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Assume that g(|ξ| 2 ), ξ ∈ R k , is for every dimension k ∈ N the characteristic function of an infinitely divisible random variable X k . By a classical result of Schoenberg f := -log g is a Bernstein function. We give a simple probabilistic proof of this result starting from the observation that X k = X k 1 can be embedded into a Lévy process (X k t ) t≥0 and that Schoenberg's theorem says that (X k t ) t≥0 is subordinate to a Brownian motion. A key ingredient of our proof are concrete formulae which connect the transition densities, resp., Lévy measures of subordinated Brownian motions across different dimensions. As a by-product of our proof we obtain a gradient estimate for the transition semigroup of a subordinated Brownian motion.

1. Introduction I.J. Schoenberg proved in 1938 [START_REF] Schoenberg | Metric Spaces and Completely Monotone Functions[END_REF] the following

Theorem A: If R k (x 1 , . . . , x k ) → g(x 2 1 + • • • + x 2 k
) is positive definite (in the sense of Bochner ) for any dimension k ∈ N, then g(r), r > 0, is a completely monotone function.

Recall that g : (0, ∞) → (0, ∞) is completely monotone (notation: g ∈ CM), if g ∈ C ∞ and (-1) n g (n) (r) ≥ 0 for all r > 0, n ∈ N 0 .

(

) 1 
Schoenberg used Theorem A to determine all positive definite functions in a Hilbert space; this was part of his programme to characterize all metrics ρ in R k such that (R k , ρ) can be isometrically embedded into a Hilbert space, cf. [START_REF] Schoenberg | Metric Spaces and Positive Definite Functions[END_REF]. A necessary and sufficient condition turns out to be that R k

x → e -tρ 2 (x,0) is positive definite; in other words: all such metrics are of the form ρ(x, y) = ψ(x -y) where ψ is the (nonnegative!) characteristic exponent of a symmetric Lévy process. This allows us to re-cast Schoenberg's theorem in the form of

Theorem B: If R k (x 1 , . . . , x k ) → exp -tf (x 2 1 + • • • + x 2 k
) is positive definite (in the sense of Bochner ) for all t > 0 and any dimension k ∈ N, then g(r) = e -tf (r) , r > 0, is a completely monotone function.

In probabilistic terms, this means that g(x 2 1

+ • • • + x 2 k
) is an infinitely divisible characteristic function and f : (0, ∞) → (0, ∞) is a Bernstein function, i.e. f ∈ C ∞ , f ≥ 0 and (-1) n-1 f (n) (r) ≥ 0 for all r > 0, n ∈ N.

(

) 2 
Both theorems have attracted a lot of attention and there are several proofs highlighting various (hidden) aspects of Schoenberg's result. Let us briefly describe some of the developments. Modern (streamlined) versions of the classical proof of Theorem A can be found in Donoghue [5, p. 205] and Steerneman & van Perlo-ten Kleij [START_REF] Steerneman | Spherical distributions -Schoenberg (1938) revisited[END_REF], where the presentation of the convergence argument as k → ∞ is simplified; following Bochner [3, p. 99], Theorem B is e.g. proved in [START_REF] Schilling | Bernstein functions[END_REF]Theorem 13.14].

Using Bochner's characterization of positive definite functions and the solution of Hausdorff's moment problem, Ressel [START_REF] Ressel | A short proof of Schoenberg's theorem[END_REF] proves Theorem A in a completely different way. This approach is generalized to semigroups in Berg et al. [START_REF] Berg | Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions[END_REF]Chapter 5]. Independent of Ressel, Kahane [START_REF] Kahane | Sur les fonctions de type positf et negatif[END_REF] uses essentially the same argument to prove both Theorem A and B. Combining Bochner's theorem with the characterization of completely monotone functions by iterated differences 1 , Wendland [START_REF] Wendland | Scattered Data Approximation[END_REF]Theorem 7.13] gives a short proof of Theorem A which is inspired by earlier work by Kuelbs [START_REF] Kuelbs | Positive definite symmetric functions on linear spaces[END_REF] and Wells & Williams [START_REF] Wells | Embeddings and extensions in Analysis[END_REF]Chapter II]. Let us point out that the essential step in these proofs, [29, p. 94, last 4 lines] (also [START_REF] Kuelbs | Positive definite symmetric functions on linear spaces[END_REF]Lemma 2.1], [START_REF] Wells | Embeddings and extensions in Analysis[END_REF]Theorem 7.2]) is already present in Harzallah's proof that Bernstein functions operate on negative definite functions [6, Lemma 6], see also Jacob [START_REF] Jacob | Pseudo Differential Operators and Markov Processes[END_REF]Lemma 3.9.22] who works out this detail.

