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HIGHER ORDER S?-DIFFERENTIABILITY AND APPLICATION TO
KOPLIENKO TRACE FORMULA

CLEMENT COINE, CHRISTIAN LE MERDY, ANNA SKRIPKA, AND FEDOR SUKOCHEV

ABSTRACT. Let A be a selfadjoint operator in a separable Hilbert space, K a selfadjoint
Hilbert-Schmidt operator, and f € C™(R). We establish that ¢(t) = f(A+tK) — f(A) is
n-times continuously differentiable on R in the Hilbert-Schmidt norm, provided either A is
bounded or the derivatives f(), i = 1,...,n, are bounded. This substantially extends the
results of [2] on higher order differentiability of ¢ in the Hilbert-Schmidt norm for f in a
certain Wiener class. As an application of the second order S2-differentiability, we extend
the Koplienko trace formula from the Besov class B2 ;(R) [19] to functions f for which the
divided difference f[?! admits a certain Hilbert space factorization.

1. INTRODUCTION

Let H be a separable Hilbert space and let S'(H), S?*(H), and B(H) denote respectively
the trace class, the Hilbert-Schmidt class, and the space of bounded linear operators on H.
Let A be a possibly unbounded selfadjoint operator densely defined in H and let K be a
selfadjoint operator in S?(H). Let f : R — C be a Lipschitz function and let ¢ denote the
mapping given by

(1) p:Rot— f(A+tK) — f(A).

In this paper we address higher order continuous S?(H)-differentiability of ¢ and its ap-
plication in perturbation theory. The notion of differentiability we are dealing with is the
classical definition of differentiability for Banach space valued functions defined on an open
interval of R.

Study of differentiability of operator functions was initiated in [9] and has been motivated
by problems in perturbation theory. In [9], existence of the nth order derivative @™ of the
operator valued function given by (1) was established in the operator norm for bounded A
and f € C?"(R). Sharp sufficient conditions for existence of the first order derivative ¢’
were established in [18] and [10, 13] in the operator norm and S?(H)-norm, respectively. In
particular, the condition “f € C'(R) and f’ is bounded” is insufficient for existence of ¢ in
the operator norm and sufficient for existence of ¢’ in the S*(H)-norm. Existence of the nth
order derivative ¢(™ was established in the operator norm in [20] for f in the intersection
of the Besov classes Bl | (R) N B7,(R) and in the symmetric operator ideal norm in [2] for
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f in the Wiener class W, 1(R). In [2, 9, 10, 13, 18, 20], the operator derivative ¢(™ was
represented as a certain multiple operator integral.

In our first main result (Theorem 4.1) we substantially enlarge the set of f for which the
higher order derivative o™ exists. We establish that ¢ is n-times continuously differentiable
in S2(H), provided f € C™(R) and either A is bounded or @, i = 1,..., n, are bounded.
We derive the representation

1
el (t) = [AATC AR PN (KK, k=1,

for derivatives ©*) via multiple operator integrals defined in [7], where fI* is the kth order
divided difference of f. The latter representation for o*) plays a key role in proving existence
of @1 and in the study of the operator Taylor remainder

1

3
I

f(A+K) = f(A) - p(0) = [DAHEA-A(fEN] (K, .. K),

Eond
I
I
| =

as described below.

One of the fundamental results in perturbation theory is the existence of the Lifshits-Krein
spectral shift function ¢ € L'(R) uniquely determined by self-adjoint operators A and K
with K € 8'(H) and satisfying the trace formula

2) Tr (f(A+ K) — f(A) = / e dt

for every f € CY(R) N LY(R) with f/ € LY(R) [15, 16]. We refer to [26] for applications of
the spectral shift function in mathematical physics and to [25] and references cited therein
for generalizations of £. In [18], the trace formula (2) was extended to f in the Besov class
Bl (R) and later in [21], to the class of differentiable functions f with bounded f’ such that
there exist a Hilbert space H and bounded functions «,  : R — H (or a separable Hilbert
space H and bounded weakly continuous functions «, 5 : R — H) satisfying

(3) fW(s,1) = (als), B(1)), V(s.t) € R%.

According to [I, Theorems 2.2.2, 2.2.3, 3.1.10, 3.3.6], the differentiability of f and either of
the above factorization properties are equivalent to f being S'-operator Lipschitz.

It was proved in [14] that there exists a function n € L'(R) uniquely determined by A and
K € 82(H), called the Koplienko spectral shift function associated to (A, K), such that

() T (4 K) = (A) = ZHA+K)a) = [ £On(o)at,

d
for rational functions f with nonpositive degree and poles off R, where 7 J(A+tK)p—o is

evaluated in the operator norm. In [19], the trace formula (4) was extended to functions
in the intersection of Besov classes Bl | (R) N B%,(R). A modification of this formula also
holds for f € B%,(R) (see Remark 5.5 for the precise formulation).
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In our second main result (Theorem 5.1), we prove that

(5) Tr ([PAHRAA(F2)] (K, K)) = / Fr(En(t) dt,

for every f € C?(R) with bounded f” and such that there exist a separable Hilbert space H
and two bounded Borel functions a,b : R? — H satisfying

(6) (s, t,u) = (a(s,t),b(t,u)), V(s t,u) € R

If, in addition, either f’ is bounded or A is bounded, we prove that (4) holds with the
d

derivative pr f(A+1tK);— evaluated in the S?(H)-norm. The factorization property (6) can

be regarded as a natural analogue of (3) for the second order divided difference. We show
in Proposition 5.4 that any f € B2 ,(R) satisfies (6) and in Proposition 5.6 that f € C*(R)

with f2l in the dual space (¢4 <§h§ 0k (% (%)%, where (%) is the Haagerup tensor product, also
satisfies (6).

The key technical tool in derivation of our main results is a multiple operator integral
[AvA24n($) defined on the Cartesian product S?(H) x ... x S}(H) for every bounded
measurable symbol ¢. New algebraic and analytic properties of ['1:42-4n($) essential
for the main results are obtained in Sections 2 and 3. To prove existence and conti-
nuity of higher order derivatives ¢(™ in the S?(H)-norm in Section 4, we take an ap-
proach of approximating symbols of multiple operator integrals and applying w*-continuity
of [AvAzeAn o [0 (TT Ay)) — B1(S*(H) x S*(H) x --- x S2(H),S*(H)) stated in
Proposition 2.1 and the subsequent paragraph, where A4, is a scalar-valued spectral measure
of A;. This is different from the approaches of [10, 13] resting on approximation of operators
Ay, Ay, ..., Ay used to prove existence of ¢’ and from the approaches [2, 20] used to prove
existence of o™ for smaller sets of functions f. To establish the trace formula (5) and its
particular case (4) in Section 5, we need ¢” to attain its values in S'(H) and the function
Tr (¢"(t)) to be continuous on [0, 1]. This imposes the Hilbert space factorization restriction
(6) on the functions f for which we prove (5).

We use the following notations. For any m € N, we let C'(R™) be the vector space of
all continuous functions from R™ into C, we let C,(R™) be the subspace of all bounded
continuous functions, and we let Co(R™) be the subspace of all continuous functions van-
ishing at infinity. Further, for any p € N we let C?(R™) be the vector space of all p-times
differentiable functions from R™ into C. For A = R or C, we denote by Bor(.A) the space
of bounded Borel functions from A into C. We denote the space of p-times differentiable
functions ¢ : R — S?(H) with continuous pth derivative ¢ : R — S?(H) by CP(R, S?(H)).

