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The truncation problem

The truncation procedure is an approximation commonly used in plane-parallel radiative transfer codes, which consists in removing the forward scattering peak observed in the phase function of large particles (few microns) or cloud droplets, due to diffraction. This approximation allows faster calculations but introduces biases in the radiances modelled at the ground-based level and also at the top of the atmosphere in narrow angular intervals (cloud bows and glory). In this study, we recalled the principle of the truncation and present a new method to correct its flaws. In comparison with previous studies, we present here a full comprehensive correction and analysis of the truncation biases for the downward and upward radiances. For ground-level measurements, we add to truncated calculations an approximate expression of the successive scatterings in the truncated forward peak to restore the solar aureole. In case of satellite measurements, we reduce the biases found for narrow angular signatures simply by changing the expression of the primary scattering. After correction, maximal errors do not exceed 0.001 for the degree of linear polarization for optical thickness smaller than 2.0, which is a sufficient accuracy for most applications based on polarimetric measurements. This correction is available for both total and polarized radiances and is now implemented in successive order of scattering code used in the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. The analysis of the problem is based on the method of successive orders, but the suggested corrections are applicable for any other resolution method (e.g. adding-doubling).

1-Introduction

. Satellite and ground-based passive measurements are dedicated tools to characterize the properties of aerosols and clouds. A fast and accurate radiative transfer code is needed to accurately model passive observations. Whatever the method used to solve the transfer equation, the calculation of diffuse solar radiation in a plane-parallel atmosphere becomes complicated for large aerosols (i.e. particles of few microns in radius) or liquid water droplets (≈5-20 microns), which typically exhibit strong forward scattering feature (i.e. peak of diffraction), leading to a very asymmetrical phase function. In most computational methods (e.g. successive order of scattering), the phase matrix of the particles is expended in Legendre polynomials. A large number of polynomial terms is needed to reproduce the particles phase matrix when a strong forward peak is observed, increasing calculations time. To get calculations within a reasonable time, a procedure of truncation of the forward scattering peak is commonly used, which introduces biases in the obtained radiance. For instance, the truncation procedure proposed by Potter [2] assumes that most of the light scattered at small angles is directly transmitted and that the scattered light can be calculated with the truncated phase function which is much less asymmetrical, thanks to the truncation. This approximation is very efficient to calculate the radiation reflected back into space. Its main flaw is to overestimate the magnitude of localized signatures in a narrow angular interval (i.e. cloud bows and glory [2]). In the case of ground-level measurements, an appropriate modeling of radiance in the solar aureole region must complete the truncated calculation, as it has been eliminated by the truncation.

. A precise modeling of the magnitude of the cloud bows in polarization is crucial for an accurate retrieval of cloud microphysics (i.e. effective radius and variance) and also for the retrieval of aerosols above clouds properties from spaceborne polarization measurements [10]. In this study, we analyze the truncation method and present an

2 original algorithm to correct its flaws. In comparison with previous studies, we present here a full comprehensive correction and analysis of the truncation biases for the downward and upward radiances. This correction is also available for both total and polarized radiances and is now implemented in successive order of scattering code [START_REF] Lenoble | A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols[END_REF] used in the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm [START_REF] Dubovik | Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations[END_REF]. The second section examines the case of ground-level measurements. The third section examines the case of satellite measurements. Section 4 summarizes the principle of this correction, its advantages and limitations.

2-Ground-level measurements and modeling of the solar aureole

2-1-Theoritical reviews and notations

To illustrate the problem of downward radiance, we simulated radiances as measured by a ground-based sunphotometer in the almucantar. The optical properties of the aerosol particles were computed using the Mie theory for a marine type aerosol. We used a single lognormal function for the particles size distribution with a geometric mean radius (r mod ) of 0.75 microns and a variance (σ) of 0.7. The particles are assumed non-absorbing and the real part of the refractive index (m) is equal to 1.37. Figure 1 shows the exact phase function of particles, p ex (Θ), (term P 11 (Θ) of the phase matrix, normalized by p ex (Θ)dω = 4π

