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Introduction

The Yamabe flow was introduced by R.S. Hamilton in order to study Yamabe's conjecture, stating that any metric is conformally equivalent to a metric with constant scalar curvature, cf., [START_REF] Hamilton | Three-manifolds with positive Ricci curvature[END_REF]. Yamabe flow is an evolution equation on a Riemannian manifold (M, g) defined by

∂g ∂t = -Rg, g(t = 0) := g 0 ,
where R is the scalar curvature. Under the Yamabe flow, the conformal class of metrics remains invariant and is expected to evolve a manifold toward one with constant scalar curvature. Let (M, g) be a Riemannian manifold, a quad (M, g, V, λ) is said to be a Yamabe soliton if g satisfies the equation

L V g = 2(λ -R)g, (1.1) 
where V is a smooth vector field on M , L V the Lie derivative along V and λ a real constant. A Yamabe soliton is said to be shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively. If the vector field V is gradient of a potential function f , then (M, g, V, λ) is said to be gradient and (1.1) takes the familiar form ∇∇f = (λ -R)g.

Yamabe solitons are special solutions of the Yamabe flow and naturally arise as limits of dilations of singularities in the Yamabe flow.

It is well known the scalar curvature of any compact gradient Yamabe is constant [START_REF] Daskalopoulos | The classification of locally conformally flat Yamabe solitons[END_REF][START_REF] Hsu | A note on compact gradient Yamabe solitons[END_REF]. A complete shrinking gradient Yamabe solitons with bounded scalar curvature have a finite topological type, see [START_REF] Wu | On a class of complete non-compact gradient Yamabe solitons[END_REF]. Next, the present authors inspiring the Bonnet-Myers Theorem has extended the equation (1.1) for inequalities and among the others they have shown that a Riemannian complete non-compact shrinking Yamabe soliton (M, g, V, λ) has finite fundamental group and its first cohomology group vanishes, provided that the scalar curvature is strictly bounded above by λ, see [START_REF] Bidabad | On complete Yamabe solitons[END_REF].

Recently the present authors have studied Ricci solitons on Finsler spaces as a generalization of Einstein spaces and proved that if there is a Ricci soliton on a compact Finsler manifold then there exists a solution to the Ricci flow equation and vice-versa, [START_REF] Bidabad | On quasi-Einstein Finler spaces[END_REF]. Next, the existence of Finsler Ricci flow and its convergence are studied, see [START_REF] Bidabad | Convergence of Finslerian metrics under Ricci flow[END_REF][START_REF] Bidabad | Ricci flow on Finsler surfaces[END_REF]. Moreover, a Bonnet-Myers type theorem was studied and it is proved that on a Finsler space, a forward complete shrinking quasi-Einstein space is compact if and only if the corresponding vector field is bounded. Finally, it is proved that a compact shrinking quasi-Einstein Finsler space has a finite fundamental group and hence the first de Rham cohomology group vanishes, see [START_REF] Bidabad | On compact Ricci solitons in Finsler geometry[END_REF].

In the present work, a natural extension of Yamabe solitons for Finsler metrics is considered and the following theorems are proved.

Theorem 1.1. Let (M, F ) be a compact Finsler manifold satisfying

L V g ij 2(λ -H)g ij , (1.2) 
where, V is the complete lift of the vector field V on M and H λ, is bounded above by a constant λ. Then the scalar curvature H is constant and equal λ.

Theorem 1.2. Let (M, F ) be a complete Finslerian manifold satisfying (1.2). For any p, q ∈ M the following inequality holds

d(p, q) max 1, 1 λ -Λ V p + V q , (1.3) 
where, H Λ < λ and λ > 0.

Theorem 1.3. Let (M, F ) be a complete non-compact Finsler manifold satisfying (1.2), where H Λ < λ and λ > 0. Then the fundamental group π 1 (M ) of M is finite and its first cohomology group vanishes, i.e., H 1 dR (M ) = 0.

It is also shown that in Remark 5.1 that the inequality H Λ < λ is sharp.

Corollary 1.4. Let (M, g, V, λ) be a complete non-compact shrinking Yamabe soliton with the bounded above scalar curvature H Λ < λ. Then the fundamental group π 1 (SM ) of the sphere bundle SM is finite and therefore the de Rham cohomology group H 1 dR (SM ) vanishes.