2. MULTIPLE OPERATOR INTEGRALS

In this section, we recall a multiple operator integral introduced in [17] and developed in
[7] and derive its key algebraic properties that underline our main results. We note that
there are several other different constructions of multiple operator integrals [2, 3, 9, 20, 23],
but they do not suit the generality of this paper because they are applicable to smaller sets
of symbols. Comparison of different approaches to multiple operator integrals will be done
in a special publication dedicated to the history of the subject.
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Let A be a (possibly unbounded) normal operator densely defined in ‘H with spectrum
o(A). Let Aa be a scalar-valued spectral measure for A. It means that A4 is a positive
finite measure on the Borel subsets of o(A) such that A4 and E4, the spectral measure of
A, have the same sets of measure zero. We refer to [8, Section 15] and [7, Section 2.1] for
the existence and the construction of such measure.

The Borel functional calculus for A takes any bounded Borel function f : 0(A) — C to
the bounded operator

ray= [ s aste
This operator only depends on the class of f in L>(\y).

Let n € N,n > 2 and let Ay, As,..., A, be normal operators densely defined in H
with scalar-valued spectral measures A4,,...,Aa,. We let B, {(S*(H) x S*(H) x -+ x
S?(H),S8*(H)) be the space of bounded (n — 1)-linear mappings defined on the product of
n — 1 copies of S?(H) valued in S?(H). This is a dual space, and a predual is given by

SXH) & - @ SEH),

the projective tensor product of n copies of S*(H). See [7, Section 3.1] for more information
in the case n = 3.
Define a linear mapping

(7) [FAl,AQ ..... An(fl R ® fn)] (X1,..., Xp1)
= f1(A1) X1 f2(A2) - froa (An1) X1 fu(An).
The following is proved in [7, Theorem 5 and Proposition 6].

Az,

Proposition 2.1. ' An extends to a unique w*-continuous contraction

[A1A2An . oo (ﬁ )\Ai) — B, 1(S*(H) x S*(H) x -+ x S*(H),S*(H)).

The w*-continuity of 14247 means that if a net (¢;)ier in L (]I, A\a,) converges to
¢ € L= (I, \a,) in the w*-topology, then for any Xi,..., X, 1 € S*(H), the net
([PA1,A2 ..... An(¢2)] (Xh o 7X”—1))Z'e[
converges to [[A1A2-4An(g)] (X7, ..., X,_1) weakly in S*(H).

extended in Proposition 2.1 is called a multiple operator integral associated to Ay, A, ... A,

and ¢.

If n = 2, then the transformation I'4142(¢) coincides with the double operator integral
defined in [3, 4, 5].

In the case n = 3, the description of the elements ¢ such that I''142:43 () maps S?(H) x
S?(H) into S'(H) was settled in [7, Theorem 23]. We recall this result for a future use.
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Theorem 2.3. Let A, B and C be normal operators densely defined in H and let ¢ €
L>®(Aa X Ap X A¢). The following are equivalent:

(i) TAPC(9) € By(S?(H) x S*(H), S'(H)).
(i) There exist a separable Hilbert space H and two functions
a€ L>®(Ay x A\g; H) and b€ L>®(Ap X A¢; H)
such that
P(t1,ta,t3) = (a(t1, t2), b(t2, t3))
for a.e. (t1,ta,t3) € 0(A) x o(B) x o(C).
In this case,
(8) ITA5C(): S*(H) x SA(H) — S'(H)|| = inf{]lalw 0]},
where the infimum runs over all pairs (a,b) satisfying (ii).
In the sequel, we will work with densely defined selfadjoint operators Ay, As,..., A,,n €

N,n > 2. If ¢ : R* = C is a bounded Borel function, let ¢ be the class of the restriction
¢\U(A1)XU(A2)X XO.(An) in L>® (H?:1 A4,). Then, we will denote by ['41:42-4n(4)) the multiple

We deduce from Theorem 2. 3 that if f : R — C is a C?-function with bounded f” such
that f1? satisfies the property (6), then for any selfadjoint operators A, B,C on a separable
Hilbert space H, the class of f|[3](A)><O'(B)><U(C) belongs to L>®(A4 X A X A¢) and the triple
operator integral T2 ( f121) maps S?(H) x S?(H) into S*(H). Hence, for any X, Y € S*(H),
the trace

Tr ([P4PC(FH)] (X, Y))
is a well defined element of C.
For the rest of this section, we fix a bounded Borel function ¢ : R* — C satisfying the

factorization property (6), that is, we assume that there exist a separable Hilbert space H
and two bounded Borel functions a, b : R? — H such that

(9) b(s,t,u) = {a(s,t),b(t,u)), V(s t,u) € R

Let (e,), be a Hilbertian basis of H. For every n € N, let a,, b, : R? — C be the bounded
Borel functions defined by

(10) a, = {(a,€,) and b, = (€,,b) .
Thus,

stu Zanst

The following decomposition is a consequence of the proof of [7, Theorem 23].

Proposition 2.4. Let H be a separable Hilbert space and let Ay, As, Az be selfadjoint oper-
ators densely defined in H. Then, for ¢ satisfying (9),

(11) [LAA2A(G)] (X,Y) = Y T4 (a,) ()T (b,) ()
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for any XY € S*(H), where the series is absolutely convergent in S'(H) and a,,b, are
defined in (10). Moreover,

(12) | [T44243 ()] (X, V) < Hlalloo1b]lso [ X Il2][Y 2,
where
lalloe = sup |la(s, )]z and  [|b]lc = sup |[[bt,u)|n.
(s,t)ER2 (t,u)€R2

The following representation for the trace of a triple operator integral is a crucial tool in
derivation of our second main result.

Proposition 2.5. For ¢ satisfying (9), let ¢ : R* — C be defined by
W(s,t) = o(s,t,s).
Let A and B be selfadjoint operators densely defined in H. Then, for any X,Y € S*(H),
Tr ([LP4(¢)] (X, Y)) = Tr ([P ()] (X)Y).
To prove Proposition 2.5, we need the following two lemmas.

Lemma 2.6. Let A, B be selfadjoint operators densely defined in H and let u,v : R* — C
be two bounded Borel functions. Then, for any X,Y € S*(H),

(13) Tr (D42 (w) (X)TPA(0) (V) = Tr ([T (ud)] (X)Y)
where 0(s,t) = v(t, s).
Proof. Assume first that u = u; ® ug and v = v; ® vy where uy, us, vy, vy € Bor(R). In this
case, U = vy ® v7 and ul = uivy ® usvy. We have
[T45(w)] (X) = ur(A)Xuy(B) and  [TP4(0)] (V) = v1(B)Yva(A).
Then
Tr (T4 (u) (X)PP(0) (V) = T (ur (A) Xuz(B)oi (B)Y va(A))
= Tr (v2(A)uy (A) Xua(B)vi(B)Y)
=Tr ([P (ud)] (X)Y).

