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Abstract

Hot section components are exposed to high temperature operation and thermal transients during service life. The research of
improved performances leads to consider the risk of crack initiation due to isothermal (LCF) or thermal-mechanical (TMF) low
cycle fatigue loading in component design. This article gives a short survey of progress in LCF and TMF life estimation
procedures due to the description of metallic alloys behavior (superalloys, cast iron, stainless steels). Assessing the lifetime under
cyclic loading conditions requires constitutive models accounting for viscoplasticity at service temperatures or during transients.
These models can be validated at the laboratory scale using thermal mechanical fatigue tests. Crack initiation life prediction
models can be quite simple or need to account for creep-fatigue interactions or environmental effects. Examples illustrate
advances in materials studies and models over the years in aero-engine and automotive applications.
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1. Introduction

Low Cycle Fatigue of alloys in hot section components occurs in many industrial applications, especially in
aero-engines in jet and aircraft, in aerospace, in powertrain in the automotive industry and in power plants. The
design of components experiencing thermal transients and high temperature operation was only at an early stage in
the 1980’s. Isothermal low cycle fatigue (LCF) tests on specimens were mostly used since Coffin-Manson law
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shows the importance of small plastic cyclic ssai@n the other hand thermal shock (TS) testsroplsistructures
were used to simulate more closely the effect wipterature cycles on material behavior (Glenny 19360, 1967)
but their quantitative analysis requires thermal arechanical stress analysis as for real compor{8pesra 1969).
At that time finite element (FE) analyses were hyo#termo-elastic and plasticity was estimated gisiinastic

approximations. Major progress occurs since 1990 trie development of non-linear finite element elsdand
continuous increase in computer capabilities, #e af constitutive models for cyclic plasticity avidco-plasticity
(Chaboche 1991), and the development of relialdental mechanical fatigue (TMF) tests (Taira 1978pkins

1976) combining electro-mechanical or servo-hydcamachines and personal computers. TMF can be tosexbt

independently constitutive models and damage madwlsr thermal transients (Malpertu 1990, Kosté&4] Rémy
2003, Szmytka 2013 b) while the TS tests enableatmlate the whole design chain to estimate the pmorant
lifetime (Rezai 1988 a and b, Koster 1996). A reva the subject was made earlier (Rémy 2003).

This article gives a short survey of design-oridnteaterials research with PSA and Ecole Polyteatmignd
Safran Aircraft Engines using a few examples. Tdigompasses testing and constitutive equations thith
assessment of TMF of cast iron exhaust manifolisitcrack growth tests in powder metallurgy (PMpearalloys
and defect tolerance for turbine discs in aero+eewyi high temperature LCF and TMF life predictidnsimgle
crystals for high pressure turbine blades and di+stéle approach for welded parts exposed to T®IHy enriched
engineering models are considered here, comprognisatween cost effectiveness and complexity of ighys
mechanisms.

2. Resultsand discussion
2.1.Testing and constitutive equations: TMF of exhanahifolds

Building cars that consume less and that minimiaérenmental impact lead to an increase in tempega&nd
thus visco-plasticity of alloys. Thus design of gmments such as manifolds or cylinder heads neeclsrate
constitutive models. The first step is to geneeatextensive database using laboratory tests mtusatemperatures
corresponding to the operation range, and covedirlgrge range of strain rates. Cyclic stress-sttagts were
conducted under strain control using an incremetgsiing procedure with 10 to 20 cycles at a gisémin
amplitude including a strain hold at maximum stri@indentify stress relaxation curves. The stretsxation curves
give access to the visco-plastic multiplier. In tjatar it was shown for SiMo cast iron (Szmytkal@) that
Norton’s law that is widely used by most authordhidBoche 1991) does not give a very good descripifon
relaxation data. A much better result was achiexsédg an exponential or hyperbolic sine law (Szmy2k10).

A new constitutive model was thus proposed inspipgddislocation theory based on the Orowan equation
relating shear strain rate to dislocation density the theory of thermally activated glide. Thissvmeviously used
in creep models for superalloys (Chateau 2010hEuimprovement of these models is reported elsesvfRémy
2013 a). Validation of the model was obtained usiidF tests under out-of-phase compression straaalita
conditions derived from the thermal analysis of poments.