This is a natural extension of a similar result on Riemannian manifolds, previously studied by the present authors, [START_REF] Bidabad | On complete Yamabe solitons[END_REF].

Preliminaries and terminologies

Let M be a real n-dimensional differentiable manifold. We denote by T M the tangent bundle and by π : T M 0 -→ M , the fibre bundle of non zero tangent vectors. A Finsler structure on M is a function F : T M -→ [0, ∞), with the following properties: I. Regularity: F is C ∞ on the entire slit tangent bundle T M 0 = T M \0. II. Positive homogeneity: F (x, λy) = λF (x, y) for all λ > 0. III. Strong convexity: The n × n Hessian matrix g ij (x, y) = ([ 1 2 F 2 ] y i y j ) is positive definite at every point of T M 0 . A Finsler manifold (M, F ) is a pair consisting of a differentiable manifold M and a Finsler structure F . The Hessian matrix g ij defines a (0, 2)-tensor field g on π * T M , called the Finslerian metric tensor. The formal Christoffel symbols of the second kind and the spray coefficients are denoted by

γ i jk := g is 1 2 ∂g sj ∂x k - ∂g jk
∂x s + ∂g ks ∂x j , and G i := 1 2 γ i jk y j y k , respectively. We consider also the reduced curvature tensor R i k which is expressed entirely in terms of the x and y derivatives of spray coefficients G i , see [START_REF] Bao | An Introduction to Riemann-Finsler Geometry[END_REF].

R i k := 1 F 2 2 ∂G i ∂x k - ∂ 2 G i ∂x j ∂y k y j + 2G j ∂ 2 G i ∂y j ∂y k - ∂G i ∂y j ∂G j ∂y k . (2.1)
In the general Finslerian setting, one of the Ricci tensors introduced by H. Akbar-Zadeh is defined by

Ric jk := [ 1 2 F 2 Ric] y j y k , where Ric = R i i is called the Ricci scalar and R i
k is defined by (2.1), (see [START_REF] Akbar-Zadeh | Initiation to global Finslerian geometry[END_REF] or [START_REF] Bao | An Introduction to Riemann-Finsler Geometry[END_REF] page 191). One of the advantages of this Ricci quantity is its independence to the Cartan, Berwald or Chern (Rund) connections. A family of Finsler metrics g(t) on M is called a Finsler Yamabe flow if it satisfies the equations

∂ ∂t g jk = -H g g jk , g(t = 0) := g 0 ,
where H g = g ij Ric ij is called the scalar curvature. This equation implies that

∂ ∂t (log F (t)) = - 1 2 H g , F (t = 0) := F 0 ,
where, F 0 is the initial Finsler structure corresponding to g 0 . Let V = v i (x) ∂ ∂x i be a vector field on smooth manifold M . The complete lift of V is a globally defined vector field on T M 0 given by V = v i (x) ∂ ∂x i + y j ( ∂v i ∂x j ) ∂ ∂y i . Recall that the Lie derivative of a Finsler metric tensor g jk is given by

L V g jk = ∇ j v k + ∇ k v j + 2(∇ 0 v l )C ljk , (2.2) 
where ∇ is the Cartan h-covariant derivative, C ljk are the components of Cartan torsion tensor, ∇ 0 := y p ∇ p and ∇ p := ∇ δ δx p , cf., [START_REF] Bidabad | Conformal vector fields on complete Finsler spaces of constant Ricci curvature[END_REF]. Recall that for horizontal covariant derivative in the Cartan connection we have ∇ i y i = 0, ∇ i g jk = 0 and

∇ i l i = 0. Let γ : [a, b] -→ M be a piecewise C ∞ curve on (M, F ) with the velocity dγ dt = dγ i dt ∂ ∂x i ∈ T γ(t) M . The integral length L(γ) is given by L(γ) = b a F (γ, dγ dt )dt.
For p, q ∈ M, denote by Γ(p, q) the collection of all piecewise C ∞ curves γ : L(γ).