Hence, the equality (13) is proved in this particular case and, by linearity, it holds true
whenever u,v € Bor(R) ® Bor(R).
In the general case, there exist two nets (u;); and (v;); in Bor(R) ® Bor(R) converging to
u and v for the w*-topologies of L>(A4 X Ag) and L>(Ap X A4). The previous part implies
that for all 7 and j,
T (P2 () (X)TPA () (V) = T ([T42(y)] (X)Y)

'8 implies that

Fix j. Since (u;0;); w*-converges to u;0, the w*-continuity of
HmTr ([0 (u0;)] (X)Y) = Tr ([P (w0)] (X)Y).
Similarly, the w*-convergence of (v;); to v implies that

lim Tr (T4 () (X)T 2 (03) (V) = Tr (T () (X)T2 4 (0) (V)
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Hence, for all j,
Tr ([T (u;0)] (X)Y) = Tr (D (uy) (X)TPA(0)(Y)).
Taking the limit on j in this equality and using w*-continuity as above gives
Tr ([M42 ()] (X)) = Tr (D45 () (X)DPA@)(Y)),
which is the desired equality. U
Lemma 2.7. For ¢ satisfying (9), let 1 : R?* — C be defined by

$(s,t) = B(s.,5).
Let A, B be selfadjoint operators densely defined in H. Then, for any X € S*(H), the series

(14) i [FA’B (ané;ﬂ (X)

converges weakly to TP ()] (X) in S*(H), where bu(t, 1) = by (u, t).
Proof. We set

¢n = Z akl;;c-
k=0

n

T2 ()] (X) = D [T4P(abe)] (X).

k=0

Then we have

By the proof of [7, Theorem 23],
w* — lim ¥, =

n—-+o0o

in the w*-topology of L>®(A4 x Ag). By Proposition 2.1, I'*® is w*-continuous, so we have

T45(,)] (X) — [T42()] (X)

weakly in S2(H). O
Proof of Proposition 2.5. We have, by (11),
PAPA] (X, 1) = 3 T8 (a,) (X)TPAG,)(V).
By Lemma 2.7, -
(15 2] 00 = 3 [0 (o)) 06)

where the series converges for the weak topology of S*(H).
By continuity of Tr on S'(H), we get

Tr ([T4P4(9)] (X,Y)) =) Tr (T4 (a,)(X)TP4(b,) (V) .
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By Lemma 2.6 and (15), we obtain

Tr ([T454(g)] (X,Y)) = iTr <[FA’B (mﬂ)] (X)Y)

n=1

3. APPROXIMATION IN MULTIPLE OPERATOR INTEGRALS

In this section, we establish an approximation property for multiple operator integrals
that will play a key role in the proofs of our main results.

Let A be a selfadjoint operator densely defined in H. We say that a sequence (A4;); of
selfadjoint operators is resolvent strongly convergent to A if for any z € C\R, (z —A;)"' —
(z — A)~! in the strong operator topology (SOT). According to [24, Theorem 8.20], this is
equivalent to

(16) VieG(R),  f(4))
Proposition 3.1. Letn € N, Ay,..., A, be selfadjoint operators densely defined in H and
for all 1 < i < n, let (A])jen be a sequence of selfadjoint operators densely in H resolvent
strongly convergent to A;. Then for any ¢ € Cy(R™) and for any Ky, ..., K, 1 € S*(H),

A7) i [Pt G) (K K = TR 0) (K K)

J—r+oo

591 f(A) when j — oo.

= 0.
2

space of finite rank operators is dense in S*(H) and ||I';|| < 1 for any j > 1, it suffices
to prove (17) in the case when Kj,..., K, ; are finite rank operators. By linearity, we
can further assume they are rank one operators. Thus from now on we assume that for all
1<i1<n—-1, o
K; =h; ® h;
with hy, h} € H, where for all 1 <i <n — 1, h; ® h is the operator defined for all h € H by
(hi @ Bi)h = (h, hi) I
Assume first that ¢ = u1 ® - - - ® u,, with u; € Cy(R) for all 7. In this case,

Ti(0) (K, .., K1) = w (A (R @ By) - (R @ Bl )u, (A7)

- (1:[ (ur(AD)R,, hk1>> U (A7) (hn1) @ ui (A7) (R)).

k=2
By the assumption and (16), this converges to

(1:[ (uk (Ag)hy, hk1>> U (Ap) (hn-1) @ ur (A1) (),

k=2
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which in turn is equal to I'(¢)(Ky,..., K,—1). This shows (17) in this special case. By
linearity and standard approximation, this implies that (17) holds true whenever ¢ belongs
to the uniform closure of Cy(R)®- - -@Cy(R). In particular, (17) holds true when ¢ € Cy(R™).

The rest of the proof consists in reducing to this case by a more subtle (i.e. non uni-
form) approximation process. Let (gx)r>1 be a sequence of functions in Cy(R) satisfying the
following two properties:

VkeN, 0<g. <1, and VreR, gk(r)]H—OfL

These properties imply that for all 1 <i <n, gi(A;) — Iy strongly. Indeed let h € H, then,
by the spectral theorem,

2 .

los(Agh =7 = [ (1= ) B )

Then by Lebesgue’s dominated convergence theorem, ||gix(A;)h — h||> — 0 when k& — oc.
We consider an arbitrary ¢ € C,(R") and set

=GR - VG Dg)p, keN,

Clearly each ¢, belongs to Cy(R™), hence satisfies (17). A crucial observation is that for all
7,k eN,

(18)  Ty(w) (K1, ..., K1) =T5(0) (9u(AD) K1gi(AY), . ... gu(AL_ ) Kn1gi(AL)) .

The argument for this identity is essentially the same as the one for the proof of Lemma 2.6.
One first checks the validity of (18) in the case when ¢ belongs to C,(R) @ - - - ® Cy(R), then
one uses the w*-continuity of I'; to obtain the general case. Details are left to the reader.
Likewise we have, for all £ € N,

(19) L(on) (K1, - K1) = T(9) (gx (A1) Kigr(A2), - -+, gi(An-1) Kno191(An)) -
For any k € Nand any 1 <i<n—1,

9 (A) Kige(Air1) = gi(Ai) (hi @ 1) g (Aiva) = ge(Aira) (hi) @ gi(Ai) (1),
hence gi(A;) Kige(Air1) — K; in S*(H) when k — co.
Let € > 0. According to the above observation, we fix kg € N such that for any 1 < i <
n—1,
lgk0 (Ai) Kigro (Ai1) — Kil[2 < e.

Hence, there exists a constant @ > 0 depending only on ||¢||eo, || K1]|2, - - -, |[Kn—1]|2 such that
||F(¢k0)(K17 EIRIRI) Kn—l) - F(¢>(K1, . 7Kn—1)||2 S QE.

Now, using that for any 1 <i <n —1, gkO(Af)Kigko(AgH) = gkO(AzH)(hi) ® gy (A ()
and the fact that g, (A7) — g, (A;) and gkO(AgH) — ko (Ais1) strongly when j — oo, we
see that ge, (A7) Kigry (AL, 1) = o (Ai) Kige (Ais1) in S2(H) when j — oo. Hence, for a large
enough jo € N, we have, for any 1 <7 <n —1,

1910 (A7) Kigry (ALy) — Kl < 2¢
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for any j > jo. We deduce that there exists a constant 5 > 0 depending only on |||, || K71 ]2,
ooy [[ K21 ]2 such that

v,] Z jOa ||F](¢ko)(K17 ey Kn—l) - Pj(¢>(K1) ey Kn—l)“Q S 65'
Now recall that ¢y, satisfies (17). Hence changing jo into a bigger integer if necessary we also
have

vj > jOu "Fj(¢k0)(K17 cee 7KTL*1> - F(¢k0)(K17 <o 7Kn*1)H2 <e.
We deduce from the above three estimates that
V3> jo, IT() (K1 K1) = T(@) (K, - K[, < (4 8+ 1)e.
This shows that ¢ satisfies (17). O

Remark 3.2. The result of Proposition 3.1 in the case when n = 2 and A7 and A commute,
j € N, is established in [10, Prop. 3.2] by a different method.