∫∫

) and the function p ecr (Θ), which is the (before normalization) phase function truncated between the scattering angles Θ = 0° and Θ =16°, computed at a wavelength of 865 nm. The purpose of the truncation approximation is to remove the forward peak observed in the phase function. This forward peak is mainly due to the light diffracted by the particles for scattering angles smaller than 1.22λ / D eff in order of magnitude; λ is the wavelength and D eff is the effective diameter of the particles. For the given particles size distribution (D eff of about 5 microns), we choose to truncate the phase function between 0 and 16°. It should be noted that the range of scattering angles considered here for the truncation does not significantly impact the results. Calculations performed with a phase function truncated between 0 and 10° or between 0 and 20° show exactly the same results. We have replaced the removed forward peak by the function Ln( p ecr (Θ)) = a -bΘ 2 with coefficients a and b defined so that p ecr (16°) = p ex (16°) and (dp ecr dΘ) Θ=16°= (dp ex dΘ) Θ=16°. We then note p tr (Θ) and p fw (Θ) the normalized phase functions that respectively correspond to the truncated radiation (i.e. radiance computed with the normalized truncated phase function) and to the radiation scattered in the removed forward peak, normalized as p ex (Θ), with p tr (Θ) = p ecr (Θ) /(1-A), p fw (Θ) = (p ex (Θ)p ecr (Θ)) / A, [START_REF] Stocker | The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[END_REF] where

A = 1 4π ( p ex (Θ) -p ecr (Θ))dω ∫∫ . ( 2 
)
Figure 2 compares the 3 phase functions. This approach is then extended to the phase matrix of the particles P, which is assumed to be in the form,

P(Θ) = P 11 (Θ) P 12 (Θ) 0 0 P 12 (Θ) P 22 (Θ) 0 0 0 0 P 33 (Θ) P 34 (Θ) 0 0 -P 34 (Θ) P 44 (Θ)               , (3) 
The particles can be spherical or non-spherical and linearly polarize the incident solar light, which is un-polarized. The truncation of the forward peak in the phase matrix consists in decomposing P, as in Eq. 1, in the form,

P(Θ) = AP fw (Θ) + (1-A)P tr (Θ) (4) 
where P tr is the truncated phase matrix and P fw is the forward scattering phase matrix. The approximation of the truncation consists in solving the radiative transfer equation by only considering the truncated phase matrix P tr in the radiative transfer code. The terms of the phase matrix (others than P11) are truncated in order to respect the fractions of polarized light respectively associated to p tr (Θ) and p fw (Θ). For instance, let's assume that q ex (Θ) is the term P 12 (Θ) with q(Θ)<0 for molecular scattering. Then, the polarized phase functions q tr (Θ) and q fw (Θ) are defined by q tr (Θ) = q ex (Θ).p tr (Θ) / p ex (Θ), q fw (Θ) = q ex (Θ). p fw (Θ) / p ex (Θ).

(

) 5 
Figure 3 compares the 3 polarized phase functions q ex (Θ), q tr (Θ) and q fw (Θ). Finally, we have

p ex (Θ) = (1-A)p tr (Θ) + Ap fw (Θ), q ex (Θ) = (1-A)q tr (Θ) + Aq fw (Θ), (6) 
and the same linear relation stands for all the other terms of the phase matrix (e.g. P 22 (Θ), P 33 (Θ)).

Furthermore, we assume in the following that the terms P 11 , P 12 , P 22 and P 33 can be developed into a series of Legendre polynomials P l , or into a series of associated Legendre functions, such as P 2 l or P 22 l , in the form

P 11 tr (Θ) = p tr (Θ) = β l tr P l (cosΘ) l=2 ∑ (7) 
P 12 tr (Θ) = q tr (Θ) = γ l tr P 2 l (cosΘ) l=2 ∑ (8) 
P 22 tr (Θ)

+ P 33 tr (Θ) = r l tr P 22 l (cosΘ) l=2 ∑ (9) 
P 22 tr (Θ) -P 33 tr (Θ) = s l tr P 2-2 l (cosΘ) l=2 ∑ (10) 
For the sake of simplification of the equations given below, we also introduce α l tr = (r l tr + s l tr ) / 2 [START_REF] Compiègne | The phase matrix truncation impact on polarized radiance[END_REF] The same formulas (Eqs. 7-11) stand for the different terms of P fw , with the suffix "fw" instead of "tr", indicating radiative quantities related to the forward scattering phase matrix. We refer to Lenoble et al [START_REF] Lenoble | A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols[END_REF] for the normalization, initialization and recurrence relations associated with the Legendre polynomials and associated functions.

