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 Abstract 

Bone is a complex material showing a hierarchical and porous structure but also a natural ability to 
remodel thanks to cells sensitive to fluid flows. Based on these characteristics, a multiscale numerical 
model has been developed in order to represent the bone response under mechanical solicitation. It 
relies on the homogenization technique, simulating bone as a homogeneous structure having a porous 
microstructure saturated with bone fluid. The numerical modeling of the loading of a finite volume of 
bone enables the determination of an equivalent poroelastic stiffness. Focusing on two extreme fluid 
boundary conditions, the study of the corresponding structural response provides an overview of the 
fluid contribution to the poroelastic behavior, impacting the stiffness of the considered material. This 
parameter is either reduced (when the fluid can flow out of the structure) or increased (when the fluid 
is kept inside the structure) and quantified through this model. The presented poroelastic numerical 
model is here developed in the perspective of providing a bio-reliable model of bones, to determine 
the critical parameters that might impact bone remodeling. 
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Nomenclature 

�: Biot coefficient 

�: Elastic stiffness tensor  

����: Effective elastic stiffness tensor 

��: Forchheimer coefficient properties  

�(������	): Strain rate tensor in the fluid part 

�: Young’s Modulus 

�(�
)������	: Strain tensor in the solid part 

�
: Bulk modulus of the solid part 

��: Bulk modulus of the drained skeleton 

��: Bulk modulus of the fluid part 

�: Permeability coefficient  

�: Biot modulus 

�: Derivative of the expression for the fluid accumulation  

��: pressure of the fluid 

�
����	: displacement in the solid part 

������	: velocity of the fluid  

�: Biot effective stress coefficient tensor 

�: Kronecker symbol 

ε: scale ratio between the microscopic and the macroscopic scale 

�	: Microscopic solid displacement vector within the elementary cell due to a unit value of the 
liquid pressure 

μ: Fluid viscosity. 

μ���: Effective viscosity parameter 

�: Poisson’s coefficient 

�	: Microscopic solid displacement vector within the elementary cell due to a unit value of the 
macroscopic strain tensor 

��/
: Density of the fluid or the solid respectively 

�
/�	: respectively stress tensor in the solid and in the fluid 

Ωs/f: respectively the solid part and the fluid part  

�: porosity of the poroelastic material 

∇: gradient operator 

∇ : gradient operator for the macroscopic (also referred as global) scale 



∇!: gradient operator for the microscopic (also referred as local) scale 

  



1. INTRODUCTION 

Bone is known to be a particularly complex material. It can be a multiscale material as it possesses a 
hierarchical structure [1] [2] [3]. From the nanoscale to the macroscale, each intermediate scale is 
composed of a specific pattern. The pattern consists of a periodic elementary structure of the larger 
scale. Down to the nanoscale, bone is a composite material, with a mineral phase embedded in an 
organic matrix.   

Furthermore, as bone is a vascularized tissue, each scale presents an individual porosity, differing in 
pore shape and porosity values. Depending on the scale considered, the pores are filled with bone 
marrow, blood, or interstitial fluid and cells.  

All these particularities represent many potential parameters in the development of a numerical model 
of bone and have been the subject of many experimental investigations. The latter are usually done by 
nanoindentation measures, and bone elastic modulus at this scale can vary between 5 and 25GPa [1] 
[4] [5] [6] [7] or by micro-CT analysis [8] allowing bone quality characterization. This large range of 
value can be explained by the non-linear stress-strain behavior of the collagen fibrils contained in 
bone internal structure as highlighted in [9]. The presence of fluid in bone also impact its mechanical 
behavior but is very difficult to characterize experimentally. However, several attempts have been 
made, through water imbibition of bone samples [10] or internal medullary pressure measurements as 
in [11] among others. 
 
Thus, transposing bone actual mechanical specificities in numerical models is a real challenge. 
Indeed, bone material can be seen either as a composite material [3], or as a viscoelastic material due 
to the viscous aspect of bone marrow [12], or as a poroelastic material taking into account the different 
levels of porosity and the influence of the corresponding fluid flow [13].  