The methods to prove Theorems A and B are closely related to the so-called Schoenberg's problem in the geometry of Banach spaces: Determine all values α ≥ 0 such that exp(-x α p ) is positive definite on R k with k ≥ 2 and p ≥ 1.

For 1 ≤ p ≤ 2 this is discussed by Bretagnolle et al. [START_REF] Bretagnolle | Lois stables et espaces L p[END_REF] (who establish the connection with the embeddability of normed linear spaces into L p ); Zastavnyi [START_REF] Zastavnyi | Positive Definite Functions Depending on the Norm[END_REF] has the definitive solution.

Our approach to prove Theorem B uses elements of the Fourier approach from the original proof of Schoenberg's theorem, but the rather awkward limiting argument, sending the dimension k → ∞, is now replaced by a "dimension walk" argument which was pioneered by Matheron who calls it the montée et descente en clavier isotrope [17, pp. 31-37], see also the unpublished manuscript [START_REF] Matheron | Note geostatistique No 120: Quelques aspects de la montée[END_REF].

Preliminaries

A function u : R k → R is called rotationally invariant if u(x) depends only on |x|, i.e. if u(x) = U (|x|) for some function U : [0, ∞) → R. In abuse of notation we write u(r) = U (r) for r ≥ 0. For an integrable function u : R k → R we denote by

F k u(ξ) := 1 (2π) k R k e -ix•ξ u(x) dx, ξ ∈ R k , F -1 k u(ξ) := R k e ix•ξ u(x) dx, ξ ∈ R k , (3) 
the Fourier transform and inverse Fourier transform of u, respectively. If u is rotationally invariant, then both F k u and F -1 k u are rotationally invariant and

F k u(r) = 1 (2π) k F -1 k u(r) = 1 (2π) k/2 r k/2-1 (0,∞) u(s)s k/2 J k/2-1 (sr) ds (4) 
where J ν denotes the Bessel function of the first kind, see e.g. [START_REF] Schilling | Measures, Integrals and Martingales[END_REF]Example 19.4] or [START_REF] Wendland | Scattered Data Approximation[END_REF]Theorem 5.26] for a proof. Using (4) and some identities for Bessel functions [20, (10.6.2)] (see also the proof of Theorem 3.3), it is not hard to see that

F k+2 u(r) = - 1 2π 1 r d dr F k u(r) (5) 
for any rotationally invariant function such that u

(| • |) ∈ L 1 (R k , dx) ∩ L 1 (R k+2 , dx)
; this observation is due to Matheron [17, (1.4.9)]. Note that (5) is, by the first identity in (4), equivalent to

F -1 k+2 u(r) = -2π 1 r d dr F -1 k u(r). (6) 
Let (Ω, A, P) be a probability space. A random variable X : Ω → R k is called unimodal isotropic if P(X ∈ dx) = cδ 0 (dx) + p(|x|) dx for some non-increasing p : (0, ∞) → [0, ∞) and c ∈ [0, 1]. A family of random variables X t : Ω → R k is called (k-dimensional ) Lévy process if X 0 = 0 a.s., (X t ) t≥0 has independent and stationary increments and t → X t (ω) is for almost all ω ∈ Ω right-continuous with finite left limits. Our standard reference for Lévy processes is the monograph by Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]. For an introduction to Lévy processes we also recommend [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF]. We will often use the superscript to indicate the dimension, i.e. we write (X k t ) t≥0 for a k-dimensional Lévy process. It is well known, cf. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF], that (X t ) t≥0 can be uniquely characterized via its characteristic exponent,

