
HAL Id: hal-03487118
https://hal.science/hal-03487118v1

Submitted on 30 Aug 2021 (v1), last revised 17 Dec 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Standard Conformance-by-Construction with Event-B
Ismail Mendil, Yamine Aït-Ameur, Neeraj Singh, Dominique Méry, Philippe

Palanque

To cite this version:
Ismail Mendil, Yamine Aït-Ameur, Neeraj Singh, Dominique Méry, Philippe Palanque. Standard
Conformance-by-Construction with Event-B. 26th International Conference on Formal Methods for
Industrial Critical Systems (FMICS 2021), European Research Consortium for Informatics and Math-
ematics: ERCIM, Working Group on Formal Methods for Industrial Critical Systems, Aug 2021, Paris
(virtual), France. pp.126-146, �10.1007/978-3-030-85248-1_8�. �hal-03487118v1�

https://hal.science/hal-03487118v1
https://hal.archives-ouvertes.fr

Standard Conformance-by-Construction with Event-B

I. Mendil1, Y. Aït-Ameur1, N. K. Singh1, D. Méry2, and P. Palanque3
1INPT-ENSEEIHT/IRIT, University of Toulouse, France
2Telecom Nancy, LORIA, Université de Lorraine, France

3IRIT, Université de Toulouse, France
{ismail.mendil,yamine,nsingh}@enseeiht.fr, dominique.mery@loria.fr,

palanque@irit.fr

Abstract. Checking the conformance of a system design to a standard is a central
activity in the system engineering life cycle, a fortioriwhen the concerned system
is deemed critical. Standard conformance checking entails ensuring that a system
or a model of a system faithfully meets the requirements of a specification of a
standard improving the robustness and trustworthiness of the system model. In
this paper, we present a formal framework based on the correct-by-construction
Event-B method and related theories for formally checking the conformance of a
formal system model to a formalised standard specification by construction. This
framework facilitates the formalization of standard concepts and rules as an on-
tology, as well as the formalization of an engineering domain, using an Event-B
theory consisting of data types and a collection of operators and properties. Con-
formance checking is accomplished by annotating the system model with typing
conditions.We address an industrial case study borrowed from the aircraft cockpit
engineering domain to demonstrate the feasibility and strengths of our approach.
The ARINC 661 standard is formalised as an Event-B theory. This theory formally
models and annotates the safety-critical real-world application of a weather radar
system for certification purposes.
Keywords: Standard conformance· Safety properties·Correctness-by-Construction·
Event-B and Theories· ARINC 661· Critical Interactive Systems.

1 Introduction
Checking the standard conformance of a system design is a central activity in the system
engineering life cycle, a fortioriwhen the concerned system is deemed critical. Standard
compliance checking entails ensuring that a system or a model of a system faithfully
meets the requirements of a standard, in particular domain and certification standards,
improving the robustness and trustworthiness of the system model.

In many cases, conformance of system design models and/or implementation to
a standard is achieved by informal or semi-formal processes like argument-based re-
ports produced through model reviews, testing and simulation, experimentation, and
so on [28]. Although, these qualification methods have proven to be valuable for system
engineering in areas like transportation systems, medical devices, power plants, etc., for-
mal checking of conformance, as advocated by the DO178-C, is more trustworthy and
has many advantages, including extensive case coverage and availability of automatic
verification capabilities such as model-checking and theorem proving.

2 Mendil et al.

Context of the work. As part of the French ANR FORMEDICIS1 project, we have stud-
ied the problem of ARINC 661 [8] standard conformance for CIS (Critical Interactive
Systems). ARINC 661 is a standard for the development of flight deck display interfaces.
In fact, modern cockpit designs increasingly rely on the ARINC 661 standard series used
in several airplane development programs, e.g. Airbus A380, A350, and A400M, as well
as the Boeing 787, 737MAX, KC-46A, and B777X2.
Our claim is that it is possible to check that a formal designmodel complies with domain
standards formalised as a theory with data types, operators, axioms and theorems.
Standard conformance addressed by our approach consists in transferring, to formal
design models, theorems proved, once and for all, in the theory formalising a domain
standard specification. The conformance is checked by proving the well-definedness
proof obligations generated when using the theory operators. Note that we do not address
the process of building these theories which requires to move from text-based standard
documents to formal theories. Building such theories is out of the scope of this paper.
Such processes have been addressed in [12,13,14] to link

text-based standards with formalised theories expressed in Isabelle/HOL.
So, the goal of this paper is to demonstrate how to check the compliance of formal
design models with domain standards expressed as theories. The overall approach is
exemplified on ARINC 661 standard and weather radar system application.
Our contribution. In this paper, we present a formal framework based on the correct-by-
construction Event-B method and related theories for formally checking, by construc-
tion, the conformance of a formal system model to a formalised standard specification.
This framework formalises engineering standard concepts and rules as an ontological
Event-B theory. To demonstrate the feasibility and strengths of our approach, we re-
port on our experiments, from the FORMEDICIS project, addressing an interactive sys-
tem available in aircraft cockpits. Relying on domain ontologies as a ground knowledge
model, the ARINC 661 standard is formalised as an Event-B theory which formally
annotates the model of the real-world weather radar system.
Organisation of this paper. Next section is a brief review related to conformance and
certification and Section 3 is devoted to a summary of the Event-B method. Section
4 contains the description of the CIS and the ARINC661 standard. Our framework is
presented in Sections 5 and 6 and its application is given in Section 7. Section 8 provides
an assessment of the approach. Last, Section 9 concludes this paper.

2 Certification and conformance
According to ISO, a standard is defined as: Standards are documented agreements con-
taining technical specifications or other precise criteria to be used consistently as rules,
guidelines or definitions of characteristics, to ensure that materials, products, process
and services are fit for their purpose [26].

The use of standards has a number of potential advantages. It plays an important
role for the development of complex systems, including both product-based and process-
1 FORmal MEthods for the Development and the engIneering of Critical Interactive Systems
(CIS) https://anr.fr/Projet-ANR-16-CE25-0007

2 https://www.aviation-ia.com/activities/cockpit-display-systems-cds-subcommittee

Standard Conformance-by-Construction with Event-B 3

based developments. This process is both time-consuming and difficult. Some work fo-
cuses on integrating standards into process development. In [17], the authors propose
a model for standards conformance by introducing lightweight mechanisms. In [9], a
framework based on Natural Language Semantics techniques is presented. It assists in
the processing of legal documents and standards through building a knowledge base
that includes logical representations. In [16], the authors propose a step-by-step process
for conformance checking that includes process modeling and execution. Similarly, [34]
shows how to implement the conformance relation on transition systems. Nair et al. [35]
provide a detailed survey how practitioners deal with safety evidence management for
critical systems and they also draw the conclusion that there is a limited use of safety
evidence in industries based on empirical evaluation.

In recent years, assurance cases have been used in critical domains to establish sys-
tem safety by presenting appropriate arguments and evidences [30,39]. The chosen ev-
idences are always questionable, regardless of how they are established or how much
confidence we have in them. There are several approaches to justifying confidence, such
as eliminative induction [19], quantitative estimation [22], provided as claims in the as-
surance case [20]. Wassyng et al. [43,42] propose an Assurance Case Template used in
the development of critical systems and their certification within a domain model.

Regarding Event-B [2] and B [1] methods, Fotso et al. [41] present a specification
of the hybrid ERTMS/ETCS level 3 standard, in which requirements are specified using
SysML/KAOS [32] goal diagrams that are translated into B, and domain-specific prop-
erties are specified by ontologies using the SysML/KAOS domain modeling language,
which is based on OWL [7] and PLIB [27]. Last, we mention the work of [10,11] which
uses the RSL language to model engineering domains.