2-2-Principle of the correction

The radiances have been simulated in the almucantar using an exact calculation and a truncated one for a total optical thickness τ* of 0.5 at 865 nm and for a solar zenith angle of θ s = 60° ( µ s = cosθ s > 0). In order to underline the effects of the aerosols, the Earth's surface is assumed black and the molecular scattering is neglected. The corresponding exact and truncated radiances, L ex and L tr , respectively, are shown in Figure 4. These quantities are normalized with respect with a solar irradiance equal to π . The scattering angle is defined as where and are unit vectors indicating the sun and viewing directions (see figure A.1 in appendix A), respectively. Figure 5 compares the exact and truncated polarized radiances, L pol ex and L pol tr respectively. The polarized radiance is defined by L pol = + / -Q 2 +U 2 where Q and U are the second and third Stokes parameters, respectively. Note that the polarized vibration is either parallel (positive) or perpendicular (negative) to the scattering plane . The sign of the parameter Q, defined in the scattering plane (i.e. since Q >> U in the scattering plane), is used to sign L pol.

The results show that the approximation of truncation is valid for scattering angles larger 16°. It means that the truncation approximation is valid as long as the light is scattered out of the forward peak. Conversely, the discrepancies observed between the exact and the truncated calculations at small angles (<16°) must correspond to light scattered one time, or more than one time, and that was never scattered out of the forward peak. In order to confirm this hypothesis, we have performed another simulations but only for the radiation scattered in the truncated peak. To do so, we have calculated the radiance, L av , corresponding to the forward phase matrix of the particles (terms p fw (Θ), q fw (Θ) , …) for a scattering optical thickness of τ d * = Aτ * and an absorbing optical thickness of τ a * = (1-A)τ *. It means that the particles single scattering albedo is equal to A. Since the radiance scattered by an element of the atmosphere, with a scattering optical thickness of dτ d , is proportional to dτ d p ex (Θ) = (1-A)dτ d p tr (Θ) + Adτ d p fw (Θ), [START_REF] Lenoble | A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols[END_REF] this latter approach allows to estimate the contribution of the truncated scattering without modifying the transmission effects. Figure 6 compares L ex , L tr , L fw and L tr + L fw whereas Figure 7 compares similar terms for polarized light. The simple addition of radiances L fw and L pol fw to the truncated results perfectly restores the solar aureole and confirms the foregoing hypothesis. The problem is to find an easy way to model the quantities L fw and L pol fw corresponding to these forward scatterings.

2-2 Modeling the correction

To model L fw and L pol fw , it is practical to decompose them based on the number of scatterings occurring in the forward peak along the sun-to-ground path. Let M be an elementary atmospheric layer located at an optical depth τ , where τ is the total optical thickness of the atmosphere; let dτ d be the scattering optical thickness of a truncated aerosol mode within M. Let stand for the sun beam direction and stands for the observation direction, for which the truncation approximation needs a correction. If layer M is illuminated by the direct solar irradiance E s exp(-τ /µ s ), this aerosol mode scatters a primary radiance in a direction , given by

dL 1 (τ, Θ) = (1-A)dτ d p tr (Θ) + Adτ d p fw (Θ)     E s exp(-τ / µ s ) 4πµ v . ( 13 
)
The truncated calculation assimilates p fw (Θ) as a Dirac peak and reintroduces the corresponding radiance in the transmitted solar beam [START_REF] Potter | The Delta Function Approximation in Radiative Transfer Theory[END_REF]. The exact contribution of M, thus eliminated from the radiance reaching the ground, is

dL 1 av (Θ) ≅ Adτ d p fw (Θ) µ v E s 4π exp(-τ / µ s )exp((τ * -τ ) / µ v ). ( 14 
)
Given the very narrow truncated peak, the variations of the air mass can be neglected with . With µ v ≈ µ s , we have

dL 1 av (Θ) ≅ Adτ d p fw (Θ) µ s E s 4π e (-τ * /µ s ) , (15) 
and if we integrate over the atmosphere, the total radiance and polarized radiance for the first order of scattering are thus

L 1 fw (Θ) = Aτ d * p fw (Θ) µ s E s 4π e (-τ * /µ s ) (16) L 1, pol fw (Θ) = Aτ d * q fw (Θ) µ s E s 4π e (-τ * /µ s ) . (17) 
where τ d * is the total scattering optical thickness of the truncated aerosol mode. The polarization direction is perpendicular or parallel to the scattering plane (

) depending on whether q fw (Θ) is positive or negative.

