
HAL Id: hal-03487140
https://hal.science/hal-03487140v1

Submitted on 17 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Meta Engineering Event-B: Extension and
Reasoning The EB4EB Framework

Peter Riviere

To cite this version:
Peter Riviere. Formal Meta Engineering Event-B: Extension and Reasoning The EB4EB Framework.
ABZ 2021, Jun 2021, ulm, Germany. �hal-03487140�

https://hal.science/hal-03487140v1
https://hal.archives-ouvertes.fr


Formal Meta Engineering Event-B: Extension
and Reasoning

The EB4EB Framework

Peter Riviere

IRIT/INPT-ENSEEIHT
2 rue Charles Camichel Toulouse 31000, France

peter.riviere@toulouse-inp.fr

1 Context

State-based Formal methods have been used to design and verify the develop-
ment of complex software systems for a long time. Such methods are underpinned
with solid mathematical concepts. Event-B [1] belongs to this family of methods.
It advocates a correct-by-construction approach to model a complex system. It
is based on set theory and first-order logic. It comes with a powerful integrated
development environment called Rodin [9].

The use of formal methods must satisfy the needs of the end user by allowing
for scalability, portability, expressiveness, and modularity, among other things.
Many key features are currently supported by the Event-B language either in
the core modelling language or through specific plugins (e.g. composition plug-
in [10], Theory plug-in [2, 4], code generation plug-in [8, 6]). The Theory Plug-in
[2, 4] extends Event-B to allow for the definition of new data types, theories, and
operators in order to enhance the expressiveness of the formalism. For exam-
ple, to handle the continuous behavior of a hybrid system for designing a safe
controller, domain specific features, related to continuous mathematics [5], have
been developed in the form of theories.

The Event-B language requires advanced modelling and reasoning concepts
in order to capture the notion of model, proof obligation (PO) and proof pro-
cess. Currently, verifying interesting properties such as deadlock freeness, event
scheduling, liveness, etc., requires ad hoc modelling by the designer. Establish-
ing these properties is based on the use of automatic and/or interactive proof
systems and/or model checkers.

Due to a lack of access and explicit manipulation of Event-B concepts, it
is quite impossible to express a generic property on these concepts in a theory
within a generic definition. Indeed, there is no mechanism in Event-B allowing
a designer to define, at a higher order level, additional reusable POs.

The above mentioned issue has been addressed by the development of several
plug-ins as Rodin tools. Examples are machine compositions and decomposition,
event scheduling, code generation, and translation that have been developed us-
ing Eclipse. There is a lack of evidence to guarantee the functional correctness
of such developed tools. For example, how can we assert that the machine com-
position and decomposition plug-in behave correctly.



2 Motivation and Objectives

The above mentioned plug-ins enrich Event-B by introducing either new data
types (e.g. using the theory plug-in [2, 4]) or by externally defined specific pro-
grams that manipulate Event-B models (e.g. composition/decomposition plug-
in). None of the above approaches allow to manipulate Event-B models as first
order objects. A typical example is the case of deadlock freeness. Three possible
options are currently possible: either the developer writes explicitly this PO in
the form of a theorem to be proved in the development, or by writing an external
program in the PO Generator (to generate this theorem as a PO), or in the form
of a plug-in (generating an Event-B machine with the PO as theorem). Both
approaches are error prone (written programs are not certified to be correct) or
ad hoc (no reuse, properties need to be written for each specific model analysis).

Offering the capability to manipulate Event-B concepts (models, states, tran-
sitions, invariants, variants, guards, POs, etc.) as first order objects will allow the
developer to express properties on these objects. For example, deadlock freeness
PO can be expressed at machine level if guards and invariants can be manipu-
lated in the modelling language. Such a manipulation is possible if the Event-B
theory, as defined in the Event-B book [1] associated to Event-B, is formalised
in Event-B itself (reflexive modeling).

So, the objective of our PhD thesis work consists in improving modelling and
reasoning capabilities of Event-B through the development and formalisation of a
theory of Event-B in Event-B. Indeed, we propose to develop the EB4EB frame-
work grounded on a set of theories defining data types for Event-B concepts,
operators manipulating these concepts and a set of proved theorems precising
their semantic properties. In addition, we propose to build other theories to in-
troduce other Event-B models domain specific analyses in the form of properties
expressed on the Event-B concepts that describe POs on the analysed models.

Note that the soundness of this framework for Event-B extension and reason-
ing developed in Event-B shall preserve the core logical foundation of original
Event-B models. The main objectives of our work are summarised as follows:

– Analyse and identify the fundamental Event-B concepts and properties that
define the notion of machine. Then, using a context or a theory, formalise
these concepts (modelling in the small).

– Analyse and identify the Event-B refinement operation for events, data and
machine, and then formalise it as a context or theory (modelling in the large).

– Deploy the proposed approach for enhancing reasoning mechanism like dead-
lock freeness, reachability, etc.

– Introduce new modeling and reasoning mechanisms to handle domain spe-
cific analyses of Event-B models. For example, continuous behaviour, human
machine interaction, and so on.