Note that in general this distance function is not symmetric, see [START_REF] Bao | An Introduction to Riemann-Finsler Geometry[END_REF]. According to the Hopf-Rinow's theorem, on a forward (or backward) geodesically complete Finsler space, every two points p, q ∈ M can be joined by a minimal geodesic.

The map γ(s, t) admits a canonical lift defined by γ(s, t) := (γ(s, t), γ (s, t)).

Denote the sphere bundle by SM :

= x∈M S x M where S x M := {y ∈ T x M |F (x, y) = 1}.
Let u : M -→ SM be a unitary vector fields and ω = u i dx i the corresponding 1-form. Here we consider the volume form η on the fibre bundle SM defined by

η := (-1) n(n-1) 2 (n -1)! ω ∧ (dω) n-1 ,
where (dω) n-1 is the (n -1) times exterior product of dω (see [START_REF] Akbar-Zadeh | Initiation to global Finslerian geometry[END_REF], page 64).

Let ω = ω i (z)dx i be a horizontal 1-form on SM , then the divergence of ω with respect to the Berwald and Cartan connections is defined by div(ω

) := -D i ω i = -(∇ i ω i -ω i ∇ 0 C i )
, where C i is the trace of Cartan tensor. In the case where M is compact and without boundary, the divergence formula for a horizontal 1-form (see [START_REF] Akbar-Zadeh | Initiation to global Finslerian geometry[END_REF], page 66) leads to

SM div(ω)η = - SM (∇ i ω i -ω i ∇ 0 C i )η = 0. (2.3)

Compact Yamabe solitons

Let (M, F ) be a Finsler manifold with the initial Finsler structure F and V = v i (x) ∂ ∂x i a vector field on M . In analogy with Riemannian metrics we say that the quad (M, F, V, λ) is a Finsler Yamabe soliton if g jk the Hessian related to the Finsler structure F 0 satisfies

L V g jk = 2(λ -H)g jk , (3.1) 
where V is the complete lift of V and λ ∈ R. A Finsler Yamabe soliton is said to be shrinking, steady or expanding if λ > 0, λ = 0 or λ < 0, respectively. A Finslerian Yamabe soliton is said to be forward complete (resp. compact) if (M, F 0 ) is forward complete (resp. compact). Note that according to the extension of Hopf-Rinow's theorem, the both notions forward completeness and forward geodesically completeness are equivalent.

Proof of Theorem 1.1. By means of (1.2) and (2.2), we have

∇ i v j + ∇ j v i + 2(∇ 0 v l )C l ij ≥ 2(λ -H)g ij .
Converting by l i l j , the last inequality reduces to

l i l j ∇ i v j ≥ λ -H. (3.2)
On the other hand, we have the following divergence term

l i l j ∇ i v j = ∇ i (l i l j v j ) = ∇ i (l i l j v j ) -l i l j v j ∇ 0 C i = div(l i l j v j ). (3.3) 
Replacing (3.3) in (3.2) gives div(l i l j v j ) ≥ λ -H. (3.4) 
Integrating both sides of the last equation leads to 2) and H < λ, where, λ is a constant. Then M is not compact.

SM div(l i l j v j )η ≥ SM (λ -H)η. ( 3 
Proof. By a similar procedure as in the proof of Theorem 1.1 we have (3.4). If H < λ, then compactness of M leads to a contradiction.

An estimation for the distance function

For a vector field X = X i (x) ∂ ∂x i on M define the norm

X x = max y∈SxM g ij (x, y)X i X j , (4.1) 
where, x ∈ M (see [START_REF] Bao | An Introduction to Riemann-Finsler Geometry[END_REF], page 321). Since S x M is compact, X x is well defined. Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Let p and q be two points in M joined by a minimal geodesic γ : [0, ∞) -→ M parameterized by the arc length s. If d(p, q) 1, then the assertion is immediate. Suppose that ρ := d(p, q) > 1. Converting (2.2) by the unit tangent vector γ , we have along γ