The interest and motivation of handling domain knowledge has been discussed and
argued in [5]. In this paper, we propose to use the capability of Event-B theories to
improve the explicitation and integration of domain knowledge in design models. A
key advantage of our proposed approach is that the proof of domain properties holding
in the design models is explicit since a Well-Definedness (WD) proof obligation (PO)
is generated. Such WD POs are generated for each theory defined operator, it states
that each parameter belongs to the domain operator. This is particularly relevant for
partial operators. Obviously, the approach exempts from explicitly specifying domain
properties on the model side. Compared to our approach which relies on an ontology
modelling language referenced by formal design models, none of the mentioned work
use a shared modelling language.

3 Event-B
Event-B [2] is a correct-by-construction method based on set theory and first-order
logic. It relies on state-based modelling where a set of events allows for state changes.

3.1 Contexts and machines (Tables 1.b and 1.c)
The Context component describes the static properties of a model. It introduces the
definitions, axioms and theorems needed to describe the required concepts using car-
rier sets s, constants c, axioms A and theorems Tctx. Machine describes the model be-

4 Mendil et al.

haviour as a transition system. A set of guarded events is used to modify a set of states
using Before-After Predicates (BAP) to record variable changes. They use variables x,
invariants I(x), theorems Tmcℎ(x), variants V (x) and events evt (possibly guarded by
G and/or parameterized by �) as core components.
Refinements. Refinement (not used in this paper) decomposes a machine into a less
abstract one with more design decisions (refined states and events) moving from an
abstract level to a less abstract one (simulation relationship). Gluing invariants relating
abstract and concrete variables ensure property preservation.

Theory Context Machine
THEORY Th CONTEXT Ctx MACHINEM
IMPORT Th1, ... SETS s SEES Ctx
TYPE PARAMETERS E, F , ... CONSTANTS c VARIABLES x
DATATYPES AXIOMS A INVARIANTS I(x)
Type1(E, ...) THEOREMS Tctx THEOREMS Tmcℎ(x)constructors END VARIANT V (x)
cstr1(p1: T1, ...) EVENTS

OPERATORS EVENT evt
Op1 <nature> (p1: T1, ...) ANY �
well−definedness WD(p1, ...) WHERE G(x, �)
direct definition D1 THEN

AXIOMATIC DEFINITIONS x ∶∣ BAP (�, x, x′)
TYPES A1, ... END
OPERATORS ...
AOp2 <nature> (p1: T1, ...): Tr END
well−definedness WD(p1, ...)AXIOMS A1, ...THEOREMS T1, ...END

(a) (b) (c)
Table 1: Global structure of Event-B Theories, Contexts and Machines

Proof Obligations (PO) and Property Verification. Table 2 provides a set of, automat-
ically generated, POs to guarantee Event-B machines consistency.

(1) Ctx Theorems (ThmCtx) A(s, c) ⇒ Tctx (For contexts)
(2) Mch Theorems (ThmMch) A(s, c) ∧ I(x) ⇒ Tmcℎ(x) (For machines)
(3) Initialisation (Init) A(s, c) ∧ G(�) ∧ BAP (�, x′)⇒ I(x′)
(4) Invariant preservation (Inv) A(s, c) ∧ I(x) ∧ G(x, �)∧ BAP (x, �, x′) ⇒ I(x′)
(4) Event feasibility (Fis) A(s, c) ∧ I(x) ∧ G(x, �)⇒ ∃x′ ⋅ BAP (x, �, x′)
(5) Variant progress (Var) A(s, c) ∧ I(x) ∧ GA(x, �)∧ BAP (x, �, x′) ⇒ V (x′) < V (x)

Table 2: Relevant Proof Obligations
Core Well-definedness (WD). In addition, WD POs are associated to all built-in opera-
tors of the Event-B modelling language. Once proved, these WD conditions are used as
hypotheses to prove further proof obligations.

3.2 Event-B extensions with Theories

In order to handle more complex and abstract concepts beyond set theory and first-order
logic, an Event-B extension for supporting externally defined mathematical objects has
been proposed in [3,15]. This extension offers the capability to introduce new data types
by defining new types, operators, theorems and associated rewrite and inference rules,
all bundled in so-called theories. Close to proof assistants like Isabelle/HOL [36] or
PVS [37], they are convenient when modelling concepts unavailable in core Event-B.
Theory description (See Table 1.a). Theories define and make available new data types,
operators and theorems. Data types (DATATYPES) are associated with constructors, i.e
to build inhabitants of the defined type that may be inductive. A theory defines various

Standard Conformance-by-Construction with Event-B 5

operators further used in Event-B expressions. They may be FOL predicates or expres-
sions producing actual values (<nature> tag). Operator applications can be used in other
Event-B theories, contexts and/or machines. They enrich the modelling language as they
may occur in axioms, theorems, invariants, guards, assignments, etc.

Operators may be defined either explicitly using an explicit (“direct”) equivalent
definition, in the direct definition clause, (case of a constructive definition), or
defined axiomatically in the AXIOMATIC DEFINITIONS clause (a set of axioms). Last,
a theory defines axioms, completing the definitions, and theorems. Theorems are proved
from the definitions and axioms.

Many theories have been defined for sequences, lists, groups, reals, differential equa-
tions, etc. Theories can be extended (Imports) to define more complex theories and
instantiated (in context) by providing concrete type parameters.
Well-definedness (WD) in Theories. An important feature provided by Event-B theo-
ries is the possibility to define well-definedness (WD) conditions. Each defined operator
(partially defined) is associated to a condition guaranteeing its correct definition. When
it is applied (in an Event-B expression), this WD condition generates a PO requiring
to establish that this condition holds, i.e. the use of the operator is correct. The theory
developer defines these WD conditions for the partially defined operators. All the WD
POs and theorems are proved using the Event-B proof system.
Event-B proof system and its IDE Rodin. Rodin3 is an open source IDE for modelling
in Event-B. It offers resources for model editing, automatic PO generation, project man-
agement, refinement and proof, model checking, model animation and code generation.
Event-B’s theories extension is available under the form of a plug-in. Theories are tightly
integrated in the proof process. Depending on their definition (direct or axiomatic), op-
erators definitions are expanded either using their direct definition (if available) or by
enriching the set of axioms (hypotheses in proof sequents) using their axiomatic defi-
nition. Theorems may be imported as hypotheses and used in proofs. Many provers like
predicate provers, SMT solvers, are plugged to Rodin as well. In addition to the known
success of the Event-B and B methods in dealing with complex formal system devel-
opments, the choice of Event-B as a ground modelling formal method is motivated by
the provided abstract modelling level. Indeed, it offers first a built-in mechanism (state
and transitions) associated to an inductive proof process for invariants and second an ex-
tension mechanism to define theories with operators associated to WD conditions that
generate POs when applied. TheseWD POs are fundamental for our approach to confor-
mance checking. In addition, animators and model checkers like ProB [33] are useful
to validating the defined theories over model instances. Finally, other techniques could
have been used as long as they could check the correctness of operator applications and
they are connected to the Rodin platform.

4 Case study: ARINC 661 + Multi-purpose interactive application
4.1 ARINC 661 standard specification: an extract
ARINC 661 [8] is the Cockpit Display System (CDS) standard for communication proto-
cols between interface objects and aircraft systems. It has been used for the development
3 Rodin Integrated Development Environment http://www.event-b.org/index.html

6 Mendil et al.

of interactive applications in, for instance, Airbus A380 and Boeing B787. In ARINC
661 specification standard, an interactive application is called a User Application (UA)
that receives input from the the CDS and triggers actions in aircraft systems. Such input
are produced by the flying crew manipulating specific input devices such as a KCCU
(Keyboard Cursor Control Unit). UAs also receive information flow from aircraft sys-
tems that is presented to the flying crew using interactive objects which behaviour and
parameters are described in the standards. The current version of the standard (called
supplement 7 for part 1) describes in about 800 pages a set of definitions and require-
ments for the CDS and its graphical objects (called widgets).