A good agreement was observed between model and égEriment for conditions corresponding in most
places of the structures and to critical zones.{Fay b). The model was identified using the Zemte and then
implemented as an Umat in Abacus (Szmytka 2018ta.standard procedure at PSA is to use maximusipdizd
plastic strain energy density as criterion to crimitiation under TMF conditions (Charkaluk 200The location of
crack initiation was properly predicted as thetiifee around 3200 cycles for 3000 cycles in compbbench tests.
Further the manifold displacements correspondintgad risks were correctly predicted, that involvascheting
(Szmytka 2010, 2013 a), which is more demandingrfodels.
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Fig. 1. Comparison between model and experimeritt $tress-strain loops: (a) visco-plastic multipbed loop for cast iron using the loading
cycle shown in (b); (b) out-of-phase cycle withchtime in compression strain; (c) diamond typeisttamperature TMF cycle for blade; (d)
comparison between model and experiment for AMglsiorystal using TMF cycle shown in (c).

2.2.Defect tolerance in PM superalloy for turbine dist@ero-engines

The constant research for temperature and perfaenatrease in aircraft engines lead to increasevtiume
fraction of strengthening precipitates in nickebdauperalloys. Wrought alloys can no longer bel wggen this
fraction reach levels around 40 or 50 volume peasceBomponents have to be made using powder metaland
molten metal atomization. The powder is sieveditnirate the largest ceramic inclusions coming frpracessing.
However in specimen and component tests, LCF cragtiate mostly at ceramic inclusions. Relevané@men
testing becomes a problem since process defecteeayerare. A large scatter is observed in standa@# tests.
Therefore standard design procedures using a déxexh of risk such as one failure per one thousmsts are no
longer practicable. Specimen failure surface amalghows the larger the inclusion size, the shottter life
(Lautridou 1990). Surface defects are more detrialgaresumably due to oxidation effects. Sinceitickisions are
scarce, there is a volume effect between specimdrcamponent. The occurrence of inclusions in awa V can
be described as the following equation:

P(D >D,)=1-exp(N,(D >D,) V) (€Y

And a probabilistic model should be used to ask€sslife (de Bussac 1993). A database and shaguatcrack
growth rate (FCGR) data based on Linear Elastictdra Mechanics (LEFM) are used to validate metlaglo
The assumption that a defect can be considerediasla of the same area is used (Murakami 1994).

FCGR data for long cracks and artificial short &sfusing single edge notch specimen with crack shorter
than 0.1mm) were produced in air and under vacu@nsg¢n 1997). Vacuum was assumed to be representati
conditions prevailing at inclusions cracking in bof material. While in air a fatigue threshold wasserved due to
oxide wedge closure effects, under vacuum theaetiignsition in rates with propagation at very lates associated
with crystallographic crack growth. A database hasn generated using specimens that were enrichedrpose
with inclusions to ensure a satisfying occurrenterack initiation at defects (Lautridou 1990). A&tdrministic
fatigue life was estimated using the location aiz@ ®f initiating inclusions and the LEFM data dfost fatigue
cracks.
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Fig. 2. (a) Comparison between computation andréxgat for sub-surface or internal inclusions usshgrt crack data under vacuum; (b)
predicted probability of failure for engine pardanCF specimens as a function of fatigue life.

A pretty good agreement was obtained from the matan of da-dN versuAK curves for surface initiation
using air data and internal or subsurface inclusigsing vacuum data (Fig. 2a, Grison 1997). Théauktlogy was
thus validated as made previously for casting poraggle crystals (Defresne 1990, Remy 2013 b).

For practical use the cleanliness function(D>Dy), indicating the amount of particles per volumesizke larger
than a given value pPwas obtained comparing the probability densitycfiom in Eg.1 with extensive fracture
analysis of specimens tested in the database.ZBigyives an example of curves that can be obtaioedhe
probability of engineering crack initiation for L&Ipecimens and engine parts (Brethes 2000).