ψ(ξ) = -i b • ξ + 1 2 ξ • Qξ + R k \{0} 1 -e iy•ξ + i y • ξ1 (0,1) (|y|) ν(dy), ξ ∈ R k ; the Lévy triplet (b, Q, ν) consists of the drift b ∈ R k , a positive semi-definite symmet- ric matrix Q ∈ R k×k and the Lévy measure ν on (R k \ {0}, B(R k \ {0})) satisfying R k \{0} min{1, |y| 2 } ν(dy) < ∞. We say that ψ satisfies the Hartman-Wintner condition if lim |ξ|→∞ Re ψ(|ξ|) log |ξ| = ∞. (HW)
It is shown in [START_REF] Knopova | A note on the existence of transition probability densities of Lévy processes[END_REF] that the Hartman-Wintner condition is equivalent to the existence of a smooth transition density p t for all t > 0. A function ψ is continuous negative definite (in the sense of Schoenberg) if, and only if, it is the characteristic exponent of a Lévy process. The domain of the generator A = A k of a k-dimensional Lévy process contains the compactly supported smooth functions C ∞ c (R k ) and

A k u(x) = - R k e ix•ξ ψ(ξ)F k u(ξ) dξ = -F -1 k (ψ • F k u)(x), u ∈ C ∞ c (R k ), x ∈ R k , (7) 
cf. [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF]Theorem 6.8]. If ψ is a rotationally invariant characteristic exponent of a kdimensional Lévy process and u(x) = u(|x|) a rotationally invariant function with compact support, then we write in accordance with (4)

A k u(r) := -F -1 k (ψ • F k u)(r), r ≥ 0. ( 8 
)
The jump measure N of (X t ) t≥0 is given by

N t (B) := #{s ∈ [0, t]; ∆X s := X s -X s-∈ B}, B ∈ B(R k \ {0}), t ≥ 0. ( 9 
)
For any fixed Borel set

B ∈ B(R k \ {0}) the process (N t (B)) t≥0 is a Poisson process with intensity ν(B), cf. [11, Lemma 9.4].
A one-dimensional Lévy process (S t ) t≥0 is called a subordinator if (S t ) t≥0 has nondecreasing sample paths. A subordinator is uniquely characterized by its Laplace transform Ee -uSt = e -tf (u) , u ≥ 0; the characteristic (Laplace) exponent f is a Bernstein function, i.e.

f (u) = αu + ∞ 0
(1 -e -uy ) µ(dy), u ≥ 0, for α ≥ 0 and a measure µ on (0, ∞) such that ∞ 0 min{1, y} µ(dy) < ∞. By Bernstein's theorem, cf. [START_REF] Schilling | Bernstein functions[END_REF]Theorem 3.2], this is equivalent to [START_REF] Berger | On the integral modulus of infinitely divisible distributions[END_REF].

If (S t ) t≥0 is a subordinator with Laplace exponent f and (B t ) t≥0 an independent Brownian motion, then the subordinated Brownian motion (B St ) t≥0 is again a Lévy process, and its characteristic exponent is given by ψ(ξ) = f (|ξ| 2 ). A comprehensive treatment of completely monotone functions, Bernstein functions and subordination is given in [START_REF] Schilling | Bernstein functions[END_REF].

Results

We will prove the following extended version of Schoenberg's theorem.

Theorem 3.1. Let f : [0, ∞) → [0, ∞).
The following statements are equivalent.