Keeping in mind all these considerations, one needs to have a precise idea of the final aim and 
application of the bone numerical modeling in its development, to choose the most relevant working 
hypotheses. In this work, the focus is on the natural ability of bone to adapt its structure according to 
its mechanical and biological environment. This is called bone remodeling, and it is enabled by the 
mechanosensitive bone cells that orchestrate the surrounding cellular activity resulting in bone 
adaptation. Such bone cells, called osteocytes, are immersed in the interstitial fluid and located in the 
bone porosity found at the microscale, in the lacunar-canalicular system [14] [15].  

Bone remodeling is particularly involved in bone healing after implantation of an articular prothesis 
during, for example, a Total Hip Arthroplasty. A successful implantation is quantified by the strength of 
the bond created between the prosthesis and the host bone without causing thigh pain or prothesis 
loosening for the patient. Many parameters are involved in pre-, per- and post-surgery: prosthesis 
shape, position in the femur, post-surgery loading among many others. To determine which 
parameters are particularly relevant in bone-implant long-term stability, the investigation of bone 
mechanical behavior and bone remodeling in this context is a major socio-economic enterprise. 

In this specific context, an appropriate choice in the focused bone characteristics is required to 
maintain a relevant compromise between precision and computational time. As internal fluid flows are 
essential in the structural constitution of bone and in osteocyte activation, a focus is placed on bone 
poroelastic aspects, including the fluid presence within the pores. The aim is to provide a better 
understanding of the events occurring at the microscale, and the impact of those local events on the 
structural and remodeling behavior. 

Therefore, considering bone as a poroelastic material gives interesting outlines. Poroelasticity refers to 
a theoretical model of the mechanical behavior of a porous structure filled with fluid.  It first has been 
conceptualized and formulated by Biot in the 40's and its work on soil consolidation [16] [17]. From a 
numerical point of view, several approaches can be considered, such as effective medium theory [18], 
mixture theory [19] [20] or a multiscale approach. Through homogenization theory, developed since 
1978 [21], one is able consider both periodic and random sub-structures in a heterogeneous material 
mechanical behavior [22]. The corresponding scope of application is very large [23], including 



composite material modeling, but also investigation of porous materials, following both linear and non-
linear poroelasticity laws [24].  

Keeping in mind the final aim of the developed model presented here, multiscale modeling appears to 
the authors as the most adapted method, allowing a precise consideration of local events with 
reasonable computational costs. 

The microstructure modeled here, being the lacunar-canalicular system, can be assimilated to a 
periodic structure and the application of a homogenization technique is then performed [25]. This is a 
numerical procedure elaborated in  [21] and largely developed since, based on the assumption of 
scale separation. This approach has been already proven relevant in the context of bone modeling 
[26] [27].  

Indeed, several works can be found in the literature modeling bone as a poroelastic material with a 
multiscale formulation, but the different models are not developed for the same purpose. Some works 
[26] [11] bring a better understanding of osteocytes activation, while in [27] the model is dedicated to 
predict the qualitative changes in anisotropy due to variations in the structure at the mesoscale. In  
[29], [29], [30] and [31] this formulation of modeling is used to produce a complete and rigorous model 
of bone aimed to a solid bio-reliability, considering several porosities and not only the hydraulic 
component of osteocytes activation. The multiple porosity aspects and anisotropic properties of bone 
can be introduced as well, e.g. in [32] [33] and [34], to thoroughly enlarge the scope of application. 

Nevertheless, its application in the elaboration of a numerical modeling based on a compromise 
between accuracy and efficiency has not yet been considered to our knowledge. The aim is here to 
provide a numerical tool, easy to put in place and computationally efficient, for bone reconstruction 
prediction for both the physician and the prosthesis manufacturer. The main issue is therefore to reach 
an equilibrium between efficiency and accuracy at the numerical level. This result in the formulation of 
a multiscale poroelastic model of bone is searched through the homogenization technique for periodic 
structures, considering the device scale (referred as the macroscale) and the level of the events 
involved in bone reconstruction, i.e. the cellular level at the macroscale. First the governing equations 
and the modelling strategy are described. Then, results from the simulations obtained by the 
developed model are presented and discussed. 