– Deploy the proposed approach for analysing and certifying the existing plug-
ins, such as composition/decomposition, code generation, etc.

– Allow the capability to Import/Export Event-B models as First Order Logic
formulas in other proof tools, as these models become expressed as instances
of Event-B theories.



3 Proposed Approach

3.1 Overview of the approach

An Event-B system model consists of context, machine that focuses on formal
modelling to describe system behaviour using refinement approach. Additional
theories may be required to axiomatise new definitions and data-types in either
contexts or theory components.

Our approach focuses on the development of Event-B theory axiomatising
Event-B concepts. We propose a set of datatypes, operators, and theorems to
specify the Event-B concepts, their relationships and other additional attributes
and properties related to these concepts. The obtained meta-theory serves to
design a system model as instances of this meta-theory. This instantiation gen-
erates a set of new POs.

3.2 Modelling and Instantiation mechanism

Once the theory for Event-B concepts is designed, two main approaches to in-
stantiate it are envisioned, namely deep modelling and shallow modelling.

– Deep modelling. All the concepts of an Event-B model to be analysed, vari-
ables, events, guards, invariants, substitutions, etc., are defined as instances
of the developed meta-theory. An Event-B model is represented as an Event-
B context, and POs are described as either theorems or well-definedness POs.
Higher order logic and set theory are used to express all the definitions. It
can be used as an entry point to the design of an import/export system
between other proof assistants.

– Shallow modelling. In this case, for each Event-B model to be analysed, we
define another Event-B model consisting of a context instantiating the theory
with the concepts of the analysed model and a refinement of an abstract
generic machine composed of two events init and progress capturing generic
behaviours. This machine is refined to introduce the events of the analysed
Event-B model. This method contributes to reduce the proof effort as the
POs associated each event become simulation proofs. In the same spirit as
TLA+[7], the concepts of init and progress events are identified similar to
init and next events of TLA+.

These two instantiation mechanisms extend the modeling and reasoning ca-
pabilities of Event-B language itself as it makes it possible to define additional
theorems encoding other POs (e.g. deadlock freeness). It is important to note
that these two instantiation mechanisms are distinct and play an important role
in the refinement process. The modeling tool Rodin equipped with proving tools
will be used to support all the theories and models. To check the correctness of
the developed models, all the generated POs related to well-defined conditions,
theorems and properties must be successfully discharged. Instantiation also gen-
erates some new POs that must be discharged before any further development.
In addition, the developed theory of Event-B can be used for analysing and
verifying the core functionalities of existing Rodin plugins.



4 Future Work

The development of Event-B theory is currently in progress. In addition to the
developments of the necessary theories, we intend to develop complex case stud-
ies to demonstrate the expressiveness and scalability of both deep and shallow
mechanisms. Other planned work includes checking the correctness of existing
plug-ins like composition/decomposition, code generation, etc., by describing,
at the level of the Event-B theory, the operation they encode. Moreover, we
plan to deploy the proposed approach for enhancing the reasoning mechanism,
such as deadlock freeness, reachability etc. In addition, the proposed approach
will be implemented with the theory plug-in and context instantiation devel-
oped in the context of the EBRP project. Our long term future work includes
to import/export the Event-B theory as well as Event-B models in other proof
assistants, through Dedukti [3].

Acknowledgements. This study was undertaken as part of the EBRP (En-
hancing EventB and RODIN: EventB-RODIN-Plus) project. We are very grate-
ful to EBRP project members for their valuable discussion and feedback.

References

1. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge
University Press (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.:
Proposals for mathematical extensions for Event-B. Tech. Rep. (2009)

3. Boespflug, M., Carbonneaux, Q., Hermant, O., Saillard, R.: Dedukti: A Universal
Proof Checker. In: Journées communes LTP - LAC. Orléans, France (Oct 2012),
https://hal-mines-paristech.archives-ouvertes.fr/hal-01537578

4. Butler, M., Maamria, I.: Mathematical extension in Event-B through the rodin
theory component (2010)

5. Dupont, G., Yamine Aı̈t Ameur, Pantel, M., Singh, N.K.: Formally verified ar-
chitecture patterns of hybrid systems using proof and refinement with event-b.
In: Raschke, A., Méry, D., Houdek, F. (eds.) Rigorous State-Based Methods - 7th
International Conference, ABZ. LNCS, vol. 12071, pp. 169–185. Springer (2020)

6. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code Gener-
ation for Event-B. In: Albert, E., Sekerinski, E. (eds.) Integrated Formal Methods.
pp. 323–338. Springer, Cham (2014)

7. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley Longman Publishing Co., Inc. (2002)

8. Méry, D., Singh, N.K.: Automatic code generation from Event-B models. In: Pro-
ceedings of the 2011 Symposium on Information and Communication Technology,
SoICT 2011. pp. 179–188 (2011)

9. Rodin sourceforge, https://sourceforge.net/projects/rodin-b-sharp/
10. Silva, R., Butler, M.: Shared Event Composition/Decomposition in Event-B. In:

Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) Formal Methods for Com-
ponents and Objects. pp. 122–141. Springer (2012)