(i) R k ξ → f (|ξ| 2 ) is a continuous negative definite function for all k ≥ 1. (ii) R k ξ → f (|ξ| 2 ) is a continuous negative definite function for any k = 1 + 2n, n ∈ N 0 . (iii) f is a Bernstein function.
(iv) For some (all ) k ≥ 1 there exists a k-dimensional Lévy process (X t ) t≥0 with characteristic exponent ψ(ξ) := f (|ξ| 2 ) and

P(X t ∈ B) = e -ct δ 0 (B) + B p t (x) dx, B ∈ B(R k ), t > 0, (10) 
for some constant c ∈ [0, ∞] and a rotationally invariant function

p t : R k → [0, ∞) such that p t ( √ •) is completely monotone.
The proof of Theorem 3.1 actually shows that f is a Bernstein function if, and only if, there exist infinitely many n ∈ N such that R k ξ → f (|ξ| 2 ) is a continuous negative definite function for k = n and k = n + 2. Moreover, if (S t ) t≥0 is a subordinator with Laplace exponent f , then the Lévy process (X t ) t≥0 is subordinate to a Brownian motion, i.e. it is, in distribution, a time-changed Brownian motion (B St ) t≥0 . The next corollary reveals how the density function p k t and the Lévy measure ν k in different dimensions are related. As before, we use sub-and superscripts to indicate the dimension. We continue using the notation of Theorem 3.1.

Corollary 3.2. Let f : [0, ∞) → [0, ∞
) and suppose that one (hence all ) of the conditions of Theorem 3.1 holds.

(i) The rotationally invariant function p t = p k t satisfies

p k t (r) = - 1 2π 1 r d dr p k-2 t (r) for all r > 0, t > 0, k ≥ 3.
(ii) The Lévy measure ν k of the k-dimensional Lévy process (X t ) t≥0 has a rotationally invariant density m k with respect to k-dimensional Lebesgue measure; moreover, m k ( √ •) is completely monotone and satisfies

m k (r) = - 1 2π 1 r d dr m k-2 (r) for all r > 0, k ≥ 3.
If we formally define an operator T by T := - 

A k u = T A k-2 (T -1 u)
for any smooth rotationally invariant function u with compact support. This means that the operators A k-2 and A k are intertwined.

Theorem 3.3. Let (X k t ) t≥0 be a k-dimensional Lévy process with rotationally invariant characteristic exponent ψ k (ξ) = ψ(|ξ|), ξ ∈ R k , k ≥ 3. Then there exists a (k -2)- dimensional Lévy process (X k-2 t ) t≥0 with characteristic exponent ψ k-2 (ξ) := ψ(|ξ|), ξ ∈ R k-2 . If we denote by A k-2 and A k the generator of (X k-2 t
) t≥0 and (X k t ) t≥0 , respectively, then both A k u and A k-2 u are rotationally invariant and

A k u(r) = 1 r d dr A k-2 • 0 su(s) ds (r), r > 0,
for any smooth rotationally invariant function u with compact support, cf. [START_REF] Kahane | Sur les fonctions de type positf et negatif[END_REF].

Finally, we derive the following result on subordinated Brownian motion.

Corollary 3.4. Let (B t ) t≥0 be a k-dimensional Brownian motion and (S t ) t≥0 an independent subordinator with Laplace exponent f . The subordinated Brownian motion X t := B St satisfies P(X t ∈ dx) = e -ct δ 0 (dx) + p t (x) dx with c and p t as in 3.1(iv).

(i) The following statements are equivalent.

(a) c = ∞ (i.e. P(X t = 0) = 0 for some t > 0) and lim r→0 p t (r) < ∞ for small

t > 0. (b) E(S -k/2 t ) < ∞ for small t > 0. (c) ψ(ξ) := f (|ξ| 2
) satisfies the Hartman-Wintner condition (HW). (ii) c < ∞ (i.e. P(X t = 0) > 0 for some t > 0) if, and only if, (X t ) t≥0 is a compound Poisson process.