  



2. MULTISCALE POROELASTIC MODEL DEVELOPMENT 
As in any biological structure, a perfect periodicity cannot be achieved regarding the continuous 
remodeling of bone tissue. However, in the context of cortical bone in the femur, where the structure is 
notably organized along the principal mechanical loading, the regularity of the canaliculi and the 
lacunae is a reasonable assumption [35] [36] for the scope of the proposed modelling. 

2.1 MODEL DEVELOPMENT 

2.1.1 Representative Volume Element definition 
In order to settle the framework of the homogenization technique in the context of poroelastic 
modeling, an appropriate RVE needs to be carefully chosen.  
The RVE must represent the microstructure of the poroelastic material under consideration. Keeping in 
mind the final aim of the developed model, and considering the structure of the bone matrix, the pore 
shape is composed of communicating channels. The size is determined from the biological dimension 
of the lacunar-canalicular system that has to be modeled, corresponding to a porosity ϕ=5% [13]. 

It is composed of a solid and a fluid part. The solid part (referred as Ωs) is considered elastic, isotropic 
and evolving according to the small deformation assumption. Regarding its geometry, at this scale, the 
porosity of the bone is estimated at 5% and the diameter of the considered canals considered is on 
the order of 0.3 µm [13]. Thus, the poroelastic RVE is a drilled cube of 100 µm length with 10 µm 
channels, as shown in Figure 1. The fluid part (referred as Ωf) represents bone fluid and saturates the 
pores. As it is mainly composed of water, it is considered incompressible and Newtonian. Its viscosity 
is estimated to the one of saline water at 37°C. 

 

2.1.2 Mathematical development 

2.1.2.1 Conservation laws 
In Ωs, without external forces and under the assumption of small deformations, the equation of motion 
is written:  

 ∇. �
 # 0�	 (1) 

 

Figure 1 - Poroelastic REV composed of a solid domain Ωs and a fluid domain Ωf. 



where �
 is the stress tensor, defined as �
 # �: �(�
����	) with � the elastic tensor of the solid part, �(�
����	) 
the strain tensor and �
����	 the displacement vector [37]. 

In Ωf, without external forces, the equations of motion are written: 

 ∇. �� # 0�	 (2) 

where �� is the stress tensor, defined as �� # −��� + 2)�(������	). 
In this expression, �� is the pressure if the fluid, ) its viscosity, � is the identity tensor, �(������	) the strain 
rate tensor and ������	 the velocity vector of the fluid.  This latter is defined by the following equation of 
motion: 

 ∇. �������	 # � (3) 

where � represents the derivative of the expression for the fluid accumulation in the RVE defined by: 

 � # 1
� ��+ + �,-(�(�
)��������	+ ) (4) 

Equation (4) involves �, the Biot modulus, that considers the compressibility and �, the Biot 
coefficient, expressed with the bulk modulus of the drained solid matrix and the solid matrix itself [38]: 

 � # .� − 	�	
�� + �

��/
01

 
(5) 

 � # 1 −	���
  
(6) 

where �
, �� and ��  are, respectively, the bulk modulus of the solid part, of the drained skeleton and 
of the fluid phase. 

At the interface, called 2, continuity conditions are applied, with 3�	 is the normal vector to the interface: 

 ������	 # 	4�
����	45  
(7) 

 ��3�	 # 	�
3�	 (8) 

2.1.2.2 Application of the homogenization technique 
From the conservation laws previously presented, the three unknown variables of the system are �
����	, �� and ������	. According to the homogenization technique previously described, these three variables are 
written in the form of an asymptotic expansion of the first order in powers of  6, precise enough for the 
mathematical set up of homogenized conservation laws, 6  being the scale ratio (6 # 8

9	<<1, : being the 

representative length of the microscale, ; the one of the macroscales). It gives: 
 

 �
����	 # �
����	<(=, >, 5) + 6�
����	1(=, >, 5) + ?(6²) (9) 

 ������	 # ������	<(=, >, 5) + 6������	1(=, >, 5) + ?(6²) (10) 

 �� # ��<(=, >, 5) + 6��1(=, >, 5) + ?(6²) (11) 