To obtain the second order of scattering, the direct solar irradiance of each layer, E s exp(-τ /µ s ), is replaced by the diffuse irradiance of the first order coming from the upper atmosphere. From the second scattering, the radiation on the incident element dτ d is polarized. To simplify the analysis, L 1 fw (τ, Θ) is assimilated to natural light and the influence of L 1, pol fw (τ, Θ) on dL 2 fw (Θ) and dL 2, pol fw (Θ) is neglected. A more comprehensive analysis is given in appendix B, but it barely affects the results. The contribution of layer M to the radiance of second order that reaches the surface is thus

dL 2 fw (Θ) ≅ Adτ d µ v p fw (Θ 1 )
∫∫

L 1 fw (τ,Θ 2 ) dω 4π       exp((τ * -τ ) / µ v ) (18) 
where , thus, if we replace L 1 fw (τ ) by Eq. ( 16) written for the considered optical depth, it comes

dL 2 fw (Θ) ≅ A 2 τ d dτ d µ s 2 p fw (Θ 1 ) ∫∫ p fw (Θ 2 ) dω 4π       E s 4π e (-τ * /µ s ) . (19) 
Let us note

p (2) fw (Θ) = 1 4π p fw (Θ 1 ) ∫∫ p fw (Θ 2 )dω ( 20 
)
This quantity is a function of Θ and does not depend on τ . The integration of Eq. ( 19), over the atmospheric column, thus gives the total radiance of second order of scattering at ground level:

L 2 fw (Θ) = A 2 τ d * 2 2µ s 2 p (2) fw (Θ) E s 4π e (-τ * /µ s ) . (21) 
To obtain the second order polarized radiance, p fw (Θ 1 ) is replaced by q fw (Θ 1 ) in Eq. ( 18), but the direction of polarization should be taken into account, which slightly modifies the equation. Let and be two incident pencils illuminating dτ d . These two pencils are symmetrical to the plane (

). After merging from dτ d , each pencil generate the same polarized radiance:

(22)
but with different directions of polarization, being parallel or perpendicular to their respective scattering planes (see Figure 1-A in appendix A). Let ϕ be the angle between the scattering planes of the pencils, or , and the plane ( ). If we now express these two polarized components in the same coordinate system, , linked to the plane ( ), by applying to their reference axes a rotation of angles ϕ and -ϕ , respectively, their addition only yields to one resultant . This polarized radiance is also either parallel or perpendicular to , depending on the sign of q. If we now note:

q (2) fw (Θ) = 1 4π p fw (Θ 1 ) ∫∫ q fw (Θ 2 )cos(2ϕ)dω , (23) 
we easily see that the polarized radiation of second order at ground level is

L 2, pol fw (Θ) = A 2 τ d * 2 2µ s 2 q (2) fw (Θ) E s 4π e (-τ * /µ s ) .
(24

)
Quantities p (2) fw (Θ) and q (2) fw (Θ) are the phase function for secondary scattering and the associated polarized phase function (assuming a natural incident light). If we replace p fw (Θ) and q fw (Θ) , in Eqs. ( 20) and ( 23), by their usual developments in Legendre polynomials:

p fw (Θ) = β l fw P l (cosΘ) l=0 ∑
, and

q fw (Θ) = γ l fw P 2 l (cosΘ) l=2 ∑ (25) 
(and if we use the Legendre polynomial addition theorem in order to express p fw (Θ 1 ) as a function of angles Θ and Θ 2 ), we easily show (see appendix A) that p (2) fw (Θ) and q (2) fw (Θ) are respectively developed under the same form as p fw (Θ) and q fw (Θ) with:

p (2) fw (Θ) = β (2),l fw P l (cosΘ) l=0 ∑ where β (2),l fw = (β l fw ) 2 / (2l +1) (26) q (2) fw (Θ) = γ (2),l fw l=2 ∑ P 2 l (cosΘ) where γ (2),l fw = β l fw γ l fw / (2l +1) . ( 27 
)
The calculation is immediately generalized to the next scattering orders and we can easily establish that ground-level radiance scattered n times in the forward peak is written as follows:

L n fw (Θ) = 1 n! Aτ d * µ s       n p (n) fw (Θ) E s 4π e (-τ * /µ s ) , L n, pol fw (Θ) = 1 n! Aτ d * µ s       n q (n) fw (Θ) E s 4π e (-τ * /µ s ) (28) with p (n) fw (Θ) = β (n),l fw P l (cosΘ) l=0 ∑ where β (n),l fw = (β l fw ) n / (2l +1) n-1 (29) q (n) fw (Θ) = γ l,(n) fw l=2 ∑ P 2 l (cosΘ) where γ (n),l fw = (β l fw ) n-1 γ l fw / (2l +1) n-1 (30)
If we take into account the influence of polarized light of n-1 order, L n-1, pol fw (Θ), for the calculation of the terms of order n, it is more precise to calculate the coefficients γ (n),l fw using the recurrence method following the relations established in appendix B, i.e. where the terms α l av (deduced from the terms P 22 fw (Θ) and P 33 fw (Θ) of the phase matrix according to the relations defined in Lenoble et al [START_REF] Lenoble | A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols[END_REF]) corresponds to the influence of the polarized light.