We demonstrate below that every selfadjoint operator is a limit of bounded selfadjoint
operators in the strong resolvent sense.

Lemma 3.3. Let A be a selfadjoint operator densely defined in H. Let E be the spectral
measure of A and define A, := E((—n,n))A for everyn € N. Then, the sequence of bounded
selfadjoint operators (A,)S2, is resolvent strongly convergent to A.
Proof. Since E((—n,n)) converges to I in the strong operator topology,
(20) lim A,g = Ag

n—oo
for every g € D, where D is the domain of A. Let z € C\ R and f € H. The mapping
A—z: D — H is abijection so that (A—2)"1f € D. By standard properties of the resolvent,

(21) (A —2) T f = (A=2)7 ' f= (A —2) (A= A)(A—2)7 .
The result follows from combining (20) and (21) and applying uniform boundedness of (A,, —
2)7L O

We finish this section with a lemma that will be used in Section 4.

Lemma 3.4. Let (A,)2, be a sequence of selfadjoint operators converging resolvent strongly
to a selfadjoint operator A. Let K be a bounded self-adjoint operator. Then (A, + K)22 | is
resolvent strongly convergent to A+ K.

Proof. Let z € C be such that Im (z) # 0. Note that the operators
I-K(A+K—2)"!
and
I— (A, +K—-2)'K
are bounded in the operator norm by 1+ || K||/[Im (2)|. Tt is straightforward to see that
I-—(An+K—2)'K) [(Ay—2) ' —(A=2) | (I - KA+ K-2)")
(22) =((A—2) "= (A + K —2)'K(A4,—2) ) (I - KA+ K —-2)"")
—(I= (A4 +K-2)7"K)(A-2)"=(A=2)'KA+ K -2)7").
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Since K is bounded, A and A + K have the same domain, we have the resolvent formula
(A-2)""—(A+K—-2)"=(A-2)'K(A+ K —2)"".
Similarly, for every n > 1,
(A, —2) "= (A + K —2)"' =4, + K —2)'K(A, —2)"".
Applying the latter in (22) gives
(I— A+ K=2)7"K)[(Ay—2)"'—=(A=2)' (I -KA+K—-2)"")
=4, +K—-2)"I-KA+K-2)")-([I-(A+K—-2)"'K)(A+K—-2)"
=(A,+K -2 —(A+ K —2)"L.
Hence, for any f € H,
[(An+ K —2)' = (A+ K —2)7 ) f|
< A+ K|/ Im()]) [((An—2) "= (A=2)" ) - KA+ K —2)"")f],

which completes the proof of the lemma. O

4. DIFFERENTIABILITY OF ¢+ f(A+tK) — f(A) IN S?(H)
In this section we prove our first main result stated in the theorem below.

Theorem 4.1. Let A and K be selfadjoint operators densely defined in H with K € S*(H).
Let n € N and f € C*(R). Assume that either A is bounded or f© is bounded for all
1 <11 < n. Consider the function

p:tER f(A+EK) — f(A) € S*(H).
(i) The function ¢ belongs to C"(R,S*(H)) and for every integer 1 <k <n andt € R,

(23) %gp(k) (t) [FA—HK VA+HEK, . A+tK(f[k]>} (K, o K)

(13) The operator Taylor remainder satisfies

(24) fA+ K) Z Ahd = [pATEAAPPN] (K, .. K).

We first recall the definition of the divided difference. Let f € C'(R). The divided
difference of the first order fl!l: R? — C is defined by

S(xo)—f(x1) if 7o # 11

(2o, 21) = { wo—w1 7

f/($0) lf To = T

The function fI! belongs to C(R?) and if f” is bounded, then fI! € Cy(R?). If n > 2 and
f € C™(R), the divided difference of the nth order fI"l: R"*! — C is defined recursively by

, o, r1 € R.

[n—1] —fln—1] i
I (20,22, n)—f (21,2....Tn) lf Zo 7£ Ty

f[n](xoyﬂh, ey X)) = { i p—— ,

(‘91f[” 11(1’1,1‘2,...,1}”) lf Tog = T

)
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for all xg,...,z, € R, where 0; stands for the partial derivative with respect to the i-th
variable.

It is well-known that " is symmetric under permutation of its arguments. Therefore, for
all 1 <i<mn and for all zg,...,z, € R,

] FP (@, @i 1, @i 1,y wr;)ffi’:l](960,~~~,93¢72,95¢,96¢+1 77777 ﬂﬁn)7 if 74 7£ 7
™o, z1, .. x,) = P 7

aif[n_l] (xla s 7$n) if Ti—1 — ;.

Note for further use that for all 1 <4 < n and for all (zo,...,z,) € R*"

1
(25) f[n](xmaxn) - / aif[n_l}(‘ro""7Ii—27txi—1 + (1 _t)xi7xi+17"'7xn) de.
0
The function f belongs to C(R"*!); if £ is bounded, then f"l € C,(R™*1).

In order to prove Theorem 4.1, we need algebraic properties of multiple operator integrals
established below.

Lemma 4.2. Let n,k € N, n>3 and 1 <k <n —2. Let u € Cy,(R¥1) and v € Cy(R"F).
Define

(wo)(t1, ... tn) = ulty, ... tgr)0(tka1, -y tn)  for (t1,...,t,) € R?
and let Ay, ..., A, be selfadjoint operators densely defined in a separable Hilbert space H.
Then, for any Ky, ..., K, 1 € S*(H),

FAl ..... An (UU)(Kl, e Kn—l)
= DAt () (K, K ) DA (0) (K, Ko).

Proof. The proof is straightforward for u and v elementary tensors of elements of Cy(R).
Then, one uses the w*-continuity of multiple operator integrals as in Lemma 2.6 to obtain
the general case. 0

Lemma 4.3. Let n > 2 be an integer. Let Ay,..., A, _1,A, B € B(H) and assume that
B—Ae S8*H). Let f € C*(R). Then, for all Ky,...,K, 1 € S*(H) and for any 1 <i<n

we have
[FAl,...Ai_l,B,Ai ,,,,, Anfl(f[n—l])] (K17 o Kn—l)
_ |:FA1,...A7;,1,A,AZ’ ..... An—l (f[nfl})] (K17 L ,anl)

Proof. 1t will be convenient to extend the definition of the divided difference as follows. Let
m € N* and 1 < i <m. For any ¢ € C'(R™), we define a function ¢ : R™*! — C by

1
qul] (ﬁo, PN ,$m) = / 8i¢(1’0, e, Ti—9, tl’i_1 + (1 — t)l’i, Litlsy- - ,CL’m) dt
0

for all (zg,...,7,) € R™. The index i in the notation gzﬁz[-l] refers to the i-th variable
derivation 0;. It follows from (25) that for any f € C™(R),

(26) (it = g,
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For ¢ € C(R™), write

and
FB<¢) _ [FA1,...AZ'—1,B,A¢ ..... An-1 (¢)] (Kh o anl)-
For ¢ € C(R"), write
FB,A(qu}) - [FAL...7A1._17B7A7AZ. ..... An71(¢)} (Kla s 7Ki—17 B - Av Ki7 s 7Kn—1)-
We will show that for any ¢ € C(R"),

(27) La(¢) = Ta(6) = Tz (01').