(γ ) i (γ ) j L V g ij = 2(γ ) i (γ ) j ∇ i v j = 2g(∇ γ V, γ ) = 2g(∇ γ V, γ ). (4.2)
On the other hand, by metric compatibility of Cartan connection along the geodesic γ we have

g(∇ γ V, γ ) = ∇ γ g(V, γ ) = d ds (g(V, γ )). (4.3) Replacing (4.3) in (4.2) yields (γ ) i (γ ) j L V g ij = 2 d ds (g(V, γ )). (4.4)
By means of (1.2) and (4.4) we get

d ds (g(V, γ )) (λ -H)g(γ , γ ).
Since γ is parameterized by arc length, g(γ , γ ) = 1. This implies

H λ - d ds (g(V, γ )).
Integrating both sides of the last equation leads to

ρ 0 H ds λρ -g(V, γ (ρ)) + g(V, γ (0)). (4.5)
The Cauchy-Schwarz inequality yields |g(V, γ (0))|

V p and |g(V, γ (ρ))| V q . Therefore -V p g(V, γ (0)) V p and -V q g(V, γ (ρ)) V q . Summing up we get

-g(V, γ (ρ)) + g(V, γ (0)) -V q -V p . (4.6)
Replacing (4.6) in (4.5) leads to

ρ 0 H ds λρ -V q -V p . (4.7)
By means of (4.7) and the assumption H Λ we have

Λρ λρ -V p -V q .
Finally, we get

ρ = d(p, q) 1 λ -Λ V p + V q .
This completes the proof of Theorem 1.2.

The fundamental group of shrinking Yamabe solitons

Let M be a connected smooth manifold. There exists a simply connected smooth manifold M , called the universal covering manifold of M , and a smooth covering map p : M -→ M such that it is unique up to a diffeomorphism. Recall that a deck transformation on the universal covering manifold M is an isometry

h : M -→ M such that p • h = p.
The group of all deck transformations on a universal covering manifold M is isomorphic to the fundamental group π 1 (M ) of M .

Proof of Theorem 1.3. Let M be the universal covering manifold of M with the smooth covering map p : M -→ M and p the complete lift of p on T M . Then the pull back p * F := F • p : T M -→ [0, ∞) is also a Finsler structure on M . In fact, more precisely, the three conditions of Finsler structure can be verified as follows. The regularity condition is satisfied since F and p are both C ∞ on T M 0 , and so is p * F . For positive homogeneity we have

p * F (x, λy) = F • p(x, λy) = F (p(x), λy i ∂p ∂x i ) = λF (p(x), y i ∂p ∂x i ) = λp * F (x, y).
Assuming p * x i = xi and p * y i = ỹi the strong convexity condition is verified as follows

gij := [ 1 2 (p * F ) 2 ] ỹi ỹj = 1 2 ∂ 2 ((p * F ) 2 ) ∂ ỹi ∂ ỹj = 1 2 ∂ 2 (p * F 2 ) ∂ ỹi ∂ ỹj .
One can easily check that

∂(p * F 2 ) ∂ ỹi = p * ∂F 2 ∂y i , from which gij = [ 1 2 (p * F ) 2 ] ỹi ỹj = 1 2 ∂ 2 (p * F 2 ) ∂ ỹi ∂ ỹj = p * [ 1 2 F 2 ] y i y j = p * g ij . (5.1) 
Using the facts that [ 1 2 F 2 ] y i y j is positive definite on T M 0 and p * is locally diffeomorphism (p is the smooth covering map), implies that p * [ 1 2 F 2 ] y i y j is also positive definite on T M0 . Indeed F := p * F defines a Finsler structure on T M0 and moreover ( M , F ) is locally isometric to (M, F ). Denote by W := p * V = (p -1 ) * V the lift of V . Applying the local isometry p : ( M , F ) -→ (M, F ) on the inequality (1.2), yields p * (L V g jk ) ≥ 2p * ((λ -H)g jk ).

By linearity of p * we get p * L V g jk ≥ 2λp * (g jk ) -2p * (Hg jk ).

(5.

2)

The Lie derivative of (5.1), together with W = p * V and commutativity of Lie derivative with the pull back p * leads to p * L V g jk = L Ŵ gjk .