Corollary 3.4(ii) implies that a subordinated Brownian motion is either a compound Poisson process or absolutely continuous for all t > 0. Zabczyk [START_REF] Zabczyk | Sur la théorie semi-classique du potentiel pour les processus à accroissements indépendants[END_REF] proved, more generally, that this holds for any Lévy process with a rotationally invariant characteristic exponent. Moreover, (the proof of) Corollary 3.4(i) shows that for a subordinator (S t ) t≥0 with Laplace exponent f we have E(S -κ t ) < ∞ for some (all) κ > 0 and small (all) t > 0 if, and only if, f satisfies the Hartman-Wintner condition lim r→∞ f (r)/ log r = ∞. For a discussion of the Hartman-Wintner condition (HW) see Knopova & Schilling [START_REF] Knopova | A note on the existence of transition probability densities of Lévy processes[END_REF].

Proof of Theorem 3.1

In order to prove Schoenberg's original statement (the equivalence of 3.1(i) and 3.1(iii)) we will first focus on functions f satisfying the Hartman-Wintner condition

lim r→∞ f (r) log r = ∞,
and then extend the result using an approximation argument. The key tool is the following proposition which is of independent interest. It is inspired by a publication by Kulczycki & Ryznar [START_REF] Kulczycki | Gradient estimates of harmonic functions and transition densities for Lévy processes[END_REF] where the implication "(ii)⇒(i)" is used to obtain gradient estimates of transition densities for Lévy processes. (i) There exists a (k + 2)-dimensional Lévy process (X k+2 t

) t≥0 with characteristic ex- ponent ψ k+2 (ξ) := ψ(|ξ|), ξ ∈ R k+2 . (ii) The rotationally invariant density p k t of X k t satisfies d dr p k t (r) ≤ 0 for all t > 0. (iii) X k
t is unimodal isotropic for all t > 0. If one (hence all ) of the conditions is satisfied, then

p k+2 t (r) = - 1 2π 1 r d dr p k t (r) for all r > 0. ( 11 
)
Wolfe [START_REF] Wolfe | On the Unimodality of Infinitely Divisible Distribution Functions[END_REF] and Medgyessy [START_REF] Medgyessy | On a new class of unimodal infinitely divisible distribution functions and related topics[END_REF] have shown that X k t is unimodal isotropic if, and only if, the Lévy measure ν k is unimodal isotropic, see also Sato [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Theorem 54.1]. Let us briefly give an intuitive explanation for pure-jump Lévy processes (X k t ) t≥0 . It is known that the Lévy measure ν k is the vague limit of t -1 P(X k t ∈ •) as t → 0, i.e.

ν k (B) = lim t→0 1 t P(X k t ∈ B) = lim t→0 1 t B p k t (y) dy (12) 
for any Borel set B ∈ B(R k \ {0}) with no mass at the boundary ν k (∂B) = 0, see e.g. [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF]Remark 6.12] or [15, Corollary 3.3], and therefore ν k is unimodal isotropic as the vague limit of unimodal isotropic distributions. On the other hand, if ν k is unimodal isotropic, then the truncated measure µ := ν k (• ∩ B(0, ) c ) is unimodal isotropic for each > 0, and the associated compound Poisson process X k, t has a distribution of the form

e -λ t ∞ m=0 t m m! µ * m with λ = ν k (B(0, ) c ) which implies that X k, t is unimodal isotropic; hence, X k t = lim →0 X k, t is unimodal isotropic.
Proof of Proposition 4.1. Because of the growth condition (HW),

p k+2 t (x) := 1 (2π) k+2 R k+2
e -ix•ξ e -tψ(|ξ|) dξ is well-defined and, in fact, infinitely often differentiable. Moreover, p k+2 t is rotationally invariant and, as ψ(0) = 0, we have

R k+2 p k+2 t (x) dx = (F -1 k+2 p k+2 t )(0) = e -tψ(0) = 1.
Because of (5), the relation (11) holds.

(i)⇒(ii): By definition, p k+2 t is the density of X k+2 t ; in particular, p k+2 t ≥ 0. Because of (11), we get d dr p k t (r) ≤ 0.