Then the result follows by applying this formula to ¢ = f"~1, together with (26).
Assume first that ¢ = w3 ® -+ ® u, for functions u; € CYR), ie., @(t1,...,t,) =
uy(ty) ... up(t,) for every (ty,...,t,) € R". Then

Didp=u @ QUi U, QU1 R @ Uy.
Hence,
ngl] ZU1®"’®UZ'_1®UZ[-1] QU1 ® -+ Q Up,.
By Lemma 4.2 we have
FB,A(¢£1])
= [ A By @ @y @ 1)] (K., K [FBvAvAi WM ®1)| (B- A, K;)

[FAZ' """ A"‘l(uiﬂ R ® un)] (Kit1, .-, Kpnq).
By (7) and the representation
(28) F(A+ K) — f(A) = [PAHRA(1)] (i),
(established in [3, Corollary to Theorem 4.5]),

T @l @ 1)| (B - A, k) = 84wl (B - A)K,
= (ui(B) — ui(A)) K.
Hence,
FB’A(QZSEH) = Ul(A1>K1 e ui—l(Ai—l)Ki—1<ui(B) — uz<A>)KluZ+1<Az>Kl+1 e un(An_l)
=u(A)Ky . ouio (A1) Kioquwi (B) K (Ad) Ky - (An—q)
— ul(Al)Kl . ui_l(Ai_l)Ki_lui(A)KiuiH(Ai)K,-H . un(An_l)
= I'p(¢) = Ta(0).

This shows (27) in the case when ¢ = u; ® - -+ ® w,,. By linearity this immediately implies
that (27) holds true whenever ¢ € C*(R) ® --- ® C*(R). Note that this space contains the
n-variable polynomial functions.

Now consider an arbitrary ¢ € C*(R™). Let M > 0 be a constant such that the spectra of
Ay, ..., A,_1, Aand B are included in [—M, M|. By continuity of 9;¢ there exists a sequence
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(Qm)m>1 of n-variable polynomial functions such that @,, — 9;¢ uniformly on [—M, M|".
For any m > 1, we set

t;
Pm(th s 7tn) - / Qm(tlu s 7ti—1707ti+17 s 7tn) de
0

for all (¢1,...,t,) € R™. This is also an n-variable polynomial function. Next we intro-
duce w(ty, ..., ti1,tiz1, ... tn) = O(ty, ... ti1,0,t;41,...,t,). The function w belongs to
CY(R"1) and for any real numbers t1,...,1,, we have

t;
¢(t17"->tn)_w(t17~"ati17ti+1,"'7tn)+/ 0ip(ty, ... tic1,0,tip1, ..., t,) do.
0
Hence,

|¢<t1, ce ,tn> — U}(tl, PN 7ti—17ti+1’ N 7tn) - Pn(tl, PN 7tn)|
t;
S / |al¢(tl7 s 7ti—179ati+17 SR 7tn) - Qm(tb s 7ti—179ati+17 s 7tn)| do.
0

Consequently, P, +w — ¢ uniformly on [—M, M]", where we naturally see w as an element
of CY(R™). Let (wy,)men be a sequence of (n — 1)-variable polynomial functions converging
uniformly to w on [—M, M|"~! and see w,, as an element of C'(R™). The latter implies that
P,, + w,, — ¢ uniformly on [—M, M|". By construction, 0;P,, = @, and d;w,, = 0 hence
we also obtain that (P, + wy,)! — ¢! uniformly on [—M, M]"*!. Since P,, + w,, belongs
to CYR)®- - ® CY(R), it satisfies (27). The above approximation property and Proposition
2.1 imply that ¢ satisfies (27) as well. O

The following corollary is an extension of Lemma 4.3 to unbounded operators.

Corollary 4.4. Let n > 2 be an integer. Let Ay, ..., A, 1, A, K be selfadjoint operators
densely defined in H and assume that K € S*(H). Let f € C™(R) be such that f"~V and
f™ are bounded. Then, for all Ki,..., K, € S*(H) and for any 1 < i < n we have

[PAl,mAi—l,A"FK,Ai ,,,,, Anfl(f[n—l])} <K17 o Kn—l)
_ |:FA1,..‘A¢,1,A,A¢ ..... An—l(f[nfl])} (K17 o anl)

Proof. For all 1 <k <n —1, let (A7) en be a sequence of bounded selfadjoint operators on
‘H converging resolvent strongly to Ax. Such sequence exists by Lemma 3.3. Similarly, let
(A7);en be a sequence of bounded selfadjoint operators converging resolvent strongly to A.
According to Lemma 4.3, we have, for all j,

[FA{,...Az_l,Aj—&-K,Ag7""AZL*1(f[n_l})] (K- Koa)

= |:FA{ 77777 AzivAjJrK’Aj’Az’m’Ai_l(f[n})] (Kla s 7Ki717 K7 K’ia s anl)'
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By Lemma 3.4, A7+ K — A+ K resolvent strongly when j — co. Moreover, the boundedness
of £~V and f™ imply that of f*~1 and fI". We obtain the desired equality by passing
to the limit in the above equality and applying Proposition 3.1. U

The proof of the first main result is given below.

Proof of Theorem 4.1. Assume first that A is bounded.
(1) We prove the first claim by induction on k, 1 < k <n. Let k =1 and t € R. We want
to show that the limit
iy AU 8) = o(h)
5—0 S

exists in S?(H) and equals [[ATFATK(FIN] (K). By (28), we have
e(t+s)—pt) fA+({t+s)K)— f(A+1LK)

S S
_ [FAJr(tJrs)K,AthK(f[l])} (K)

By Lemma 3.4, A+ (t + s)K — A+ tK resolvent strongly as s — 0. By assumption A
and K are bounded, so there exists a bounded interval I C R such that for s small enough,
o(A+(t+s)K) C I. Since f € C'(R), fI1 is continuous and, hence, bounded on I x I. Let
F € Cy(R?) be such that Fjj = . By Proposition 3.1 applied to F we get
liH(l) [FA-i-(t-i-s)K,A-i-tK(f[l])} (K) _ [FA+tK,A+tK(f[1])] (K) in 82(7'[)
s—
This shows that ¢'(t) = [[ATHFATE (U] (K).
Since A+ tK — A+ toK in B(H) and, hence, in the strong resolvent sense as t — to, we
obtain ¢/(t) — ¢'(tg) in S*(H) as t — to by Proposition 3.1. This confirms continuity of ¢'.
Now let 1 < k <n — 1 and assume that ¢ € C*(R) and for all 1 < j < k and t € R,

29 A1) = 1 [P ().

We want to prove that ¢ € C*"1(R) with a derivative of (k + 1)-th order given by (23). Let
s,t € R. We have

p(t+5) — o®(t)

S
k!
_ ; [FA+(t+s)K ..... A+(t+s)K<f[k}) . FAthK ..... A+tK(f[k])] (K, o K)
k+1
_H [F(AHK)Z'—I,(A+(t+s)K)k—“'2(f[k]) _ F(A+tK)i,(A+(t+s)K)k—i+1(f[k])} (K,...,K)
1=1

where for instance, (A + ¢tK)" stands for A +tK,...,; A+ tK (i terms). By Lemma 4.3, we
have for all 1 <7 <k +1,

1 [F(A-i-tK)“l,(A+(t+s)K)k*i+2(f[k]) _ F(A-l—tK)i,(A-&-(t-i-s)K)k*i“(f[k])} (K,...,K)

S
= [PUHHITA AT R ) ()R,
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Moreover, using resolvent convergence like in the first part of the proof, we can see that this
term converges in S*(H), as s — 0, to

[FAthK ..... A+tK(f[k+1]>} (K, o K)

Hence,

k+1

— Kl Z [FA—HK ..... A+tK(f[k+1])} (K, o ,K)

(k) _ k)
L e+ s) — W (Y
s—0 S

= (k+ 1)} [PAFH AT N (K K).