 

The exponents are referring to the considered orders. The homogenization technique also involves the 
use of the expression of the gradient operator [21] [39], where the subscripts x and y are respectively 
referring at the macroscale and the microscale: 



 ∇# ∇A + 1
6 ∇B 

(12) 

2.1.2.3 Final equations 
Incorporating the asymptotic expansions (9), (10), (11) into the expressions (1), (2), (3) using the 

expression (12), averaging over the elementary cell (<∗># 1
ΩG∗HΩ where Ω # Ω
 ∪	Ω�), the 

macroscopic equations resulting from the homogenization theory allow the expression of the stress in 
the macroscopic poroelastic material (< �JKLK >) and are written: 

In Ωs: 

 ∇A . < �JKLK >#	0�	 (13) 

 < �JKLK ># �����A M�
<����	N − ���< (14) 

���� and � are the effective elastic stiffness tensor and the Biot effective stress coefficient resulting 

from the local RVE problem and �A M�
<����	N is the strain tensor at the macroscale. They are expressed 

as in the following: 

 �OPQ8��� #	< �OPQ8	 + �OPRS	 : �BRS M�Q8�����	N > (15) 

 �OP # 	��OP+	< �OPRS 	: �BRS(����	) > (16) 

In the expressions (15) and (16), �	 and �	 are two particular solutions of the equilibrium Equation (17). 
It is reminded that we are looking for ���� and �OP, thus we solve the system applying two sets of 

particular boundary conditions (18) and (19) and �B(�	) and �B(�	) are the corresponding microscopic 
strain tensor: 

 ∇B . [�: �B M�
1����	N + �: �A M�
<����	N] # 0 (17) 

 (��< # 0; �A M�
<����	N # 1
2 (�P8 . �QR + �PR. �Q8) (18) 

 (��< # 1;	�A M�
<����	N # 0) (19) 

In Ωf: 

 ∇A. < ��<����	 ># 	0 (20) 

 < ��<����	 >	# 	− �
) ∇A��< 

(21) 

Equation (21) is the Darcy’s law that can be completed by other terms in order to fit at best with fluid 
conditions [40]. It can include the Forchheimer’s term, representing the inertial effects  

∇A��< #	−	μ� 	��<����	 − 	���√� (��<������	)² (22) 

It requires the determination of a parameter called the Forchheimer coefficient ��, believed to be fixed 
for a given class of porous media and dimensions [41] and the fluid density �.It can also include the 
Brinkman’s term (Expression (23)) that considers interface phenomena between the fluid and the wall 
of the pores [42].  

 



 ∇ 	��< # −μ
�	��<����	 + μ���∆��<����	 (23) 

∆ is the Laplacian operator. Therefore, as it involves the second derivative of the velocity, the 
relevancy of the Darcy-Brinkman model is determined by the velocity variations within the fluid flow. It 
can be noted that although the determination of the effective viscosity and its consistency is widely 
discussed in the literature, one consensus is reached regarding its relation to porosity, namely, that μ��� is only relevant when considering materials characterized by high porosity [43] [44]. 

The relevancy of both terms needs to be discussed regarding the context of application. 

 



2.2 ALGORITHM 
In order to transpose these equations to a numerical model, an algorithm is put in place. It is 
articulated through the commercial softwares Abaqus and MATLAB. 

 

Figure 2 - Global solution algorithm. 

  



3. APPLICATION TO CORTICAL BONE SIMULATION 

In the following the computation of each step of the algorithm is described, when simulating the 
compression of a cortical bone sample. 

3.1 STEP 1: INPUTS 
The porosity considered here corresponds to the lacunar-canalicular porosity found at the cellular 
level. The porosity contains the mechanosensitive cells, responsible for the equilibrium of bone 
remodeling. In this specific case, the chosen material characteristics are detailed in Table 1. They 
correspond to characteristics of cortical bone elastic and interstitial fluid found in the literature [13]. 

Table 1 - Cortical bone material properties used as input in the poroelastic model [13]. 