Finally, we will correct the truncated calculation with

L cor (Θ) = L tr (Θ) + L n fw (Θ) n=1 ND ∑ and L pol cor (Θ) = L pol tr (Θ) + L n, pol fw (Θ) n=1 ND ∑ (32) 
Figures 8 and9 show the functions p (n) fw (Θ) and q (n) fw (Θ) for the considered aerosol model. For optical thicknesses τ * varying from 0.1 to 2.0, the result generally converges for only 3 orders of scattering in Eq. (32) and gives the same agreement with the exact quantities L tr + L fw and L pol tr + L pol fw , as shown in Figures 4 and5 (black curves).

In Figure 9, we compare the polarized phase functions obtained with the more precise calculation given in (31), with the ones calculated with the approximated formulae given in Eq. ( 30). The curves in solid lines correspond to Eq. ( 31), including the coefficients γ (n),l fw , whereas the dotted lines correspond to Eq. ( 30) where these coefficients are put to zero. We can see that, from the second order of scattering, it is not justified anymore to neglect the influence of polarized light, L n-1, pol fw (Θ), on L n, pol fw (Θ). However, in the end, both calculations lead to almost the same polarized radiance at ground level due to the low weight of the terms of order of scattering higher than 1, in front of L 1, pol fw (Θ). The more precise calculation in Eq. ( 31) is only useful for large spherical particles and in case when the optical thickness increases, as seen on Figure 10, for large particles ( m = 1.33, r mod = 9.0µm, σ = 0.20 ) with an optical thickness τ * =1.00 at 865 nm.

We also performed additional calculations for non-spherical dust particles based on spheroid models [START_REF] Dubovik | Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust[END_REF]. Calculations were performed for the atmospheric conditions and geometries considered in figures 4 and 5 and for a realistic mineral dust model ( m =1.53, r mod = 0.7µm, σ = 0.7). We found that the proposed correction is as accurate for non-spherical aerosols as for spherical aerosols (results not shown).

Only minor biases still remain for the downwelling radiation and its polarized component. It is observed over the 40-60° scattering angle range when the optical thickness becomes large for any type of particles, whatever their size. Figure 11 shows exact and truncated polarized radiances computed for the marine aerosol model ( m =1.37, r mod = 0.75µm, σ = 0.70 ) and for an optical thickness of τ* = 2.00 at 865 nm. We also reported, in Figure 11, the difference in the degree of linear polarization between accurate and truncated results. The absolute differences between exact and truncated polarized radiance reach a maximal value of 2.2 × 10 -4 for this case. However, maximal errors do not exceed 0.001 for the degree of linear polarization, which is a sufficient accuracy for most applications based on polarimetric passive measurements [START_REF] Cairns | Polarimetric Remote Sensing of Aerosols over Land Surfaces[END_REF].

3 Modeling the radiance reflected back to space.

3-1 Analysis of biases.

In case of simulation of spaceborne observations, for particles that exhibits bows, another default of the truncated calculation is to slightly overestimate the bows' amplitudes [10,[START_REF] Compiègne | The phase matrix truncation impact on polarized radiance[END_REF]. Let us consider, for example, a microphysical model of particles representative of liquid water droplets, with a rather narrow particles size distribution ( m =1.33, r mod = 5.0µm, σ = 0.04). Figures 12 and13 show the phase functions for this model computed at a wavelength of 865 nm. For a layer of these particles with τ * = 2.0 above black ground (molecular scattering is neglected), we have simulated the radiance reflected back into space using an exact and a truncated calculation. The sun zenithal angle θ s is equal to 40° and the field of views correspond to a scan performed in the principal plane (i.e. the plane that contains the sun). Figures 14 and15 compare results for total and polarized radiances, for scattering angles varying from 110° to 180°, and clearly show how the truncated calculation overestimates the amplitude of the narrow bows. On Figures 14 and15, we also reported exact results for which we subtracted the contribution of the primary scattering (in green). One can note that, for the second order scattering and for the scattering of higher orders, the bows have almost disappeared. Therefore, the biases due to truncation mainly come from the treatment of the primary scattering.