Communication between the CDS and UA is defined based on the identification of
widgets defined in theWidget Library. Different levels widget states are available. 1)Vis-
ibility level indicating whether the widget is visible or not. 2) Inner level specific states of
a widgetwhich represents the core of the widget behavior as well as its functional objec-
tives. Examples of inner states for a CheckButton, are two stable inner states: Selected
and Unselected. 3) Interactivity levels are: enabled or disabled. An enabled widget is
ready to receive input from crew member interaction. Last, 4) visual level (visual repre-
sentation) internal behavior of the widget inside the CDS. Examples are "Normal" and
"Focus" denoting different interactions style (e.g. in the "Focus" state a standard inter-
action such as spacebar keypress would trigger the widget). Usually, implementations
of CDS present different graphical appearances for the widgets depending on their state.
It is important to note that such rendering is outside the scope of the standard.

4.2 Multi-purpose interactive application & Weather radar system

We demonstrate the relevance of the approach on the formal development of a real-world
case study: the multi-purpose interactive application (MPIA) —See Fig. 1, focusing on
one of its sub-parts: the weather radar system (WXR). MPIA consists of three pages or
tabs: WXR (weather radar system and information), GCAS (Ground Collision Avoid-
ance System) andAIRCOND (setting of AIRCONDitioning). A crewmember navigates
and switches to a desired page using the corresponding button on themenu bar at the bot-
tom. Each page of the MPIA user interface is made of two distinct parts: an interaction
area and the menu bar for selecting one of the three interfaces (bottom of Fig. 1).

Fig. 1: Tabbed MPIA user interface: WXR, GCAS and AIRCOND
In this paper, we focus on WXR system which is designed to display and modify

the mode of the weather radar system (top of the page) and to modify the orientation of
the tilt angle in the weather radar system (middle of the page). There are three means
for modifying the tilt angle: auto adjustment, auto stabilization, and setting up manually
the tilt angle. WXR user interface provides different interactive widgets (PicturePush-

Standard Conformance-by-Construction with Event-B 7

Buttons, RadioButtons, EditBoxNumeric) in order to trigger commands to the weather
radar system. The information received from the weather radar (e.g. density of clouds
ahead of the aircraft) is not displayed in the WXR page but on another Display Unit
(the Navigation Display). The information area displays the current state of the UA, by
default the right part is blank but shows errors messages, actions in progress or bad
manipulation when necessary. Workspace area controls the corresponding application.

5 Standards formalised as ontologies ((1) on Fig. 2)
Ontologies, as explicit knowledge models [21], have been extensively studied in the
literature and applied in several domains spanning semantic web, artificial intelligence,
information systems, system engineering etc. Approaches for designing and formalising
ontologies for these domains have been proposed. Most of them rely on XML-based
formats and pay lot of attention to web knowledge which may limit the scope of models.

The challenge of linking domain knowledge and design models is clearly stated
in [25]. It includes amathematical analysis of models andmetamodels, ontologies, mod-
elling and meta-modelling languages. Design models annotation by domain-specific
knowledge has been studied for state-based methods [5] as well. More recently, the text-
book [6] reviewed many cases of exploiting explicit models of domain knowledge by
system models spanning medical [31,40], e-voting [18], distributed systems etc.

Last, focusing on Event-B, a proposal of simplified ontology description language
was put forward and illustrated on case studies in [23,24].

While [5,23,24] and our approach share the same objective and motivation, the two
approaches are different. In [5,23,24], Event-B contexts are used to formalise domain
knowledge in terms of axioms and theorems. However, our approach relies on the theory
extension of Event-B providing operators endowed with WD conditions and data types
for defining the objects of the knowledge domain. Moreover, they use set-theoretic op-
erators when our approach advocates the exclusive usage of domain-specific operators
provided by the theory bearing standard properties together with their WD conditions
that need to be discharged when applied in the design model. In addition, the use of
data types allowed us to encode an ontology modelling language as an Event-B theory
providing a unified ontological framework to formalise the various domain knowledge
modules. Consequently, WD POs permits a formalisation and integration of domain
constraints into design models automatically when used by design models features

In this paper, we rely on engineering domain ontologies in the view of [38,29,4] to
model domain knowledge as Event-B theories and on typing to annotate Event-B de-
sign models. While [5] use set-theory based contexts where designers explicitly borrow
domain standards constraints in the design model, the approach we develop here avoids
the developer having to explicitly describe these constraints for each design model.

In the spirit of the OWL [7] ontology modeling language, Listing 1 represents an
extract of the OntologiesTheory generic Event-B theory parameterised by C, P and I
type parameters for classes, properties and Instances, respectively.
THEORY On to l og i e sTheo r y
TYPE PARAMETERS C, P , I
DATA TYPES Onto logy (C , P , I)
CONSTRUCTORS

8 Mendil et al.

consOnto logy (c l a s s e s :ℙ (C) , p r o p e r t i e s :ℙ (P) , i n s t a n c e s :ℙ (I) , c l a s s P r o p e r t i e s :ℙ (C ×P) ,
c l a s s I n s t a n c e s :ℙ (C× I) , c l a s s A s s o c i a t i o n s :ℙ (C×P×C) , i n s t a n c e P r o p e r t yV a l u e s :ℙ (I×P× I))
OPERATORS
isWDgetInstancePropertyValues <p r e d i c a t e > (o : Onto logy (C , P , I))

wel l−de f inednes s i sWDCl a s sP r op e r i t e s (o) ∧ i sWDCla s s I n s t a n c e s (o) ∧
i sWDCla s sAs soc i a t i o n s (o)

d i r e c t d e f i n i t i o n
i n s t a n c e P r o p e r t yV a l u e s (o) ⊆ { i 1 ↦ p ↦ i 2 ∣ i 1 ∈ I ∧ p ∈ P ∧ i 2∈ I∧ i 1↦p↦ i 2∈

i n s t a n c e s (o)× p r o p e r t i e s (o)× i n s t a n c e s (o) ∧ (∃c1 , c2 ⋅ c1 ∈ C ∧c2∈C∧ . . .) }
getInstancePropertyValues <exp r e s s i on > (o : Onto logy (C , P , I))

wel l−de f inednes s i sWDge t I n s t a n c eP r op e r t yVa l u e s (o)
d i r e c t d e f i n i t i o n i n s t a n c e P r o p e r t yV a l u e s (o)

isWDOntology <p r e d i c a t e > (o : Onto logy (C , P , I))
d i r e c t d e f i n i t i o n i sWDCl a s sP r op e r t i e s (o) ∧ i sWDCla s s I n s t a n c e s (o) ∧

i sWDCla s sAs soc i a t i o n s (o) ∧ i sWDIn s t a n c e sA s s o c i a t i o n s (o)
CheckOfSubsetOntologyInstances <p r e d i c a t e > (o : Onto logy (C , P , I) , i p v s :ℙ (I×P× I))

wel l−de f inednes s isWDOntology (o)
d i r e c t d e f i n i t i o n

i p v s ⊆ { i 1 ↦ p ↦ i 2 ∣ i 1 ∈ I ∧ p ∈ P ∧ i 2 ∈ I ∧ i 1 ↦ p ↦ i 2 ∈ i n s t a n c e s
(o) × p r o p e r t i e s (o) × i n s t a n c e s (o) ∧ . . . }

isA <p r e d i c a t e > (o : Onto logy (C , P , I) , c1 : C , c2 : C) ⋯
. . .
THEOREMS
thm1 : ∀o , c1 , c2 , c3⋅o∈Onto logy (C , P , I)∧ isWDOntology (o)∧c1 ∈C∧c2∈C∧c3∈C∧

o n t o l o g yCon t a i n sC l a s s e s (o , { c1 , c2 , c3 })⇒ (isA (o , c1 , c2)∧ i sA (o , c2 , c3)⇒ i sA (o , c1 , c3))
END

Listing 1: Ontology Modelling LanguageThis theory describes a constructor consOntology for ontologies with a set of classes
(classes), properties (properties), instances (instances) and associations of prop-
erties to classes (classProperties), instances to classes (classInstances) and classes
to classes (classAssociations) and property values (instancePropertyValues).
Expression and predicate operators allowing to manipulate classes, properties and in-
stances are also defined. Predicate operators are used to define WD conditions. For ex-
ample, the getInstancePropertyValues operator retrieving all the properties values
is defined under the WD isWDGetInstancePropertyValues. The two important op-
erators isWDOntology and CheckOfSubsetOntologyInstances respectively check
that an ontology is well built and a subset of instances is conform to a given ontology.
Last, theorems are formalised and proved, e.g. thm1 for transitivity of IsA relationship.