2.3.LCF and TMF life prediction of single crystal supboy for high pressure turbine blades in aero-erag

The continuous increase of turbine inlet tempeeatarjet and aircraft engines has led to the irszeaf blade
temperature and the increase of strengtheningpptaie volume fractiony Ni(Ti,Al). This has been made possible
replacing conventional cast alloys by directior@ldsfication into poly-crystal form and furthertim single crystal
form. This was combined with improvement of cooligghniques and introduction of Thermal Barrier @ugs
(see e.g. Guerre 2003, Rémy 2014, Courcier 20t Baily time the thermal gradient was low and comepbs were
designed against creep. Now thermal gradientsigheamd components need to be designed against TMF.

The first concern with single crystal blade is #taganisotropy that is strong in nickel alloys, atheén plastic
anisotropy. LCF tests under isothermal conditioDki¢ragatti 1991, Fleury 1993) were rapidly compaied by
TMF tests using cycles extracted from computed iomssestimated from component design. A simpliftedinter
clockwise strain temperature TMF cycle test introethiearlier (Malpertu 1990) was used (Fig.1c, Bd®94). The
crystal plasticity model of Meric (1991) was usédttcombines Schmid law and Chaboche type equbgbmeen
the visco-plastic shear strain rate and the pregeshear stress on individual slip systems. Thislghbas been
identified for various isothermal tests (Hanriot919 1993) and described pretty well the stressrstomp under
TMF cycling (Fig. 1d, Hanriot 1993, Fleury 1994,rRg2003).

Once the crystal visco-plasticity model is idewtifj a damage model can be used in a post procefstwr FE
model (Cailletaud 2003). As the major orientatidrttee blade is near <001> direction of the facetessd cubic
lattice of the superalloy matrix, one can use arosmpic Chaboche type continuum damage mechamdelrthat
assumes an equivalent stress based damage modeintwmcreep and fatigue damage contributions (Gbhaé
2000). Under thermal transient conditions, creepatge is obtained from simple time integration loutfatigue one
has to use a stress normalized to the ultimatessstag¢ the current temperature. The model yieldy geod
description of the frequency dependence of testdriand provides fairly good agreement with TM&tse
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Oxidation has been shown to very important for fosquency LCF in air in many cast superalloys (€0f972,
Reuchet 1983, Reger 1988, 1990). The frequencyndiemee disappears for tests carried out under va¢@offin
1972, Reuchet 1983 a, Reger 1988 a and b). Inalksts inter-dendritic oxidation gives rise to osidpikes
growing from the surface. Oxidation kinetic datad on metallographic observations on LCF specirseasons
have been used to show that LCF life could be ptedi(Reuchet 1983 b) using a summation equation as

da/dN = (da/dN),, +(da/dN),, @

The fatigue contribution is based on crack tip apgr{Tomkins 1968, Chalant 1983, Chataigner 198#6jh
temperature LCF in nickel base alloys under aiultssn the formation of a complex oxide layer amdeaction
zone depleted of strengthening precipitates inattjacent substrate as in creep (Chateau 2010, R668). Under
thermal transients oxidation embrittlement can ocdthis has been shown using LEFM tests on prekedhc
compact tension specimens that have been oxidizkigjla temperature without load (Rémy 2003). Sudtst were
done on superalloy single crystals (Rémy 2003, ROAignificant zone is affected ahead of the paek where
FCGR increases drastically before recovering tHaevaorresponding to the virgin material (Fig.38his means
that a reduction of material properties can beea@dd due to oxidation effects without load whileap- fatigue
damage interaction requires stress. This is this lbds TMF damage model (Rémy 2007).