As a case study, a finite volume of bone, corresponding to a cube of 2x2 mm, is simulated under 
compression, with a pressure ramp applied on the top face (Figure 3). The cube is considered 
clamped at its bottom face. 

 

Figure 3 – Pressure ramp applied on the top face. The results are extracted at point 1, when the loading pressure is 0.36 

MPa, and at point 2, when the loading pressure is 1.44 MPa. 

3.2 STEP 2: RESOLUTION OF THE RVE PROBLEM 
Applying the specific boundary conditions deduced from the homogenization technique (see Equations 
(18) and (19)) the effective properties ���� and � are determined for the bone material and 
implemented in the macroscopic poroelastic model. In order to fit homogenization technique 
assumptions, periodic boundary conditions are applied on the external faces. 
This resolution is made within the Abaqus software, using Abaqus meshing options for tetrahedral 
elements. The (18) boundary condition is applied through a subroutine imposing a strain field and the 
(19) boundary condition is applied on Γ. 
 

3.3 STEP 3: COMPUTATION OF THE PRESSURE 
To choose an accurate formulation of the evolution of the pressure in the bone, an analysis of a critical 
criterion is performed to ensure the relevancy of each term. In the context of clinical application of the 
developed model, and for the design of devices such as a hip prosthesis, a critical loading phase on 
this joint happens during activities such as climbing stairs or rising from a chair. This critical case can 
be likened to a 1 mm length cube under a compression load of 18 MPa [45]. 

Solid part: elastic cortical bone Fluid part: Interstitial fluid 
E (Young’s Modulus) 14000 MPa 

μ (Dynamic viscosity) 
0.0065 (Pa.s) 

(salt water at 37°C) 
�
 (Density of the solid part) 1.6 g/cm3 � (Poisson’s coefficient) 0.3 

k (Material Permeability) 1.5x10-14 mm² 



 
This gives the information required to compute the Reynolds number (found in most cases to be less 
than one) and to state the fact that inertial effects are neglectable in the femur, in a specific 
mechanically demanding situation. The use of the Forchheimer term in the computation of the 
pressure is therefore not necessary.  Concerning the Brinkman term, as the working porosity is 5%, it 
can be as well excluded. 
 
Thus, the fluid pressure and the fluid velocity in the cortical bone are calculated with Darcy’s law 
added to the fluid accumulation term, as reported in Equation (21). It is calculated by a finite 
differences method on Matlab. 

3.4 STEP 4: COMPUTATION OF THE STRESS 
After these three steps, all the elements are gathered to compute the stresses in the homogenized 
poroelastic material. The calculated quantities are introduced in an UMAT subroutine in Abaqus, 
coded in Fortran and aiming to compute the stress according to the Expression (14). 

3.5 OUTPUTS AND NUMERICAL VALIDATION 
Once the multiscale poroelastic model of bone, with the appropriate input data for cortical bone, is fully 
developed, its consistency regarding its final aim can be tested by comparison with an isotropic and 
elastic model. 

The main advantage being the inclusion of the fluid part, it is now possible to evaluate the impact of 
this component on the macroscopic response of the material.  

The aim here is to propose a first model validation, analyzing the results from a simple case study and 
checking the numerical consistency of the proposed model, as a preliminary study. A simple geometry 
of the simulated volume has been chosen to evaluate the consistence of the simulation results, as a 
function of the boundary conditions, within a volume representative of the investigated scale.  

To do so, two extreme and opposite cases for the fluid boundary conditions are here considered: 
either the fluid is completely trapped in the poroelastic material, either it can completely flow out. The 
reference pressure is set to zero implying that at the beginning of the simulations, the pressure in all 
the pores is equal to zero. 

The corresponding boundary conditions in fluid can be described as follows:  

(i) a case where the cube walls are impermeable, and the fluid cannot flow out;  
(ii) a case where the reference pressure is considered at the walls, allowing the fluid to flow 

out from the structure. 

The same structural boundary conditions are applied within the Abaqus interface: an arbitrary linear 
increase of the loading pressure, from zero to 1.44 MPa, is applied on the top face of a 2 mm length 
cube, whose bottom face is clamped, modeling a reproducible experimental test for further 
experimental validation, while external walls are kept free from a structural point of view. The material 
properties are those presented in Table 1. The corresponding equivalent values of Young’s modulus, 
for the two simulated boundary conditions on the fluid, are estimated from the obtained displacements. 