6 Our approach

First, standards are formalised as ontology Event-B theories and, second, these theories
should provide data types bundled with a collection of operators to be used by Event-B
system models. Note that conformance is achieved under the closure condition stating
that solely the operators supplied by the theory formalising a standard are used for state
variables changes in design models . The operatorsWDPOs shall be proved. Obviously,
all the theorems entailed by every theory operator also hold for all models that use the-
ory operators. So, conformance-by-construction is guaranteed since 1) models type and
manipulate state variables using standard data types and operators and 2) theory safety
properties and rules formalising a standard are conveyed by all operators.

Conformance is achieved following the three-step methodology depicted in Fig. 2
Conceptualisation, Instantiation, and Annotation. First, standard concepts and operators
are formalised in theories (2) using OntologiesTheory (see Listing 1) (1). Second, the-

Standard Conformance-by-Construction with Event-B 9

ories are instantiated for a particular system to design (3), and last systemmodel is anno-
tated with data types and operators (4) to enforce the constraints and rules, expressed as
theorems, establishing standard conformance. Note that OntologiesTheory (1) is for-
malised once and for all, while standard concepts, rules and properties (2) are formalised
in stable theories evolving with standard updates. In Fig 2, Instantiates and Imports
links correspond to Event-B built-in constructs (generic type parameters instantiation is
automatically achieved by type synthesis), and Annotation is implemented by typing
model concepts with theories data-types using the Sees Event-B construct.
Note.
A key requirement to set
up our approach is the ex-
clusive use of data types
and operators provided
by the Event-B theory
formalising the standard
specification. In fact, this
condition is necessary
to ensure that theorems
entailed by operators
are transferred and then
provable in the Event-B
model.

Ontology	Modeling	
Language
(EB	Theory)

Domain	Standard	
Ontology	Concepts

(EB	Theory)

Domain	Standard	
Operators
(EB	Theory)

System	Specific	
Concepts

(EB	Context)

System	Model
(EB	Machine)

Ge
ne

ric
	&
	R
eu

sa
bl
e

Th
eo

ry
Fo
rm

al
	st
an

da
rd

System	specific	
features

System	design	
model

(2)

(1) (3) (4)

InstanAates

AnnotaAon
(Sees)

In
st
an
Aa

te
s

AnnotaAon
(Sees)

ConceptualisaCon InstanCaCon Model	AnnotaCon

Imports

Fig. 2: Standard conformance-by-construction framework
Last, all the developments and Event-Bmodels discussed in this paper are accessible

at https://www.irit.fr/~Ismail.Mendil/recherches/

6.1 Domain standards as ontology-based theories ((2) on Fig. 2)

The first phase consists in formalising the standard as an ontology using OntologiesThe
–ory (see Listing 1). Type parameters C, P and I are instantiated with the standard ob-
jects and properties. Furthermore, rules and conformance criteria (i.e. WD condition
predicate isWDOntology) are formalised as a set of axioms. In a design model, oper-
ators allow the modification of the system state variables. A set of theorems, stating
that all the defined operators entail standard desired requirements and properties, is also
expressed and proved. When these operators are applied in models, these theorems are
used to prove model invariants and thus safety properties.

6.2 Standard theory instantiation ((3) on Fig. 2)

At this level, the classes are filled with instances and the associations between instances
are specified taking into account the WD conditions required by ontology instantiation,
i.e. isWDgetInstancePropertyValues. Three components of the ontology are valued
by theory instantiation: instances, classInstances and instance PropertyValues.
The definitions of these components are system-dependent and represent the elements of
the system as instances of the standard classes. The CheckOfSubsetOntologyInstances
operator ensures that system-specific concepts comply with defined standard ontology.

10 Mendil et al.

6.3 Model annotation for conformance ((4) on Fig. 2)

Model annotation consists in typing model variable with instance-related ontology com-
ponents, generally instancePropertyValues, to comply with data types originated
from the formalised standard. When state changes are done by theory operators, its al-
ready proven theorems are transferred to models.

In Event-B, this means that the formalised standard requirements and safety proper-
ties expressed as theorems are discharged by deduction as POs of the model. However,
this assertion necessitates that the system-specific model state changes to be realised,
exclusively, with the operators provided by the theory describing the domain standard .
Obviously, since the operators are conditional, their WD POs need to be discharged.

7 Standard conformance-by-construction: the case of ARINC 661
In this section, we showcase the approach of section 6 on a part of ARINC 661 and
WXR user interface. ARINC661Theory is built upon the ontology description theory,
which in turn is used to develop the WXRTheory theory. Last, the two theories are used
to model the WXR user interface as an Event-B machine. Due to space limitation, only
an extract of the models covering relevant elements of theWXR case study is presented.

7.1 ARINC 661 standard formalisation ((2) on Fig. 2)
ARINC 661 element Reference (page) Event-B formal element
Label 3.3.20 (p114) Label
RadioBox 3.3.34 (p184) RadioBox
CheckButton 3.3.5 (p80) CheckButton
SELECTED, UNSELECTED 3.3.5-1 (p81) SELECTED, UNSELECTED
CheckButtonState 3.3.5-1 (p81) hasCheckButtonState
LabelString 3.3.5-1(p81) hasLabelStringForCheckButton
Textual paragraph 3.3.34 (p185) isWDRadioBox
⋯ ⋯ ⋯

Table 3: Correspondence between Event-B formalisation and ARINC 661 standard
ARINCARINC 661 Concepts. After an in-depth analysis of the ARINC 661, many
concepts are identified and formalised using OntologiesTheory. Table 3 shows some
identified correspondences between ARINC 661 concepts and their formal counterparts.

ARINC 661 defines a collection of widgets intended to define the user interfaces.
ARINC661Theory is described in Listing 2. The formalisation follows the structure of
the ARINC 661 widget library and is guided by the ontology description theory. C, P and
I of OntologiesTheory are instantiated by three abstract types: ARINC661Classes,
ARINC661Properties and ARINC661Instances. Constants are defined as well.
THEORY ARINC661Theory
IMPORT THEORY PROJECTS On to l og i e sTheo r y
AXIOMATIC DEFINITIONS ARINC661Axiomat isa t ion :
TYPES ARINC661Classes , ARINC66Proper t ies , ARINC661Instances
OPERATORS
ARINC661_BOOL <exp r e s s i on > () : ARINC661Classes
A661_TRUE <exp r e s s i on > () : ARINC661Instances
A661_FALSE <exp r e s s i on > () : ARINC661Instances
A661_EDIT_BOX_NUMERIC_ADMISSIBLE_VALUES<exp r e s s i on >() :ℙ (ARINC661Instances)
CheckButtonState <exp r e s s i on > () : ARINC661Classes
Label <exp r e s s i on > () : ARINC661Classes
RadioBox <exp r e s s i on > () : ARINC661Classes