If dτ d is the scattering optical thickness of an aerosol mode in an atmospheric layer M, as defined in paragraph 2-2, its contribution to the primary radiance, in the exact calculation and in the truncated one, is, respectively ( µ s and µ v being positive) (33)

, ( 34 
)
where τ tr is the truncated optical thickness, τ tr = τ -Aτ d . Since, outside of the truncated peak, (1-A)dτ d p tr (Θ) = dτ d p ecr (Θ) = dτ d p ex (Θ), the biases necessarily come from the transmission terms, lower in Eq. ( 33) than in Eq. (34). Indeed, by assimilating a part of the forward scattering light to purely transmitted light, the truncation approximation overestimates the contribution of the primary scattering, which preserves the details of the scattering functions at the expense of scattering events of higher orders in which these details are smoothed.

3-2 Correcting the transmissions 3-2-1 The case of the incident path

Let us assume that only one aerosol mode is truncated. Let us first consider the transmission of the solar beam from the surface to M. In principle, the overestimation of the solar irradiance received by the aerosol mode in the truncated calculation compensates the lack of its diffuse illumination by the forward scattered light, previously discussed. By limiting the decomposition of this radiance to the first order, the calculation is correct if, in every scattering direction , .

(

) 35 
and for polarized light

. ( 36 
)
with the term cos(2ϕ) introduced for same reasons as in Eq. ( 23). Given the form in Eq. ( 16) of the forward scattering light, we must have

, ( 37 
) and . ( 38 
)
We have introduced here the phase functions for secondary scattering defined as, . (42)

Identities in Eqs. ( 37) and ( 38) can be justified if p tr (Θ) ≅ p fw.tr (Θ) and q tr (Θ) ≅ q fw.tr (Θ) but Figures 16 and17 clearly show that the sharp angular features of p tr (Θ) and q tr (Θ) are considerably smoothed in p fw.tr (Θ) and q fw.tr (Θ), and that this approximation is then not justified. To take this effect into account, instead of writing the radiance coming out of M as ( 43)

we can write it based on Eq. ( 37), as follows (44)

where we adjust K s to respect the energetic balance in order make the correction consistent with the higher scattering orders of the truncated calculation in Eq. ( 43), i.e., by integrating Eqs. ( 43) and ( 44) over the space and compare them, one has to put

K s = exp(-τ tr /µ s ) -exp(-τ /µ s ). ( 45 
)
The radiance scattered by M, at the output of M, is thus

(46)
The transmission from M to the Top Of the Atmosphere (TOA) must be transformed in order to respect the reciprocity principle. It is expected that the contribution of M to the primary radiance reflected back into space should be written with M =1/µ s +1/µ v , as (47) and a similar expression stands for , with q instead of p.

Similarly, let us consider the transmission exp(-τ tr /µ v ) of a pencil dL 1 tr (τ,Θ) from the scattering layer to TOA.

When using truncation, the increased transmission exp(-τ tr /µ v ) of the radiance L tr (k → ) in some propagation direction comes from disregarding its losses by scatterings in the forward truncated peak. That is again correct as long as L tr (k

→

)is a smooth function of (k

→

). Then, one can easily see in Figure 18 that losses out from (k → ) are compensated by similar forward scatterings, in direction (k → ), from radiances L tr (k → *) propagating in nearby directions within Ω fw (i.e. Ω fw is the solid angle that characterizes the cone of truncation). However, in the case of signatures with sharp angular features, the compensation is imperfect. We will therefore apply to L tr (k → ) the exact transmission, exp(-τ /µ v ), increased of the gained by scatterings from adjacent pencils.

Let us now consider the transfer of primary photons only, scattered by an aerosol mode, after emerging from the optically thin layer M of optical thickness dτ d . Instead of the standard transmission , (48) the energetic balance should be written as (49) where the double integral reveals the function for secondary scattering, previously introduced with p tr. fw ≅ p fw.tr .

Note that the angular dependence of is assumed here to be independent on τ by neglecting the air mass variations in the truncation peak. As above, K v must be adjusted in order to keep the same energetic balance as in the standard calculation in Eq. (48). Since is normalized, it comes after integration of Eqs. ( 48) and (49):

K v = exp(-τ tr / µ v ) -exp(-τ / µ v ) (50) 
By reporting in Eq. ( 49) the expression given in Eq. ( 46) of , with p fw.tr = p tr. fw , it comes

dL 1 tr (0, Θ) = (1-A)dτ d E s 4πµ v p tr (Θ)e -τ M + p fw.tr (Θ)(e -τ /µ s K v + e -τ /µ v K s ) + p fw.tr. fw (Θ)K s K v     (51) 
and a similar expression stands for with q instead of p, noting that q fw.tr ≈ q tr. fw . Considering the low weight of the term p fw.tr. fw (Θ) in Eq. (51), equations (47) and (51) give similar results; assuming that p fw.tr. fw (Θ) ≈ p fw.tr (Θ)in a first approximation (see Figure 16), the expression given in Eq. (51) easily simplifies to Eq. (47).