3.5.1 Pressure evolution and structural deformation  
Under the set of boundary conditions of the case (i), the results presented on Figure 4 are obtained. 
The pressure distribution, the corresponding structural stress in the homogenous poroelastic material 
and displacement are plotted at the beginning and the end of the simulation (as presented on Figure 
3).  

In this case, the pressure reaches a homogeneous distribution. As the pressure computation 
considers fluid flows and fluid accumulation in the body, an increase of the pressure can be noticed in 
the whole volume during the simulation, when comparing the results to those obtained at the 
beginning and at the end of the pressure ramp. 



The increase in the pressure field agrees with the entrapment of the fluid inside the body. Moreover, it 
agrees with the increase of the structural stress distribution, when comparing with the results from 
case (ii), because of the fluid entrapment.  
 
Indeed, when the fluid is free to flow out, the solid matrix tends to empty itself. In this case, the load is 
mainly supported by the structural matrix. This can be seen on Figure 5, on the pressure distribution, 
where it can be noticed that the internal pressure is tending to reach 0 (the reference pressure value) 
at the end of the simulation. At the bottom of the cube, internal stresses get higher, due to the fluid 
accumulation and mostly to the clamping of the bottom face, as it can also be seen on Figure 7. 
 

 
 
Figure 4 - Pressure distribution (MPa), the corresponding Von Mises structural stress (MPa) and structural displacement (mm) for 

impermeable wall boundary conditions: at 0,36 MPa (top line) and 1,44 MPa (bottom line) of applied structural load at the upper surface. 

 
Figure 5- Pressure distribution (MPa), the corresponding Von Mises structural stress (MPa) and structural displacement (mm) for free wall 

boundary conditions: at 0,36 MPa (top line) and 1,44 MPa (bottom line) of applied structural load at the upper surface. 



The comparison of the pressure and stress distributions on the two cases brings to light the 
importance of the fluid response in the mechanical global behavior of a porous and fully saturated 
material, e. g. cortical bone.  

In the following, to highlight the contribution of the porosity in the macroscopic mechanical response of 
the simulated bone, a comparison between the equivalent stiffness of an elastic and the poroelastic 
material has been done. 

3.5.2 Elastic stiffness vs equivalent poroelastic stiffness  
Figure 6 shows the trends of the imposed pressure as a function of the relative calculated deformation 
(deformation of the specimen over its total length). From the slope of such trends it is possible to 
extract an equivalent stiffness of the bone sample.  

 

Figure 6 - Stress-Strain curves for the considered cases, with the corresponding equivalent stiffness (in MPa) calculated from the slopes of 

the curves. 

To evaluate the mechanical behavior of the different numerical cases (boundary conditions and 
porosity percentage), an elastic and non-porous material, with a Young’s Modulus of 14000 MPa, is 
reported as reference case. The structural stress distribution and the corresponding displacement are 
shown in Figure 7.  Both distribution and values slightly higher than the ones previously presented, 
corroborating the influence of internal flows in the complexity of global mechanical behavior of the 
material. The different numerical simulations result in equivalent stiffness values, in agreement with 
the physical response of the poroelastic material.  



        

 

Figure 7- Structural Von Mises stress (MPa) and structural displacement in an elastic and non-porous model with a Young Modulus of 14000 

MPa. 

Comparing the obtained results with the case (i), when the fluid is completely trapped in the porous 
cube, with the elastic model, shows an equivalent stiffness almost equal to the elastic non-porous 
cube model, despite the changes in structural stress distribution as the internal pressure involves an 
increase of the structural stress at the borders of the cube. 

Then, in this case, as it is plotted on Figure 6, it can be observed that the impermeable equivalent 
Young modulus is of 13700 MPa. In fact, because the fluid is trapped in the solid matrix, the material is 
almost as stiff as an elastic one, despite its porous aspect, which is in accordance with the results of 
case (ii) and the elastic model. 
 