Finally, the continuity of ¢+ follows by the same argument as the continuity of ¢’. This
concludes the proof of (7).

(7). We will prove the second claim by induction on n. The case n = 1 follows from (28).
Now let n € N and f € C""}(R). Assume that we have

1

3
I

FA+ )~ (A) = 3 g ®(0) = [DAHRA-AID] (K, K).
k=1
We have
JUA+K) = f(4) = 32 6W(0) = f(A+ ) = f(4) = 3 26¥(0) = —o(0)
k=1 " k=1 """ ’

_ [FA+K,A ..... A(f[n])] (K, o K) _ m(p(n)(o).

By (i), we have
1 n n

—™(0) = [PAA-A(FID] (K, . K).
Using Lemma 4.3, we obtain

FIA+K) = f(A) - %so“f)(m = [PARAA(fH ] (KL K)
k=1

which is the desired equality.

Assume now that A is unbounded and that for all 1 < i < n, f@ is bounded. Then, for all
1 <i < n, ffis bounded. Hence, applying Corollary 4.4 instead of Lemma 4.3 and following
the same lines as in the proof of the bounded case, we obtain the unbounded case. 0

Theorem 4.1, Proposition 3.1 and Lemma 3.4 have the following consequence.

Corollary 4.5. Let A be a selfadjoint operator densely defined in H and let (A;)jen be a
sequence of selfadjoint operators in B(H) converging resolvent strongly to A. Let n € N and
let f € C™(R) be such that f™ is bounded. Let K = K* € S*(H) and define, for every
JeN,

p; tER— f(A; +tK) — f(A;j) € S*(H).
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Then, for everyt € R,

(n)
jlggo Sojn!( ) _ [FA+tK ..... A+tK(f[n})} (K,...,K)
and
n—1
lim (f(AjJrK) - Fa) - %@’“(0)) _ [pAHEAAID] (K, LK),
k=1 "

where the limits are in S*(H).

5. AN EXTENSION OF THE KOPLIENKO TRACE FORMULA

In this section, we prove our second main theorem and demonstrate two important classes
of functions that satisfy this result.

Theorem 5.1. Let f € C*(R) be such that " is bounded. Assume that there exist a separable
Hilbert space H and two bounded Borel functions a,b: R?> — H such that

(30) B (s,t,u) = (a(s,t),b(t,u)), V(s t,u) € R

Let A, K be selfadjoint operators densely defined in H with K € S*(H). Let n be the Ko-
plienko spectral shift function associated to (A, K). Then,

(31) T ([PA0A2)] (1,8)) = [ mie)ar

If, in addition, either [’ is bounded or A is bounded, then

T (F(A-+ K) = F(A) = A+ t)a) = [ 7 (Om(0)

d 3 . _
where Ef(A +tK) =0 i 82(”7’-[)—tl_l>ron+ w = [PAA(fM)] (K).

For simplicity, we denote
T(A, K) % [DAHAA Y] (K K).
By Theorem 2.3, I'(A, K) € S'(H) and by (12) of Proposition 2.4,
ITCA, )l < Nlallso 1Bl [l K15
By Theorem 4.1,
DA, K) = f(A+ K) — f(4) = 5 F(A+ 1K)

if either f’ is bounded or A is bounded.
The proof of Theorem 5.1 is obtained in a technically more subtle way than the proof of
its first order counterpart (2) in [21]. Our goal is achieved with help of the following lemmas.
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Lemma 5.2. Let A, K be selfadjoint operators densely defined in H with K € S*(H). Let
f € C2(R) be such that f% admits a factorization (30) for some separable Hilbert space H
and some bounded Borel functions a,b: R? — C. Then,

1
3 DOALK) =2 (1= 6) [DARRA K (2] (0 )
0
where the latter is an S*-valued Bochner integral. Moreover,
1
(33) Tr (DA, K)) =2 / (1 —¢) Tr ([DATHEATHRATE (RN (K K)) dt.
0

Proof. By Lemma 3.3, we let (A,), be a sequence of bounded selfadjoint operators on H

converging resolvent strongly to A. Let, for any n € N, ¢,, be the function defined by
on:t ER > f(A, +tK) — f(A,) € S*(H).

The assumptions on f imply, by Theorem 4.1, that ¢, is twice differentiable and

(34) 0D (1) = 2[FAnthK,AnthK,AnthK(f[Q])} (K, K)

is continuous from R into S?(H). Hence, the integral
1
2/ (1 _ t) [FAn-i-tK,An—f—tK,An—&—tK(fD])] (K, K) dt
0

exists in S*(H).
Let ¢ be a continuous linear functional on S?(H). Then,

2
(35) Slen(®) = 0 (a0 = 06210
Integrating by parts ensures

d ! d?
(36) o (1) = 00 = a0l ) = [ 1=1) vtontenar
Applying the equalities (35) and (34) in (36) gives

d

0 (a1 = 000 = Gon(Ohima) =2 [ (1 ) ([t 1] 1 )

_ w (2/01(1 _ t) [FAn+tK,An+tK,An+tK(f[2])] (K, K) dt) )

The previous equality holds true for every ¢ so we deduce

d

(37) on(1) — @, (0) — Eapn(t)‘tzo = 2/0 (1—1) [I‘An+tK,An+tK,An+tK(f[2])] (K, K) dt.

By Corollary 4.5, we have
S%- lim (@n(1) — ¢,(0) — igon(t)hzo =T'(A K).
dt

n—-+o0o
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By Proposition 3.1, we have
82_ lim [PAn—l-tK,An—l-tK,An—i-tK(f[Q])} (K, K) _ [I—\A—i-tK,A—i-tK,A—‘,—tK(f[Q])] (K, K)

n——+o0o

Note that for all n € N and for all 0 < t < 1, [AnHtEAAKAAK 49 5 contraction by
Proposition 2.1 so we get the inequality

1
(1 = ¢) [LAFRA AR FEN (K K)o < (| /2| K15 < LI S LY
Hence, applying Lebesgue’s dominated convergence theorem in (37) gives
1
(38) LA K) = / (1 —¢) [pArATRARE (RN (K, ) dt,
0
which completes the proof of (32).
We now prove the equality (33). Let
hit€(0,1] m [PATRAHKARK (R (K K).
We have to show that

(39) Tr (/01(1 —h() dt) _ /01<1 )T (h(1)) dt.

Note that we do not know whether h is measurable as an S'-valued map, and this is why
the proof requires some care.