Finally, the modified expression given for the primary radiance of an elementary layer (see Eq. 51 or 47), will be integrated over the atmosphere and will be used to replace the primary radiance computed using the standard equation (Eq. 33). This will allow to correct the output radiance computed in fast way by the radiative transfer code using the truncation approximation. Figures 14 and15 (black curves) show that the biases in the bows are indeed greatly attenuated in the corrected truncated radiances when using the modified expression of the primary radiance instead of the standard one.

4-Conclusion.

The truncation procedure is an approximation typically used in plane-parallel radiative transfer codes, which consists in removing the forward peak observed in the phase function for large particles or droplets, due to diffraction. This approximation provides faster calculations but introduces biases in both the total and polarized radiances modelled at the ground-based level and also at the top of the atmosphere. In this study, we recalled the principle of the truncation procedure, explained the origins of its main flows and presented a new method to correct them. In a first part, we have examined the case of ground-level measurements. In order to restore the aureole, we added to truncated calculations an approximate expression of the successive scattering contribution in the truncated forward peak. Then, we examined the case of satellite measurements. We reduced the biases found for narrow angular signatures simply by changing the expression of the primary scattering. In both cases, the correction was generalized to polarized light. We shown, that for spherical aerosols and cloud droplets, most of the biases observed in narrow angular interval are eliminated for the radiances and polarized radiances simulated at the satellite level.

Only minor biases remain for the downwelling radiation and its polarized component when the optical thickness becomes large (>2. at 865 nm). Then, maximal errors however do not exceed 0.001 for the degree of linear polarization, which is a sufficient accuracy for most applications based on polarimetric passive measurements [START_REF] Cairns | Polarimetric Remote Sensing of Aerosols over Land Surfaces[END_REF]. The analysis of the problem is based on the method of successive orders of scattering [START_REF] Lenoble | A successive order of scattering code for solving the vector equation of transfer in the earths atmosphere with aerosols[END_REF], but the suggested corrections are applicable with any other resolution method (e.g. adding-doubling, discrete ordinate), as it only requires to know the phase matrix of particles.

i.e (B3) with r fw (Θ") = P 22 fw (Θ") and s fw (Θ") = P 33 fw (Θ").

Then, in order to add the polarized lights of the incoherent pencils coming from different dω', we have to refer them to common axes. Let us choose axes linked to the scattering plane . Applying to Stokes' vector (B3) the rotation matrix corresponding to the rotation angle leads to transformed Stokes' vector where dI 2 av (Θ) = C' dω' p fw (Θ") p fw (Θ') + q fw (Θ")q fw (Θ') cos(2χ ) ( )

dU 2 fw (Θ) = C 'dω '
q fw (Θ")p fw (Θ')sin(2ϕ) + r fw (Θ")q fw (Θ')cos(2χ )sin(2ϕ ) +s fw (Θ")q fw (Θ')sin(2χ )cos(2ϕ)

        (B4)
In dI 2 fw (Θ) the second term is negligible ( q fw (Θ ) 2 << p fw (Θ ) 2 ) and the previous expression of p (2) fw (Θ) is sufficient As dU 2 fw (Θ) is antisymmetric with respect to ϕ and χ , dU 2 fw (Θ) vanishes, leading as expected to polarization parallel or perpendicular to .

Finally, with dω'= dϕd(cosΘ'), the polarized phase function q (2)

fw (Θ)is now (B5)
The first term in (B5) is the polarized light due to the total illumination of the particles. It is the largest part of q (2) fw (Θ), and gives, as seen in Annex A

I 1 = β l fw γ l fw ( 2l 
+1) P 2 l (cos Θ) l =2 ∑ . ( B6 
)
In some cases, the two last terms in the integral in (B5) give not negligible contribution. They give ( m =1.37, r mod = 0.75µm, σ = 0.7) in f u n c t io n o f t h e s c a t t e r in g a n g l e . ( m =1.37, r mod = 0.75µm, σ = 0.7) in f u n c t io n o f t h e s c a t t e r in g a n g l e . 