(5.3)

On the other hand, we have Ric jk = p * Ric jk . In fact

p * Ric jk = p * [ 1 2 F 2 Ric] y j y k = 1 2 p * ∂ 2 (F 2 Ric) ∂y i ∂y j = 1 2 ∂ 2 ∂ ỹi ∂ ỹj (p * (F 2 Ric)) = 1 2 ∂ 2 ∂ ỹi ∂ ỹj p * (F 2 )p * (Ric) .
One can easily check that p * (Ric) = Ric and p * (F 2 ) = F 2 , cf. [START_REF] Bidabad | On quasi-Einstein Finler spaces[END_REF]. Therefore the last equation becomes

p * Ric jk = 1 2 ∂ 2 ∂ ỹi ∂ ỹj p * (F 2 )p * (Ric) = 1 2 ∂ 2 ∂ ỹi ∂ ỹj ( F 2 Ric) = Ric jk .
(5.4)

The last equation yields p * (H) = p * (g jk Ric jk ) = p * (g jk )p * (Ric jk ) = gjk Ric jk = H.

(5.5)

Replacing (5.1), (5.3) and (5.5) in (5.2), leads to

L Ŵ gjk ≥ 2λg jk -2 H gjk .
Next we claim that the universal covering ( M , F ) is geodesically complete. In fact, let γ(t) be any geodesic emanating from some point x ∈ M at t = 0 and γ(t) := p(γ(t)) be its image. Hence, γ(t) is a geodesic since ( M , F ) and (M, F ) are locally isometric. By completeness assumption of geodesics on (M, F ), γ(t) is defined on [0, ∞). The said local isometry now implies the same for γ(t). Hence the universal covering ( M , F ) is geodesically complete. Let h be a deck transformation on M and x ∈ M . By definition h : M -→ M is an isometry and H = p * H yields H Λ < λ. By means of Theorem 1.2 for the points x and h(x) we get

d(x, h(x)) max 1, 1 λ -Λ Ṽx + Ṽh(x) = max 1, 2 λ -Λ Ṽx ,
for any deck transformation h. Thus the set p -1 (x) is bounded, where x = p(x).

Using the geodesically completeness and the Hopf-Rinow's theorem, the closed and bounded subset p -1 (x) of M is compact and being discrete is finite. By assumption, M is connected, so all of its fundamental groups π 1 (M, x) are isomorphic, where x denotes the base point. Since M is a universal covering, π 1 (M, x) is in bijective relation with p -1 (x) and therefore π 1 (M ) is finite. Therefore it is well known that the first cohomology group H 1 dR (M ) = 0. This completes the proof of Theorem 1.3. Remark 5.1. Note that the condition H Λ < λ in Theorem 1.3 is necessary. In fact, let M × S 2 be a product manifold by a hyperbolic metric and an Euclidean metric is scaled such that the resulting (constant) scalar curvature is positive. As the equality version of (1.2) is satisfied for the above mentioned product metric by letting V = 0, and one can use a factor of the type described earlier to make the fundamental group infinite.

Proof of Corollary 1.4. Let M be the universal covering manifold of M with the smooth covering map p : M -→ M . It is well known the following homotopy sequence of the fibre bundle (S M , π, M , S n-1 ) is exact, where S M is the sphere bundle of M .

• • • -→ π 1 (S n-1 ) -→ π 1 (S M ) -→ π 1 ( M ) -→ • • • , (5.6) 
Since M is simply connected, we have π 1 ( M ) = 0. We know also π 1 (S n-1 ) = 0. Thus by (5.6) we get π 1 (S M ) = 0. One can easily check that p * : S M -→ SM is a smooth covering map. Therefore S M is the universal covering manifold of SM . According to the proof of Theorem 1.3, p -1 (x), for all x ∈ M , is a finite set and consequently p -1 * (y) ⊆ x∈p -1 (x) S x M , for all y ∈ S x M , is compact and being discrete is finite. Thus the fundamental group π 1 (SM ) is finite and therefore H 1 dR (SM ) = 0. This completes the proof of Corollary.
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 513132 By (2.3) the left hand side of the last equation vanishes and we have SM (λ-H)η ≤ 0. By assumption λ-H 0 and consequently H = λ. This completes the proof of Theorem 1Corollary Any compact Finsler Yamabe soliton with the bounded scalar curvature H ≤ λ is of constant scalar curvature and H = λ. Let (M, F ) be a Finsler manifold satisfying (1.
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