The main damage cause in components is the occer@mTMF and LCF cracks. Such cracks can nuclagte
stress concentrations: casting pores at inter-d@ndreas or cooling holes. In both cases thesectiehave a size
around or smaller than the size of primary densrfbe the range 0.3 to 0.4 mm in most cases). Bhomscro-crack
growth model is very attractive. Models (Chalan83Passume a process zone as introduced by McCHirfi®63):
it is often assumed to be a microstructure sizecheck this assumption, the behavior of short @dwks been
investigated in single crystals tubular specimemgry a horizontal through notch 0.5 mm wide with.@5 mm tip
radius. Tests were run under fully reversed steai®50°C under small scale yielding conditions.t3esade at
different frequencies for <001> and <111> orietasi (Remy 2013 b, Bourbita 2016) have shown th#teémotch
vicinity a FCGR plateau is observed before reconetiEFM-behavior (Fig.3b). The FCGR in the platézareases
strongly with decreasing frequency. This anomalmgime was treated as an “engineering initiatioriogé. A
crystal visco-plasticity model was used to compheestress-strain field at the notch vicinity as@@reviously for
long crack tips (Flouriot 2003, Marchal 2006). Td@malous short crack growth regime was shown tespond
to the plastic zone size and normal stress singolae.
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Fig. 3. (a) FCGR of pre-oxidized CT superalloy $ngrystal showing embrittlement in oxidation affet zone; (b) anomalous crack growth rate
regime for a small notch (initial length 0.25 mmoteh radius 0.05mm) at 950°C in AM1; (c) comparisbrrack initiation period in the notch
affected zone obtained by oxidation-fatigue model eritical distance and experiment.
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Assuming a maximum principal stress criterion, stress gradient can be treated as a normal stresgical
distance of 0.1 mm combining FE analysis and dashort crack data from smooth specimens undefflequency
LCF (Fleury 1993). A model based on plastic dissidaenergy density and dilation elastic strain gnéMaurel
2009) was used. Oxidation fatigue interaction in3Bgas described as oxidation-induced embrittlemEmé model
was calibrated on LCF data at high frequency amd flequency. It describes the whole crack growthves in
smooth specimens. In addition the life to initiate.25mm crack at the notch can be predicted whatée loading
crystallographic orientation and frequency (Fig. Bourbita 2016).

2.4. Multi-scale approach: welded automotive hottpar

When dealing with some complex problems it is ssagy to introduce a multi-scale approach. This dase
recently for the design of automotive welded exhawanifold made of 1.4509 ferritic stainless stgad-18Cr-Ti-
Nb). A FE component model was used at the macrie-scal a life prediction model has to apply at Huale. Tests
were carried out on welded specimens tested ureteian-compression. The specimens were machined fro
welded plates (about 2mm thick) with the weld bpatbendicular to the load axis. Observations oflciaitiation
and growth were carried out and damage model watiftbd with a FE model at this meso-scale (Be@6it4). A
shell model was introduced to describe the effdcthe weld at the macro-scale. A fatigue criteriwas then
identified at the macro-scale using this weld moaiel damage identified at the meso-scale. The atadid of
constitutive model and damage model was made UElfMg tests on welded specimens. The modeling chais w
then used to predict component life under TMF aygliThe methodology is summarized in Fig. 4.

Isothermal LCF tests on weld specimens have shdwahdracks initiate early at the geometric discuurity
between weld bead and base metal. Micro-crack graetupies most of the lifetime (Benoit 2014) ar@iaR is
described by model using partition of strain enedgysity (Maurel 2009). This criterion was integahtat the
macro-scale using the weld model and macro FE elentd mid-thickness size. Under TMF the criterfas to be
integrated along the temperature cycle experiefge@gach element. Manifold was tested on bench engitk
initiation around 1400 cycles. This lifetime waglfawell predicted using the proposed criteriordahe maximum
dissipated energy criterion used currently at PShatkaluk 2000).

3. Conclusions

A significant progress has been achieved in assgpdsie LCF lifetime of components experiencing high
temperature and thermal transients. An adequatdbadse is essential to identify constitutive equetiand damage
models. Visco-plastic constitutive models can pdevgood predictions of overall deformation and loxgclic
plasticity in FE analysis of components. Damage @®dased on short crack growth data under smalkesc
yielding can be used when LEFM applies. Probahilistodels are necessary when rare defects areitathdérom
the process. Physically based models or continuammage mechanics models are necessary when sighifigalic
(visco-) plasticity prevails at high temperaturee€p and environmental effects should be considered

Multi-scale approaches are promising for complesesaas shown for weld structures.
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