γ ( 1

 1 ),l fw = γ l fw γ (2),l fw = β (1),l fw .γ l fw +γ (1),l fw .α l fw ( ) / (2l +1)

γ

  (n),l fw = β (n-1),l fw .γ l fw +γ (n-1),l fw .α l fw ( ) / (2l +1)
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 46789 Fig u r e 4. Do w n w a r d r a d ia n c e s s imu l a t e d a t 865 n m in t h e a l mu c a n t a r f o r a ma r in e a e r o s o l mo d e l ( m =1.37, r mod = 0.75µm, σ = 0.7) a n d f o r a n a e r o s o l o pt ic a l t h ic k n e s s o f 0.5 a t 865 n m in f u n c t io n o f t h e s c a t t e r in g a n g l e . Ex a c t (b l u e ), t r u n c a t e d w it h o u t c o r r e c t io n (r e d ) a n d t r u n c a t e d c a l c u l a t io n s w it h c o r r e c t io n (b l a c k ).
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 10 Fig u r e 10. Do w n w a r d po l a r iz e d r a d ia n c e s s imu l a t e d a t 865 n m in t h e a l mu c a n t a r f o r a l a r g e a e r o s o l mo d e l ( m =1.33, r mod = 9.00µm, σ = 0.2 ) a n d f o r a n a e r o s o l o pt ic a l t h ic k n e s s o f 1.0 a t 865 n m. Ex a c t po l a r iz e d r a d ia n c e (bl u e ), t r u n c a t e d po l a r iz ed r a d ia n c e w it h c o r r e c t io n (r e d ) a n d t r u n c a t e d po l a r iz e d r a d ia n c e w it h c o r r e c t io n (g r e e n ) bu t w h e n n e g l e c t in g t h e in f l u e n c e o f po l a r iz e d l ig h t (i.e . α l =0 in e q u a t io n (31)).
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 111213 Fig u r e 11. Do w n w a r d po l a r iz e d r a d ia n c e s s imu l a t e d a t 865 n m a n d d if f e r e n c e in t h e d e g r e e o f l in e a r po l a r iz a t io n be t w e e n e x a c t a n d t r u n c a t e d r e s u l t s (ma g e n t a ) in t h e a l mu c a n t a r f o r a ma r in e a e r o s o l mo d e l ( m =1.37, r mod = 0.75µm, σ = 0.7) a n d f o r a n a e r o s o l o pt ic a l t h ic k n e s s o f 2.0 a t 865 n m. Ex a c t po l a r iz e d r a d ia n c e (bl u e ), t r u n c a t e d po l a r iz e d r a d ia n c e w it h c o r r e c t io n (r e d ) a n d d if f e r e n c e in t h e d e g r e e o f l in e a r po l a r iz a t io n b e t w e e n e x a c t a n d t r u n c a t e d r e s u l t s (ma g e n t a ).

We consider scatterings in the truncated part of the forward peak. Let p (2) fw (Θ)dω / 4π stand for the probability that a part of the solar light, incident in direction firstly scattered in any direction ( within dω' , restart in direction ( ) after a second scattering. It comes

and the associated function for the polarized light

where Θ is the scattering angle for primary scattering in direction .

In the upper spherical coordinates, the Legendre polynomial addition theorem gives Reporting (A4) in (A1) and (A2), with dω'= dϕd(cos Θ') and unchanged with ϕ, all Fourier terms, except s=0, vanish in the integration over ϕ, except the term s=0 in (A1) and the term s=2 in A(2), leading to and so that finally

and

For higher scattering orders, substituting p (2) fw (Θ') to p fw (Θ') in eq.( A1) or (A2), clearly leads to similar expressions for p (n ) fw (Θ) and q (n) fw (Θ), respectively with coefficients (β l fw ) n /(2l +1) n-1 , and

Appendix B

Taking into account polarization, primary scattering in direction when refered to axes linked to the second scattering plane , accounting for the rotation angle between the two planes. We neglect the small air mass effects within the forward peak and assume that C is constant. In axes , scattering of a pencil gives in direction , apart from some convenient factor C' (B7)

Let us here consider the associated Legendre functions P s,±2 l (cos Θ'), as described in Lenoble et al [12]. They provide addition formulas for P 2 l (cosΘ') in the form

so that, with q fw (Θ') developed into series of P 2 l (cosΘ'), it comes after rearrangement

By reporting these expression in eq.(B7), integration over the azimuth is immediate, with the only remaining term, s=2, which yields or (B10)

By developing now r av (Θ") ± s av (Θ") in series of P s,±2 l (cosΘ") according to r fw (Θ") + s fw (Θ") = ς l=2 ∑ l fw P 2,2 l (cosΘ") and r fw (Θ") -s fw (Θ") = η l fw P 2,-2 l (cosΘ") l=2 ∑ straightforward integration over Θ" in eq.(B10) gives ) with . Finally, the improved expression of q (2) fw (Θ) is (B12)

The same analysis may be conducted for more than 2 times scattered terms, leading again to