Let (er)r>1 be a Hilbertian basis of H. By Bochner integrability of ¢t +— (1 — ¢)h(t) and
continuity of the linear functional T' € S*(H) + (Thy, hy) for any hy, hy € H,

Tr (/01(1 — H)h(t) dt) - io < (/01(1 — t)h(t) dt) ek,ek>

k=1

- [ a0 ten e ar

Foranyne N;n>1and 0 <t <1, we let

n

Su(t) = (1= 1t) (h(t)ex, ex) .

k=1
Then

Tr ( /0 1(1—t)h(t) dt) — lim 1Sn(t) dt.

n—-+4o0o 0

Let P, be the orthogonal projection onto Span(ey,...,e,). Then,
Sp(t) = (1 —t)Tr (P,h(1))
so that, by (12) of Proposition 2.4, we have for any 0 <t <1,
1S (8)] < h(®)]l1 < Nlallool1blloo [ K]5-

Hence, (33) follows from above by applying the dominated convergence theorem. ([l
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For any o € C\ R and any integer m > 0, let f,, , : R — C be defined by

(40) fma(z) = , reR

1
(z —a)™
The vector space generated by f,, ., € C\R,m > 0, is the space of rational functions with
nonpositive degree and poles off R.

Lemma 5.3.
(i) Bvery f2 defined in (40) belongs to the algebraic tensor product Cy(R) ® Cy(R) ®
Cy(R).
(i7) Each ¢ € Co(R)@C,(R)®@Cy(R) admits a factorization (9) for some separable Hilbert
space H and some bounded Borel functions a,b: R* — C.

Proof. (i) If m = 0 then f,[g]a = 0. Assume now that m > 1 and write, for simplicity,
fm = fma for a fixed complex number a € C\ R. We have, for any x, z; € R, z¢ # =1,

_ Jm (o) — fin(21) _ 1 B 1
To — T (1'0 — $1)(ZL‘0 - Ck)m ({170 — :L‘l)(xl — oz)m'
1

(20 — 1) (20 — )™’

Fol(zo, 1)

Fixing x; € R and then taking the partial fraction decomposition of xg >

we get
1 - 1 =3 o))
(xo — 21) (w0 — @)™ (w0 — 21) (21 — @)™ o k\Z0) Jm—k+1(Z1)-
Hence, by continuity,
(41) fu =~ Z fi @ fin-rt1 € Co(R) @ Cy(R).
k=1

Then, an easy computation shows that for any xg, x1, 22 € R,
f,[s](%, T1,T2) = — Z f,E” (0, 21) frn—k+1(22).
k=1
By (41), ,Ll} € Cp(R) ® Cy(R) for any k > 1 so the latter implies that
fIB € Cy(R) ® Cy(R) @ Cy(R).

(i7) Note that the set of functions satisfying (9) is a vector space. Since an elementary
tensor of Cy(R) ® Cy(R) ® Cy(R) satisfies (9) with H = C, we obtain (7). O

Below we prove our second main result.

Proof of Theorem 5.1. Let f satisfy the assumptions of Theorem 5.1. The first step is to
show the existence of a complex measure v defined on the Borel subsets of R, depending
only on A and K, such that

THHAszéfWMWW
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Let 0 <t < 1. For simplicity, write A, = A+ tK. By Proposition 2.5,
Tr ([DAAeA(fEN] (K, K)) = T ([0 ()] (K)K)

where
U(s,t) = fP(s,t,9).
Hence, by (33),

(42) Tr ([(A, K)) = 2/0 (1—¢)Tr ([T () (K)K) dt.

Let E* denote the spectral measure on R? with values in B(S?*(H)) given by
ENU) = T4 (xw),

where U C R? is a Borel set and xy is the characteristic function of U. This measure appears
in the Birman-Solomyak double operator integral [3] and, in particular,

EYU, x Uy)(K) = EA(Uy) KEA (1),

for all Borel subsets Uy, Uy of R, every K € S*(H). By properties of the double operator
integral,

DALY () = U(x,y) dE (z,y).

RQ
Hence

T ([P @) (OK) = [ vteg) dule)
where v, is the complex measure defined for every Borel subset U C R? by
u(U) = Tr ([T ()] (K)K).
If g € Cy(R?), then

,9) = [ sle.p)dnte.y) =Tr (4 (9)] (1))
R
is continuous in ¢ by Proposition 3.1. Hence, the mapping

t€[0,1] = v € (Co(R?))*,

where (Cy(IR?))* is equipped with the w*-topology, is continuous.
Since (1); is bounded in (Cy(R?))*, we can define

v=2 /1(1 — vy dt € (Co(R?))*

in the w*-sense, that is, for any g € Cy(R?),

(v.g) =2 / (1— 1) (v, g) dt.

0
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Moreover, a simple application of the dominated convergence theorem implies that the pre-
vious equality holds true whenever g € Cy(R?). By (42) we deduce

Tt (T(A, K)) =2/01<1—t> ( -
:/RQ@ZJ(JJ,?J)OZV(%?J)-

By the integral representation [23, (5.9)],

U(z,y) dvt(x,y)> dt

U(x,y) = /0 A" Az + (1 = N)y) dX.

u

By a change of variables we get, setting u = A\x + (1 — Ny, A = gy and du = (z — y)dA\,

Vo) = %f”(x)X{x=y} + (/]R (ZL__;J

where X, is understood as x|, . in the case when y < z. Let

memm(u)f"(U)du) Aot

u—y|
h(fE, Y, u) = mX[z,y] (U)X{zyﬁy} (xa y)
The function & is nonnegative and [; h(z,y,u) du = 3 for all (z,y) € R%. Since v is a finite
measure, the function A is integrable on R® with respect to dv ® du. Hence by Fubini’s
theorem, the function

K:u€R— h(z,y,u)dv(z,y)
R2
is integrable. Let A denote the diagonal of R?. Another application of Fubini’s theorem
(using the fact that f” is bounded) yields

(0 8) = 5 [ @ ivten+ [ ([ ) ae)

1 1 "
=5 [ @it [ 1w [ aep i) d
A R R2
1 /! "
5 [ @ty + [ ) d
A R
Denote by « the measure defined on Borel subsets V' C R by
1
a(V) = 51/((\/ x V)NA),

by 3 the measure

b = kdu,
and let

v=a+p.
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The previous computation implies that

Tr (D(4, K)) = / £"(0) dr(v).

Let n be the Koplienko spectral shift function, so that (4) holds for any rational function
with nonpositive degree and poles off R. The last step is to prove that v coincides with ndt.

Let f.(z) = W for m € N. By Lemma 5.3, the functions f,, and their conjugate

functions f,, satisfy the assumptions of Theorem 5.1. Hence, for every m € N,
[ sawane = [ g a
R R

and similarly for the conjugate functions f_m//. Note that the space generated by the f/ and

f_m”, m € N,m > 1, is equal to Span {fk,ﬁ, k > 3} which is, by Stone-Weierstrass theorem,
dense in Cy(R). This implies that

v = ndt,
concluding the proof. O
We now give two examples of classes of functions that satisfy assumptions of Theorem 5.1.
The first example is the Besov class B2 ,(R). We start by recalling its definition. Let
wy € C(R) be such that its Fourier transform is supported in [—2,—1/2] U [1/2,2], wy

is an even function and wy(y) + wo(y/2) = 1 for 1 <y < 2. Set w,(x) = 2"w(2"x) for
x € Ryn € Z. Following [19], the Besov space is defined as the set

B2(R) = {f € C*R) | "o+ 3 2% |f % wallow < o0},
nez
equipped with the seminorm
1052, @ = 1"l + D2 2271 # e
nez

We refer, e.g., to [19] for characterizations of elements of Besov spaces. We prove below
that if f € B2 ,(R), then the divided difference f?l satisfies the property (30), and hence
Theorem 5.1. In this case, we recover [19, Theorem 4.6].