Standard Conformance-by-Construction with Event-B 11

CheckButton <exp r e s s i on > () : ARINC661Classes
hasChildrenForRadioBox <exp r e s s i on > () : ARINC66Proper t i es
hasCheckButtonState <exp r e s s i on > () : ARINC66Proper t i es
SELECTED <exp r e s s i on > () : ARINC661Instances
UNSELECTED <exp r e s s i on > () : ARINC661Instances
isWDRadioBox <p r e d i c a t e > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances)) :
wel l−de f inednes s isWDOntology (o)

isWDARINC661Ontology <p r e d i c a t e > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances)) :

Listing 2: ARINC 661 theory concept declarations
ARINC 661 theory operators.Axiomatic definitions introduce ontology operators and
predicates defining WD conditions. In Listing 4, consARINC661Ontology operator
completes the construction of the ontology, this operator returns a well-defined ontol-
ogy provided correct arguments are used. Moreover, CkeckOfSubsetA661Ontology
Instances enforces ontology rules onmachine variables if suppliedwith a well-defined
ontology, e.g. isWDRadioBox operator encodes a key safety property. It states that only
one child widget can be selected in a given RadioBox at a time 4.
consARINC661Ontology <exp r e s s i on > (i i : ℙ (ARINC661Instances) , c i i : ℙ (ARINC661Classes×
ARINC661Instances) , i p v s :ℙ (ARINC661Instances×ARINC66Proper t i es×ARINC661Instances)) :

Onto logy (ARINC661Classes , ARINC66Proper t ies , ARINC661Instances)
wel l−de f inednes s isWDARINC661Ontology (consOnto logy (ARINC661Classes ,

ARINC66Proper t ies , i i , w e l l B u i l t C l a s s P r o p e r t i e s , w e l l b u i l t T y p e sE l emen t s ∪
c i i , w e l l B u i l t C l a s sA s s o c i a t i o n s , i p v s))

CkeckOfSubsetA661OntologyInstances <p r e d i c a t e > (o : Onto logy (ARINC661Classes ,
ARINC66Proper t ies , ARINC661Instances) , u i : ℙ (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances)) :
wel l−de f inednes s isWDOntology (o)

. . .
Listing 3: ARINC 661 theory operator declarations

ARINC 661 axioms. In Listing 4, ARINC661ClassesDef axiom defines all the ele-
ments of ARINC661Classes. For exemple, Label is a widget and CheckButtonState
corresponds to SELECTED and UNSELECTED states. Similarly, identified ARINC 661
properties are defined in ARINC66PropertiesDef axiom.
AXIOMS
ARINC661ClassesDef : p a r t i t i o n (ARINC661Classes , { Labe l } ,{ RadioBox } ,{ CheckBut ton } ,{

CheckBu t t onS t a t e } , . . .)
ARINC66PropertiesDef : p a r t i t i o n (ARINC66Proper t ies , { h a sL a b e l S t r i n gF o rL a b e l } ,
{ ha sCh i l d r enFo rRad ioBox } ,{ h a sCheckBu t t o nS t a t e } ,{ h a sLab e l S t r i n gFo rChe ckBu t t o n } , . . .)
ARINC661InstancesDef : p a r t i t i o n (ARINC661Instances , {A661_TRUE} ,{A661_FALSE} ,{SELECTED} ,
{UNSELECTED} , L a b e l I n s t a n c e s , Rad ioBox Ins t ance s , CheckBu t t on I n s t a n c e s , . . .)
consARINC661OntologyDef : ∀ i i , c i i , i p v s ⋅ i i ∈ ℙ (ARINC661Instances) ∧

c i i ∈ ℙ (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ ℙ (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
we l l b u i l t T y p e sE l emen t s ∩ c i i = ∅ ∧ i i ⊆ Widg e t s I n s t a n c e s ⇒

consARINC661Ontology (i i , c i i , i p v s)=consOnto logy (. . .)
isWDRadioBoxDef :∀o⋅ o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances) ⇒ (isWDRadioBox (o) ⇔ (∀ . . .)
isWDARINC661OntologyDef :

∀o⋅ o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies , ARINC661Instances) ⇒
(isWDOntology (o)∧isWDRadioBox (o)∧ isWDEditBoxNumeric (o)⇒isWDARINC661Ontology (o))

CheckOfSubsetA661OntologyInstancesDef :∀o , i p v s ⋅o∈Onto logy (ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances)∧ i p v s∈ℙ (ARINC661Instances×ARINC66Proper t i es×ARINC661Instances)⇒
(isWDARINC661Ontology (consOnto logy (. . .))⇒CkeckOfSubse tA661On to logy Ins t ance s (. . .))

. . .
Listing 4: ARINC 661 theory definitions

4 More details are available in Section 3.3.34 page 184 of ARINC 661 standard [8].

12 Mendil et al.

ARINC661 relevant theorems. The correctness of the ontology is ensured by theorems
thm1 and thm2. They describe two important properties: classes are related to already
defined properties (thm1) and class associations relate provided classes and properties
(thm2). Their proofs are achieved using intermediate abbreviations and proved lemmas.
THEOREMS
thm1 : ∀ i i , c i i , i p v s ⋅

i i ∈ ℙ (ARINC661Instances) ∧ c i i ∈ ℙ (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ ℙ (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
we l l b u i l t T y p e sE l emen t s ∩ c i i = ∅ ∧ i i ⊆ Widg e t s I n s t a n c e s

⇒ i sWDCl a s sP r op e r i t e s (consARINC661Ontology (i i , c i i , i p v s))
thm2 : ∀ i i , c i i , i p v s ⋅

i i ∈ ℙ (ARINC661Instances) ∧ c i i ∈ ℙ (ARINC661Classes × ARINC661Instances) ∧
i p v s ∈ ℙ (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances) ∧
we l l b u i l t T y p e sE l emen t s ∩ c i i = ∅ ∧ i i ⊆ Widg e t s I n s t a n c e s

⇒ i sWDCla s sAs soc i a t i o n s (consARINC661Ontology (i i , c i i , i p v s))
. . .
END

Listing 5: ARINC 661 theory theorems
Ontology building process. The ontology introduced above formalises the concepts of
the ARINC 661 standard. This ontology (theory) has been built for the purpose of the
FORMEDICIS project and to process the different addressed case studies. The selection
of axioms and the formalisation and proofs of theorems have been performed according
to the studied case study. In case of a wide and shared usage, as with any standard, the
designed theory requires consensus among the stakeholders of the ARINC 661 standard.
7.2 System-specific concepts describing WXR widgets ((3) on Fig. 2)
WXRTheory concepts declaration. WXRTheory encompasses constants and operators
dealing with instance information (not defined in ARINC661Theory as instances are
system specific) and allowing to manipulate the user interface. WXRFeature gathers the
instances used by the WXR design model.
THEORY WXRTheory
IMPORT THEORY PROJECTS ARINC661Theory
AXIOMATIC DEFINITIONS WXRUIDesc r ip to inAxioma t i s a i t on :
OPERATORS
A661WXROntology<exp r e s s i on >: Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances)
WXRInstances <exp r e s s i on > : ℙ (ARINC661Instances)
WXRClassInstances <exp r e s s i on > : ℙ (ARINC661Classes × ARINC661Instances)
WXRInstancePropertyValues<exp r e s s i on >:ℙ (ARINC661Instances×ARINC66Proper t i es×

ARINC66Instances)
MODESELECTIONLabel <exp r e s s i on > : ARINC661Instances
OFFLabel <exp r e s s i on > : ARINC661Instances
OFFCheckButton <exp r e s s i on > : ARINC661Instances
. . .
WXRFeatures<exp r e s s i on >(o : Onto logy (ARINC661Classes , . . . , ARINC661Instances)) :

ℙ (ARINC661Instances × ARINC66Proper t i es × ARINC661Instances)
wel l−de f inednes s isWDARINC661Ontology (o)

Listing 6: WXR theory constant declarations
WXR concepts definitions. In Listing 7, ARINC 661 ontological class instances are
used for defining constants of the type ℙ (ARINC661). For example, WXRinstances is
a set of all possible widgets of user interface: WXRLabels, WXRCheckButtons, etc. The
WXRFeatures operator restricts ARINC661 ontology to the instances needed to design
the WXR user interface i.e. none of these instances is outside ARINC 661 theory.