Indeed, as it is shown by the graph, the computed equivalent Young modulus is equal to 12100 MPa, 
when considering free lateral walls, for a reference Young modulus of 14000 MPa (the one of the solid 
matrix). Thus, introducing communicating porosities and fluid flows in such material, induces a 
decrease of almost 14% of the equivalent stiffness.  
 
Moreover, increasing the porosity of the material up to 40% in case (ii), the final equivalent stiffness 
reduces to 6500MPa (Figure 8), i.e. more than 50% compared to the non-porous model. The results 
agree with the expected increasing contribution of the porosity, by resulting in higher compliance of the 
structural matrix. 



 

Figure 8 - Stress-Strain curves comparing case (ii) with two different porosities: 5% (in blue) and 40% (in orange), with the 

reference of the elastic case. 

These opposite boundary conditions (cases (i) and (ii)), even if not truly representative of a 
physiological loading simulation, indicates how the poroelastic material behaves and how the internal 
fluid behavior affects its macroscopic stiffness. The results presented here show that considering bone 
as a non-porous material for ease of computation tends to overestimate its global stiffness even 
considering the fluid contribution, which is non-neglectable in the perspective of a structural evolution 
study. 

Moreover, even if the chosen boundary conditions are at the extremes of a biological representation, 
the free wall condition is closer to experimental in vitro conditions, in which bone is tested 
experimentally to determine its overall mechanical properties. However, bone exact boundary 
conditions in the human body are extremely difficult to determine and are strongly dependent on the 
location, this is why the choice has been made to firstly model the two extreme sets of boundary 
conditions, even if it has been found in [11] that undrained condition can be a reasonable 
approximation.  

  



4. DISCUSSION 

The model presented here lays the foundation for a mechanical approach to bone simulation based on 
poroelasticity, from the perspective of bone remodeling simulation accounting for the fluid contribution. 
The two main features on which the numerical modeling relies are multiscale behavior and fluid 
content within the bone.  Both play a significant role on its structural and biological response. 

Concerning the multiscale aspect, the homogenization technique has already proven to be numerically 
reliable in modeling complex materials [39] [46] [47] [48]. This technique has been used in the 
literature for bone modeling to account for the composite aspect of the material [49], which is 
particularly relevant when studying bone fracture and the influence of the mineral content of bone in 
the fracture process, but also accounting for its porous aspect and mechanical implications [26] [27]. 

As for the porous aspect, two main porosities can be distinguished in bones, in which bone fluid is 
involved: the vascular porosity and the lacunar-canalicular porosity. The numerical model developed 
here only consider the latter. Indeed, it has been suggested that the pressure in the vascular porosity 
is much lower than that in the lacuna-canalicular porosity and that these two porosity levels are acting 
independently [13] [50]. 

The results presented here, show that the fluid response within the lacunar-canalicular system and its 
intrinsic porosity have a determinant impact on bone global mechanical behavior. According to the two 
critical cases presented, the influence of the fluid flow at this scale plays a crucial role in bone 
mechanical response to compressive loading. 

When considering a sample of material within the whole bone in the human body, we had a look at two 
extremes.  The fluid will neither be free to flow out, nor will the wall be impermeable. The two 
simulated boundary conditions have been chosen to represent extremes of the real boundary 
conditions on the fluid and are not aiming to reproduce exact physiological conditions. In the 
perspective of an experimental compression test on a bone sample, the free wall condition at the 
reference pressure is to be expected.  

The free wall and impermeable wall boundary conditions on pressure constitute two extreme cases 
that present a large scope of induced internal stresses in the poroelastic materials. The results 
highlight the importance of the pressure distribution in the lacunar-canalicular system, indicating that 
biological reality likely stands within this range of values. Indeed, the boundary pressure conditions in-
vivo correspond to the pressure exerted by the soft tissue around the bone and the pressure within the 
bone structure, especially during critical loading such as climbing stairs or rising from a chair. 
Physically, in the thigh, the in-vivo pressure boundary conditions are more constraining than keeping 
the walls free, without being completely impermeable [51] [52]. Thus, the biological mechanical bone 
behavior must be included between these two critical cases. However, the free wall boundary 
condition, by contrast, will be useful for the validation through compressive tests on bone specimens.  