Proposition 5.4. Let f € B%,(R). Then there exist a separable Hilbert space H and two
bounded Borel functions a : R — H and b : R> — H such that

185, 0) = (a(s), bt ), V(s t,u) € B,
In particular, 2 satisfies (30).

Proof. If f € B2,(R), then according to [22, Theorem 5 (ii)] (or similary, to [20, Theorem
5.1]) and its proof, there exist a measure space (€2, 0) and bounded measurable functions
a, 3,7 on R x  such that for all w € €,

a(-,w), B('?IU) and 7('7w)
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are continuous on R with

(43) /Q (s w)llsol B, w) oo [|7 (- w) oo dor(w) < o0,

and such that for all (s,t,u) € R,

(44) 2 (s, t,u) :/Qa(s,w)ﬁ(t,w)’y(u,w) do(w).

By construction of the measure space (£2,0), the space H = L*(§), o) is separable.
Let w € © and let (s,)nen be a dense sequence in R. By continuity of a(-, w) we have

(-, w)loe = sup [a(sn, w)l.
neN

Hence, the function w € Q — |la(-, w)|« is measurable. The same holds true for § and
7, hence (43) makes sense. Note that by changing  if necessary, we can assume that
(-, W) |[oo B W) ||oo IV (5, w)]|oo > 0 for every w € Q. Let § be the measurable function

defined on €2 by
. . 1/2
s = (1Ll )™ g
[l w)llos
For s,t,u € R, let a(s) and b(t,u) be the measurable functions defined on € by
[a(s)](w) = as,w)s(w), [b(t,w)](w) = B(t,w)y(u,w)d(w)™", w e .
It is straightforward to check that for all s,t,u € R,

(45) Ha(s)HifS/QHoz(-,w)HooHﬂ(-,w)HooHv(-,w)Hoodo(w)
and
(46) Hb(tu)H?fS/QI\Oé(-,w)l\oollﬁ(-,w)HooHv(-,w)Hoodd(w)-

Combining the latter with (43) confirms that
a:R—H and b:R*—H

are bounded.
For any sg, s € R,

la(s) — a(so) |3 = [25(w)2|a(87w) — afso, w)|* do(w).

Since « is continuous in the first variable, the uniform estimate (45) and Lebesgue’s domi-
nated convergence theorem imply that a is continuous. Similarly, b is continuous. Finally,

by (44),
FP(s, tou) = (a(s),b(t,u)) y ,
concluding the proof. O
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Remark 5.5. The expressions f(A+ K)— f(A) and %f(A+tK)|t:0 may be not well defined

bounded operators when A is unbounded and f is not Lipschitz. In this case, as shown by
Theorem 4.1 and Corollary 4.5, the proper replacement of the undefined difference f(A +

K)—f(A)— %f(A +tK) =0 is given by the triple operator integral [IAT54A(fE)] (K, K),

which is always well defined provided that f” is bounded.
In [19], for f(z) = 22, the undefined difference

FA+K) = f(A) = 5 F(A + K)o

was replaced by K2, which was validated by the fact

(47) Tr (K?) = 2 / n(t) dt,

R

see [19, Theorem 4.5]. Since fP(s,t,u) = 1 for all (s,t,u) € R? the representation (7)
ensures

[FA+K7A7A(f[2]):| (K, K) — KQ.
Hence, (47) is a consequence of Theorem 5.1.

We now consider the class of bounded functions ¢ : R®> — C such that there exist Hilbert
spaces E and F' and bounded functions

a:R—>EO:R—B(FE),;:R—=F
such that

(48) B(s,t,u) = {a(s),0(t)B(w)), V(s t,u) € R

This class can be identified with the dual space (/% (% 0% G% (%)%, where é is the Haagerup
tensor product. See e.g. [11] for properties of the Haagerup tensor product and [1 1, Theorem
9.44] for the description of the dual of the Haagerup tensor product which yields the above
identification. The property (48) naturally arises in the study of completely bounded triple
operator integrals. According to [0, Theorem 4.12], if A, B,C are selfadjoint operators

h h
densely defined in a separable Hilbert space H and ¢ € (ff ® ¢ ® (})*, then the triple
operator integral ['*5:C(¢) extends to a completely bounded mapping

TABO(4) - 8%(H) & 8 (H) — S®(H),

where S®(#H) is the space of compact operators on H. We note that an analogous result
holds for operator integrals defined on spaces of functions, see [12, Theorem 3.4].

ho o h

In the following, we show that a C*-function f with f% € (¢} ® ¢} ® (%)* satisfies the
property (30). Note that in the factorization (48), we do not assume that F and F' are
separable so the fact that fI satisfies the property (30) requires an explanation.
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h = h
Proposition 5.6. Let ¢ : R* — C be a separately continuous function in (l ® (f @ )
such that ||gb|| < 1. Then, there exist (tm)m>1, (Bn)nz>1, Omn)mnz1 in C(R) such

that

BeLEeL)*

Vs € R, me ()P <1,

Vu € R, Zmn )2 <1,

vVt € ]Ra ||[0m,n(t)]m,n21||6(€2) S 1a
and for all (s,t,u) € R3,
(49) o(s,t,u) = ((am(s)), [Omn ()] (Bn(w))) -
In particular, if f € C?(R) is such that 2 € (¢} éﬁ éé LY, then f2 satisfies the property
(30).

Proof. We adapt some ideas from the proof of [I, Theorem 2.2.4]. We can assume in the
factorization (48) of ¢ that o and 5 have a dense range since we can compose on the left o
and ( by the orthogonal projection onto the closure of their range. Let

K={0t)e|teRec EF} CF

and

H={0t)f|teR, feF}CE.
Let Py : F — K and Py : E — H be the corresponding orthogonal projections. Since ¢ is
continuous with respect to the third variable, we deduce that for all (s,t) € R?,

u i (0(t)a(s), B(u))
is continuous. By boundedness of $ and by density, this implies that for all £ € K,
u = (k, B(u))
is continuous. Let k € {Pxf(u) | u € Q}". Then, for any s € Q,
<k7 5<3)> =0,
and by continuity, this equality holds true for any u € R. Since the range of § is dense, this

implies that & = 0. This shows that K = {Px/(u) | v € Q}, so K is separable. Similarly,
we show that for all h € H,

s+ (af(s), h)
is continuous and that H is separable.
Define .
a=Pya:R—H, =P :R— K
and

Then, it is easy to check that

(5,1, u) = <a(s),é(t)5(u>>, V(s,t,u) € R,
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Since & and 3 have a dense range, the continuity of ¢ in the second variable implies that for
any h € H and any k € K, the function

t— <h,é(t)k;>

is continuous.
Finally, let (€,,)m>1 and (f,)n>1 be hilbertian bases of H and K, respectively. We set, for
any n,m > 1,

n(s) = (@(s).en) . Bulu) = (fu B(0)) and Orna(t) = (e B(E)fa)

The latter implies that a,,, 5, and 6,,, are continuous and satisfy (49). O
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