Standard Conformance-by-Construction with Event-B 13

AXIOMS
WXRLabelsDef : p a r t i t i o n (WXRLabels , {MODESELECTIONLabel} , {OFFLabel } , . . .)
WXRcheckButtonsDef : p a r t i t i o n (WXRcheckButtons , {OFFCheckButton } , . . .)
WXRradioBoxesDef : p a r t i t i o n (WXRradioBoxes , {WXRradioBoxModeSelection } , . . .)
WXRInstancesDef : p a r t i t i o n (WXRInstances , WXRLabels , WXRcheckButtons , WXRradioBoxes , . . .)
WXRClassInstancesDef : WXRClassIns tances = ({ Labe l } × WXRLabels) ∪ ({ CheckBut ton } ×

WXRcheckButtons) ∪ . . .
iaCheckBttonsDef : i aCheckB t t on s= ({ OFFCheckButton , . . . } ×{ h a sV i s i b l e , h a sEnab l e }×{A661_TRUE

})∪ ({ OFFCheckButton , . . . } × { ha sCheckBu t t o nS t a t e } × {UNSELECTED}) ∪
({ OFFCheckButton } × { ha sCheckBu t t o nS t a t e } × {SELECTED}) ∪

({ OFFCheckButton , . . . } ×{ h a s P a r e n t I d e n t }×{WXRradioBoxModeSelec t ionWidget Ident })∪ . . .
WXRInstancePropertyValuesDef : WXRIns tancePrope r tyVa lues=i aCheckB t t on s∪ i oRad ioBoxes∪ . . .
A661WXROntologyDef : A661WXROntology = consARINC661Ontology (I n s t a n c e s , C l a s s I n s t a n c e s

, WXRIns tancePrope r tyVa lues)
WXRFeaturesDef : ∀o ⋅ o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies , ARINC661Instances

) ∧ isWDARINC661Ontology (o) ⇒ WXRFeatures (o) = WXRIns tancePrope r tyVa lues

Listing 7: WXR theory constant definitions
WXRTheoryOperators.The user interface provides user interactions operators: choos-
ing a mode selection, switching between the two states of the stabilization and tilt sec-
tion feature and finally input a new tilt angle value. Each interaction is modelled by
two operators: a WD predicate and an interactions modelling operators. For example,
isWDChangeModeSelection and changeModeSelection pair of operators deals with
mode selection change (see Listing 8) .
AXIOMATIC DEFINITIONS Ev e n t sA f f e c t i n gW i d g e t sAx i oma t i s a t i o n :
OPERATORS
isWDChangeModeSelection <p r e d i c a t e > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances) , u i : ℙ (ARINC661Instances × ARINC66Proper t i es ×
ARINC661Instances) ,mode : ARINC661Instances) :

changeModeSelection <exp r e s s i on > (o : Onto logy (ARINC661Classes , ARINC66Proper t ies ,
ARINC661Instances) , u i : ℙ (ARINC661Instances × ARINC66Proper t i es ×
ARINC661Instances) ,mode : ARINC661Instances) : ℙ (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances)

wel l−de f inednes s isWDChangeModeSelect ion (o , ui , mode)

Listing 8: WXR theory operator declarations
In the AXIOMS clause, several operators are defined (see Listing 9). For example,

changeModeSelection operator is associated to a WD operator isWDChangeMode
Selection stating that crew members may select only specified modes in WXRcheck
Buttons and CkeckOfSubsetA661OntologyInstances ensures that the ui parame-
ter complies with ontology rules and constraints. This principle applies to all operators.
AXIOMS
isWDChangeModeSelectionDef :∀o , ui , mode ⋅ o ∈ Onto logy (ARINC661Classes ,

ARINC66Proper t ies , ARINC661Instances) ∧ u i ∈ ℙ (ARINC661Instances ×
ARINC66Proper t i es × ARINC661Instances) ∧ mode ∈ ARINC661Instances ⇒
(isWDChangeModeSelect ion (o , u i , mode) ⇔ CkeckOfSubse tA661On to logy Ins t ance s (o ,

u i) ∧ mode ∈ WXRcheckButtons)
changeModeSelectionDef :∀o , ui , mode ⋅ o ∈ Onto logy (ARINC661Classes , ARINC66Proper t ies ,

ARINC661Instances) ∧ u i ∈ ℙ (ARINC661Instances × ARINC66Proper t i es ×
ARINC661Instances) ∧ mode ∈ ARINC661Instances ⇒

(changeModeSe l ec t i on (o , u i , mode)= (u i⧵{ i↦ha sChe ckBu t t o nS t a t e ↦ UNSELECTED ∣ i ↦
ha sChe ckBu t t o nS t a t e ↦ SELECTED ∈ u i ∧

i∈ (WXRcheckButtons⧵{mode }) })∪{mode↦ha sChe ckBu t t o nS t a t e↦SELECTED})
. . .

Listing 9: WXR theory operator definitions
WXRTheory theorems. In WXRTheory, important safety properties (e.g. theorem WXR
FeaturesSafety) assert that the selection of the buttons under radio boxes are exclu-

14 Mendil et al.

sive (⇒ b1 = b2) (Listing 10). All theorems have been proved on the Rodin Platform.

THEOREMS
isWDARINC661Ontology : isWDARINC661Ontology (A661WXROntology)
WXRFeaturesSafety :∀o , i p v s ⋅CkeckOfSubse tA661On to logy Ins t ance s (o , i p v s)∧ (i p v s =

WXRFeatures (o)) ⇒ (∀rb , b1 , b2⋯ ⇒ b1 = b2)) ∧ . . .
WXRFeaturesCkeckOfSubsetA661OntologyInstances : ∀o , i p v s ⋅isWDARINC661Ontology (o)
∧ i p v s∈ℙ (ARINC661Instances × ARINC661Proper t ies × ARINC661Instances) ∧
(i p v s = WXRFeatures (o)) ⇒

changeModeSe l ec t i onCkeckOfSubse tA661On to logy In s t ance s (o , i p v s)
changeModeSelectionSafety : . . .
changeModeSelectionCkeckOfSubsetA661OntologyInstances : . . .
. . .
END

Listing 10: WXR theory theorems

7.3 Annotated Event-B model of WXR application ((4) on Fig. 2)

Fig. 3: WXR annotated with Event-B concepts

TheWXR user interface is mod-
elled as an Event-B machine
and uses elements defined in
WXRTheory. In Listing 11, the
state of the user interface is
modelled by uiStateVar vari-
able. The event changeMode
Selection models the interac-
tion on the mode selection ra-
dio box where only one check
box shall be selected. The safety
properties are entailed by theo-
rems, WXRFeaturesCkeckOfSubsetA661OntologyInstancesInst and SafetyInst,
establishing at the same time the conformance of WXR specification to ARINC 661.
However, the approach requires to use the theory operator to update the variable as
uiStateVar as prescribed by inv2.