Furthermore, as the present model aims to constitute a basis for simulation of bone remodeling, the 
fact that it considers the fluid flow, at the cell scale, is promising. The mechanosensitive bone cells are 
particularly sensitive to fluid flow [14] [2], thus this procedure would seem to lead to an interesting 
biologically reliable simulation of bone remodeling. 

Nevertheless, some assumptions may account for the model limitations. The periodicity of the lacunar-
canalicular system may seem excessive if we are getting away from a specific framework of study 
(cortical bone in the femur). This is the same assumption that resulted in the choice of a simple 
geometry in the definition of the RVE.  It does not describe the very complex geometry of the lacunar-
canalicular system. An interesting perspective would be an increase in the geometry complexity.  

Moreover, as bone is a very complex material, both from a structural and a fluid point of view, the 
choice in material properties can be discussed. Indeed, bone complex hierarchical structure make 
difficult the choice of appropriate and accurate bone material properties at the microscale and lower 
according to collagen fibrils orientation and interaction with the mineral components [53].  



Choices in fluid description can be discussed as well, as bone fluid is here considered similar to water. 
The presence of electrically charged components can impact bone fluid viscosity [54] and question the 
elimination of the Brinkman term in the fluid flow mathematical formulation. This term can be kept as 
the modeled fluid is considered electrically charged, to consider the electro-osmotic and osmotic 
contributions in nanoscopic fluid flows, and the presence of the peri cellular matrix [29] [30]. This is 
particularly relevant when the scope of interest is very local, which is not the case here, to keep an 
accurate compromise between the global model and the precise description of microscopic events.  
Thus, the material properties of both the fluid and the structural portions rise numerous discussions. 
That is why an experimentation validation of the model is required, in order to precise the values that 
are here or indicative purposes only. 

Having developed this numerical model that accounts for bone physiological and biological reality, it 
can also be a useful tool in the perspective of any bone mechanical study in the future. The model is 
based on the critical parameters of bone porosity and the stiffness of the solid part of the bone. The 
last one is as well dependent on the mineralization of bone tissue, which is expected to stiffness the 
solid part of bone through a process that is not considered here [2].  Then, the model offers the ability 
to obtain information about bone intrinsic properties, through a parametric analysis for instance. It 
could be developed for retrieving quantitative information on the solid matrix stiffness of a tested bone 
sample, knowing the test conditions and updating the material properties for matching the 
experimental results.  Obviously additional experimental interaction is required to effectively pursue 
this kind of study. 

  



 

5. CONCLUSIONS 
The development of a multiscale poroelastic modelling of cortical bone has been presented. From the 
perspective of providing a tool to investigate bone-implant stability as a long-term goal and final aim, 
our choice of focusing on multiscale and poroelastic aspects of bone is relevant regarding the 
tendencies of the resulting model. In the case study of two borderline situations, it appears that fluid 
flows at the cell scale have an expected impact in bone global mechanical behavior, in reducing the 
equivalent stiffness of the poroelastic material according to the porosity considered. 

A few conclusions may be drawn. Firstly, the fluid response plays a significant role in the structural 
and mechanical response of bone considering two critical sets of fluid boundary conditions. It supports 
the hypothesis that bone mechanical behavior cannot be determined without considering its fluid 
component and matches the recent finding on mechanical transduction, and the fluid role in this 
phenomenon. 

Moreover, the developed model showed to be a possible approach able to account for poroelasticity, 
while being computationally efficient.  The results from the two simulated borderline cases are 
consistent with the fluid and structural responses, providing interesting preliminary results and 
promising perspectives for further investigation and experimental validation 

Finally, an interesting knowledge on the stiffness of the solid mineralized matrix of bone and on the 
equivalent stiffness can be investigated through this numerical model, to be able to distinguish the 
structural component from the fluid component in the bone mechanical response. 

These points are critical for the elaboration of a numerical model of bone remodeling, to have an 
accurate representation of the mechanical transduction phenomenon and to be able to provide 
biologically reliable models.  
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