 El[tr] ⊆ tr∧ consinduc2 2[T × tr] ⊆ tr ⇒ indtype El ⊆ tr) } a x m 2 : IndT ype → cons1 → cons2 → consinduc1 → consinduc2 ∈ IndT ypeSET (
(∃el • el ∈ T ∧ ind el = consinduc1(el → e)∨ (∃el • el ∈ T ∧ ind el = consinduc2(el → e)) } → { e → f → res | e ∈ IndT ype∧ f ∈ {ind el | ind el ∈ IndType ∧ WD1 ∧ WD2} → Res Type / / F u n c t i o n d o m a i n d e f i n i t i o n (∀el, ind el • el ∈ T ∧ ind el ∈ IndT ype∧ (e = consinduc1(el → ind el)∨ e = consinduc2(el → ind el)) ⇒ ind el ∈ dom(f))∧ / / D e f i n i t i o n

Conclusion

We provided a set of correspondences that allow theory-based data types to be translated as contexts. Except for the inductive definitions, which require the use of operators defining inductive sets borrowed from a generic context, this transformation is straightforward. When we translate theories to context, we obtain context definitions expressed in the native Event-B modeling language, but we lose the structuring and semantic information available in the theories.

THEORYFig. 1 :

 1 Fig. 1: Data-type correspondence

THEORY

 D i r e c t E x p r S c h e m a TYPE PARAMETERS T1 , T2 OPERATORS op < e x p r e s s i o n > (arg1 : T 1, arg2 : T 2) w e l ld e f i n e d n e s s WD1,WD2 d i r e c t d e f i n i t i o n Exp (arg1, arg2...) (a) Theory based Direct definitions of operators: expression

Fig. 3 :

 3 Fig. 3: Direct definitions of operators: predicates

Fig. 4 :

 4 Fig. 4: Correspondence for axiomatic definitions of operators.

THEORY

 I n d D a t a T y p e S c h e m a TYPE PARAMETERS T DATATYPES IndType : c o n s 1 / / b a s e c a s e 1 c o n s 2 (e l : T) / / b a s e c a s e 2 c o n s i n d u c 1 (e l : IndType) / / i n d u c t i v e c a s e 1 c o n s i n d u c 2 (e l 1 : T , e l 2 IndType) / / i n d u c t i v e c a s e 2 (a) Inductive type definition CONTEXT I n d D a t a T y p e S c h e m a SETS IndTypeTYPE , T CONSTANTS IndType , IndTypeSET , c o n s 1 , c o n s 2 , c o n s i n d u c 1 , c o n s i n d u c 2 AXIOMS a x m 1 :

 b) Corresponding context with sets and constants

Fig. 6 :

 6 Fig. 6: Correspondence for inductive type

 THEORY TYPE PARAMETERS T1 , T2 OPERATORS op < e x p r e s s i o n > (arg1 : T 1, arg2 : T 2) w e l ld e f i n e d n e s s WD1,WD2 . . . r e c u r s i v e d e f i n i t i o n c a s e c o n s 1 = Exp1 (• • •) / / b a s e c a s e 1 c a s e c o n s 2 = Exp2 (• • •) / / b a s e c a s e 2 c a s e c o n s i n d u c 1 = ExpInd1 (op, • • •) / / i n d u c t i v e c a s e 1 c a s e c o n s i n d u c 2 = ExpInd2 (op, • • •) / / i n d u c t i v e c a s e 2 (a) A theory based on Recursive definition CONTEXT INSTANCIATES SchemaRecGen I n d D a t a T y p e S c h e m a SETS T , T1 , T2 CONSTANTS op AXIOMS a x m n : op = FrSB({ e → ind el | e ∈ IndT ype∧ ind el ∈ IndT ype∧

Fig. 7 :

 7 Fig. 7: Corresponding schema of recursive definition of operators

https://www.irit.fr/EBRP/