Listing 11 shows an extract of WXR model. In particular, changeModeSelection
Evt event uses changeModeSelection operator to select a mode from the mode se-
lection radio box, like STDBY (see. Fig. 3). Note that this event is guarded with WD
conditions of WXRTheory. In Fig. 3, correspondences between WXR widgets and their
standard formal counterparts are depicted.
MACHINE WXRModel
VARIABLES uiStateV ar
INVARIANTS
i nv1 : u i S t a t eV a r ∈ ℙ (ARINC661Instances × ARINC66Proper t i es ×

ARINC661Instances)
i nv2 : ∃uiArg ⋅ ((uiStateV ar = WXRFeatures(A661WXROntology)) ∨

∃m ⋅ isW DCℎangeModeSelection(A661WXROntology, uiArg, m) ∧
uiStateV ar = cℎangeModeSelection(A661WXROntology, uiArg, m)) ∨

. . .
S a f e t y I n s t : CkeckOfSubsetA661OntologyInstancesDef (A661WXROntology, uiStateV ar)
WXRFea tu re sCkeckOfSubse tA661Onto logy Ins t ances In s t :

(∀rb , b1 , b2⋅ rb ∈ Rad ioBox In s t a n c e s ∧ b1 ∈ CheckBu t t o n I n s t a n c e s ∧
b2 ∈ CheckBu t t o n I n s t a n c e s ∧ rb ↦ hasCh i l d r enFo rRad ioBox ↦ b1 ∈ u i S t a t eV a r∧
rb ↦ hasCh i l d r enFo rRad ioBox ↦ b2 ∈ u i S t a t eV a r⇒

Standard Conformance-by-Construction with Event-B 15

(b1↦ha sChe ckBu t t o nS t a t e↦SELECTED∈u i∧
b2↦ha sChe ckBu t t o nS t a t e↦SELECTED∈ u i S t a t eV a r ⇒b1=b2)) ∧ . . .)

EVENTS
INITIALISATION
THEN

a c t 1 : uiStateV ar ∶= WXRFeatures(A661WXROntology)
END
changeModeSelectionEvt
ANY mode
WHERE

grd1 : mode ∈ WXRcℎeckButtons
grd2 : isW DCℎangeModeSelection(A661WXROntology, uiStateV ar, mode)

THEN
a c t 1 : uiStateV ar ∶= cℎangeModeSelection(A661WXROntology, uiStateV ar, mode)

END
. . .

END

Listing 11: Event-B machine modelling the WXR user interface

8 Assessment
Achieving standard conformance. Provided that the domain knowledge is formalised
as a theory and supplied with data types and operators that preserve the safety proper-
ties prescribed by the standard specification, the models can be proven to entail desired
theorems achieving conformance with the formalised standard.
Enhanced system models. WXR model has been greatly improved as a result of ex-
tensive outsourcing of safety properties to the theory level and the use of ontology de-
scription theory. The use of a theory validated by experts led to trustworthy models.
In addition, this approach enabled domain-specific (standards) models to be validated,
once and for all, independently of the systems design models.
Reduction of modelling and proving effort. Although the description of the domain-
specific theory, ARINC661Theory, requires a significant amount of modelling effort, the
specification of the models is simplified as a result of the formalisation of interaction by
theory operators. At theory level, the properties (theorems) are proved once and for all.
The design models rely on the defined data types and operators conveying all desired
WD and safety properties expressing the domain constraints encoded in the theory of
the standard. Here, the proving process is eased as, on the one hand, the WD POs are dis-
charged thanks to WD predicates associated with each operator and, on the other hand,
INV POs are discharged automatically. Indeed, inv1 is a typing invariant and inv2 states
that no other operator, except those provided by the theory, is used. Table 4 shows 88
automatically generated POs for the theories and WXRmodel. Theories related POs are
discharged using a mix of automatic and interactive proofs, whereas WXRMode POs
are discharged by simplifying predicates, instantiating theorems and using proof tactics.
System invariants are proved as theorems in one proof step (modus-ponens rule), and
the invariants representing our working hypothesis (exclusive use of theory operators)
are trivially proved as model events use the operators of WXRTheory exclusively.
Deploying the approach in engineering contexts. The work presented in this paper
has been conducted in the FORMEDICIS project. As mentioned in section 7.1, the
ARINC 661 standard has been formalised following our understanding of the infor-
mal descriptions of [8]. However, as the obtained theories play the role of a standard,
we believe that this formalisation requires consensus among the stakeholders, engineers

16 Mendil et al.

and developers. From the development process point of view, this formalisation and the
proofs of theorems are achieved once and for all. When, design models are produced,
the conformance consists in discharging POs consisting in instantiating the theorems
and using proof tactics. Therefore, we believe that the deployment of the approach, in
its current form, is not a heavy task compared to the benefits of the provided proofs.

Event-B Models and Theories Proof obligations
OntologiesTheories 21
ARINC661Theory 10
WXRTheory 39
WXRModel 18

Table 4: Proof statistics

Standard theories validation. The formali-
sation of standards relies on axiomatised the-
ories. The quality of these formalisations con-
sist in checking 1) the consistency of the ax-
ioms and 2) the validation of these axioms and
entailed theorems with respect to the informal
descriptions. Fortunately, formal methods such as Event-B, Isabelle/HOL or CoQ come
with tools like SMT solvers, animators and model checkers capable to instantiate such
axioms with specific values and check axiom consistency or testing instances validity.
Enabling evolution of Standard Last but not least, the approach enables the non-
destructive standards evolution. Indeed, the neat separation of the common domain
knowledge from system specifics fosters separation of concerns principle and orthogo-
nality of evolution principle. In fact, both domain models and system design models may
evolve asynchronously with limited impact on the each other. From a proof perspective,
only POs caused by the evolution need to discharged.

9 Conclusion
The approach presented in this paper proposes a generic framework for formalising stan-
dard conformance through formal modelling of standards as ontologies. Data types and
operators associated to the modelled features become accessible to system design mod-
els. We have shown how this approach applies to a real-world case study of aircraft
cockpit. This approach is completely formalised using Event-B and relies on three steps:
conceptualisation of the domain standard, instantiation to describe the system specific
features and finally model annotation through typing of state variables and use of oper-
ators for state changes. The approach starts from an already formalised standard. It does
not address the process of deriving these theories from text-based standards. It exploits
the WD conditions POs that raise when applying theory operators.

The work presented in this paper addressed the issue of standard conformance. It
needs to be extended to provide the required safety assurances to meet certification stan-
dards, where assurance cases are used in the development of critical systems. The for-
mally proved properties and the generated formal artifacts can be used as evidence in
assurance cases, which can aid in the certification process by guiding both the devel-
opment and regulatory evaluation of CIS. Last, from the standardisation point of view,
industry consortium and standardisation bodies shall define formal processes (not stud-
ied in this paper) addressing consensual agreement on the definition and consistence of
the formal theories modelling domain standards i.e. the process consisting in analysing
text-based standards in order to derive domain standard theories and in validating these
derived theories. In addition, this work shall be completed by the study of other type of
domain standards related to temporal properties, real-time scheduling, common criteria
for security etc. and application domains like avionics, transportation systems.

Standard Conformance-by-Construction with Event-B 17

References
1. Abrial, J.R.: The B-book: assigning programs to meanings. Cambridge Univ. Press (1996)
2. Abrial, J.R.: Modeling in Event-B: system and software engineering. Cambridge University

Press (2010)
3. Abrial, J.R., Butler, M., Hallerstede, S., Leuschel, M., Schmalz, M., Voisin, L.: Proposals for

mathematical extensions for event-b. Tech. Rep. (2009)
4. Aït Ameur, Y., Baron, M., Bellatreche, L., Jean, S., Sardet, E.: Ontologies in engineering: the

ontodb/ontoql platform. Soft Comput. 21(2), 369–389 (2017)
5. Aït Ameur, Y., Méry, D.: Making explicit domain knowledge in formal system development.

Science of Computer Programming, Elsevier Journal. 121, 100–127 (2016)
6. Aït Ameur, Y., Nakajima, S., Méry, D.: Implicit and Explicit Semantics Integration in Proof-

Based Developments of Discrete Systems. Springer (2021)
7. Antoniou, G., van Harmelen, F.: Web Ontology Language: OWL, pp. 67–92. Springer Berlin

Heidelberg, Berlin, Heidelberg (2004)
8. ARINC: ARINC 661 specification: Cockpit Display System Interfaces to User Systems, Pre-

pared by AEEC, Published by SAE, Melford Blvd., Bowie, Maryland, USA (June 2019)
9. Bartolini, C., Giurgiu, A., Lenzini, G., Robaldo, L.: A framework to reason about the legal

compliance of security standards. In: 10th Int. Workshop on Juris-informatics (2016)
10. Bjørner, D.: Manifest domains: analysis and description. Formal Aspects Comput. 29(2),

175–225 (2017)
11. Bjørner, D.: Domain analysis and description principles, techniques, and modelling lan-

guages. ACM Trans. Softw. Eng. Methodol. 28(2), 8:1–8:67 (2019)
12. Brucker, A.D., Aït-Sadoune, I., Crisafulli, P., Wolff, B.: Using the isabelle ontology frame-

work - linking the formal with the informal. In: Rabe, F., Farmer, W.M., Passmore, G.O.,
Youssef, A. (eds.) Intelligent Computer Mathematics - 11th International Conference, CICM
2018. LNCS, vol. 11006, pp. 23–38. Springer (2018)

13. Brucker, A.D., Wolff, B.: Isabelle/dof: Design and implementation. In: Ölveczky, P.C.,
Salaün, G. (eds.) Software Engineering and Formal Methods - SEFM 2019. LNCS, vol.
11724, pp. 275–292. Springer (2019)

14. Brucker, A.D., Wolff, B.: Using ontologies in formal developments targeting certification. In:
Ahrendt,W., Tarifa, S.L.T. (eds.) Integrated FormalMethods - 15th International Conference,
IFM 2019. LNCS, vol. 11918, pp. 65–82. Springer (2019)

15. Butler,M.J.,Maamria, I.: Practical theory extension in Event-B. In: Theories of Programming
and Formal Methods - Essays Dedicated to Jifeng He 70th Birthday. pp. 67–81 (2013)

16. Carmona, J., van Dongen, B., Solti, A.,Weidlich,M.: Introduction to Conformance Checking,
pp. 3–20. Springer International Publishing, Cham (2018)

17. Emmerich, W., Finkelstein, A., Montangero, C., Stevens, R.: Standards compliant software
development. In: in Proc. International Conference on Software Engineering Workshop on
Living with Inconsistency, (IEEE CS. pp. 1–8. Press (1997)

18. Gibson, J.P., Raffy, J.L.: Modelling an E-Voting Domain for the Formal Development of a
Software Product Line: When the Implicit Should Be Made Explicit, pp. 3–18. Springer Sin-
gapore (2021)

19. Goodenough, J., Weinstock, C., Klein, A.: Toward a theory of assurance case confidence.
Tech. Rep. CMU/SEI-2012-TR-002, Software Engineering Institute, CMU, Pittsburgh (2012)

20. Grigorova, S., Maibaum, T.S.E.: Argument evaluation in the context of assurance case con-
fidence modeling. In: 25th IEEE ISSRE Workshops. pp. 485–490. IEEE CS (2014)

21. Gruber, T.R.: Towards Principles for the Design of Ontologies Used for knowledge sharing.
In: Guarino, N., Poli, R. (eds.) Formal Ontology in Conceptual Analysis and Knowledge
Representation. Kluwer Academic Publisher’s (1993)

18 Mendil et al.

22. Guiochet, J., Hoang, Q.A.D., Kaâniche, M.: A model for safety case confidence assessment.
In: Koornneef, F., van Gulijk, C. (eds.) Computer Safety, Reliability, and Security - 34th
International Conference SAFECOMP. LNCS, vol. 9337, pp. 313–327. Springer (2015)

23. Hacid, K., Aït Ameur, Y.: Strengthening MDE and formal design models by references to
domain ontologies. A model annotation based approach. In: Margaria, T., Steffen, B. (eds.)
7th International Symposium, ISoLA. LNCS, vol. 9952, pp. 340–357 (2016)

24. Hacid, K., Aït Ameur, Y.: Handling domain knowledge in design and analysis of engineering
models. Electron. Commun. Eur. Assoc. Softw. Sci. Technol. 74 (2017)

25. Henderson-Sellers, B.: On the Mathematics of Modelling, Metamodelling, Ontologies and
Modelling Languages. Springer Briefs in Computer Science, Springer (2012)

26. IEC 62304: Medical Device Software – Software Life Cycle Processes (May 2006)
27. ISO: Industrial automation systems and integration - parts library - part 42: Description

methodology: Methodology for structuring parts families. ISO ISO13584-42, International
Organization for Standardization, Geneva, Switzerland (1998)

28. Information technology — Open Systems Interconnection — Conformance testing method-
ology and framework — Part 1: General concepts (1991)

29. Jean, S., Pierra, G., Aït-Ameur, Y.: Domain Ontologies: A Database-Oriented Analysis. In:
International Conferences, WEBIST. pp. 238–254. LNBI Processing, Springer (2007)

30. Kelly, T.: Arguing Safety – A Systematic Approach to Managing Safety Cases. Ph.D. thesis,
University of York (September 1998)

31. Kumar, S.N., Yamine, A.A., Dominique", M.: Formal Ontological Analysis for Medical Pro-
tocols, pp. 83–107. Springer Singapore (2021)

32. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML Models to
Software Specifications. Wiley (2009)

33. Leuschel, M., Butler, M.: Prob: Amodel checker for b. In: International symposium of formal
methods europe. pp. 855–874. Springer (2003)

34. Luong, H.V., Lambolais, T., Courbis, A.L.: Implementation of the conformance relation for
incremental development of behavioural models. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl,
A., Völter, M. (eds.) MoDELS’08. pp. 356–370. Springer (2008)

35. Nair, S., de la Vara, J.L., Sabetzadeh, M., Falessi, D.: Evidence management for compliance
of critical systems with safety standards: A survey on the state of practice. Information and
Software Technology 60, 1–15 (2015)

36. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for Higher-order
Logic. Springer-Verlag (2002)

37. Owre, S., Rushby, J.M., Shankar, N.: Pvs: A prototype verification system. In: Kapur, D. (ed.)
Automated Deduction—CADE-11. pp. 748–752. Springer Berlin Heidelberg (1992)

38. Pierra, G.: Context representation in domain ontologies and its use for semantic integration
of data. Journal on Data Semantics 10, 174–211 (2008)

39. Rushby, J.: The interpretation and evaluation of assurance cases. Tech. Rep. SRI-CSL-15-01,
Computer Science Laboratory, SRI International, Menlo Park, CA (Jul 2015)

40. Singh, N.K., Aït Ameur, Y., Méry, D.: Formal ontology driven model refactoring. In: 23rd
International ICECCS. pp. 136–145. IEEE CS (2018)

41. Tueno Fotso, S.J., Frappier, M., Laleau, R., Mammar, A.: Modeling the hybrid ertms/etcs
level 3 standard using a formal requirements engineering approach. In: Butler, M., Raschke,
A., Hoang, T.S., Reichl, K. (eds.) ABZ’18. pp. 262–276. Springer, Cham (2018)

42. Wassyng, A., Joannou, P., Lawford, M., Maibaum, T.S.E., Singh, N.K.: New standards for
trustworthy cyber-physical systems. In: Romanovsky, A., Ishikawa, F. (eds.) Trustworthy
Cyber-Physical Systems Engineering, pp. 337–368. Taylor & Francis Group (2016)

43. Wassyng, A., Singh, N.K., Geven, M., Proscia, N., Wang, H., Lawford, M., Maibaum, T.: Can
product-specific assurance case templates be used as medical device standards? IEEE Des.
Test 32(5), 45–55 (2015)