(ii)⇒(i): [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF] shows p k+2 1 ≥ 0, and therefore p k+2 1 is a density function of a probability measure, say µ, on R k+2 . By construction, we have

(F -1 k+2 p k+2 1/n )(ξ) n = e -ψ k+2 (ξ) = e -ψ(|ξ|) = (F -1 k+2 p k+2 1 )(ξ)
for all n ∈ N and ξ ∈ R k+2 . This shows that µ(dx) = p k+2 1 (x) dx is infinitely divisible. Consequently, there exists a (k + 2)-dimensional Lévy process (X k+2 t

) t≥0 such that X k+2 1 ∼ µ, Ee iξ•X k+2 1 = e -ψ k+2 (ξ) .
(ii)⇔(iii): Since X k t is absolutely continuous -due to the growth condition (HW) -, this follows directly from the definition of a unimodal isotropic distribution. Remark 4.2. Proposition 4.1 shows that we need an additional assumption on the growth behaviour of the density p k t of the (k-dimensional) Lévy process to ensure the existence of a Lévy process in dimension k + 2. This assumption is not needed to construct Lévy processes in lower dimensions. Indeed: Let (X k t ) t≥0 be a k-dimensional Lévy process with rotationally invariant characteristic exponent ψ k (ξ) = ψ(|ξ|), and fix d ≤ k -1. Denote by

π d : R k → R d , x = (x 1 , . . . , x k ) → (x 1 , . . . , x d )
the projection onto the first d coordinates. Since

Ee iξ•π d (X k t ) = Ee i ξ•X k t = e -tψ(| ξ|) = e -tψ(|ξ|) , ξ ∈ R d , for ξ := (ξ, 0, . . . , 0) ∈ R k , it is not difficult to see that X d t := π d (X k t ) defines a d- dimensional Lévy process with characteristic exponent ψ d (ξ) = ψ(|ξ|), ξ ∈ R d .
Proposition 4.1 can be used to derive gradient estimates for the semigroup; they are not needed for the proof of Schoenberg's theorem but are of independent interest. Corollary 4.3. Let (X t ) t≥0 be a one-dimensional Lévy process with characteristic exponent ψ(ξ) = f (|ξ| 2 ) for some Bernstein function f . If f satisfies the Hartman-Wintner condition, then the semigroup P t u(x) := Eu(x + X t ) = u(x + y)p t (y) dy satisfies the gradient estimate

d dx P t u(x) ≤ 4 u ∞ p t ∞ (13) 
for all bounded Borel measurable functions u : R → R.

Remark 4.4. (i) Clearly, p t ∞ ≤ R e -tψ(ξ) dξ; we can estimate the integral if we have additional information on the growth of f , see e.g. [START_REF] Schilling | Coupling property and gradient estimates of Lévy processes via the symbol[END_REF]. (ii) In [14, Lemma 4.5], [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF] is used to obtain gradient estimates in terms of moments. (iii) It is possible to iterate [START_REF] Kuelbs | Positive definite symmetric functions on linear spaces[END_REF] to derive estimates for derivatives of higher order, cf.

[14, Lemma 4.1] for details.

Proof of Corollary 4.3. It follows from Proposition 4.1(iii) that (X t ) t≥0 is unimodal isotropic, and therefore the density p t (which exists because of (HW)) is unimodal. Using exactly the same reasoning as in [2, proof of Theorem 3.4] we conclude that

R |p t (x + y) -p t (x)| dx ≤ 4|y| p t ∞ , t > 0. ( 14 
)
Applying Fatou's lemma we get

R |p t (x)| dx ≤ lim inf |y|→0 R p t (x + y) -p t (x) y dx ≤ 4 p t ∞ . Since Eu(x + X t ) = R u(x + y)p t (y) dy = R u(y)p t (y -x) dy,
a variant of the differentiation lemma for parameter-dependent integrals, cf. [14, Proposition A.1] or [START_REF] Schilling | Measures, Integrals and Martingales[END_REF]Problem 14.20], yields

d dx Eu(x + X t ) = - R u(y)p t (y -x) dy.
Note that the differentiation lemma is indeed applicable since the map

x → R u(y)p t (y -x) dy
is continuous: it is the convolution of a Lebesgue-integrable function with a bounded function, see e.g. [START_REF] Schilling | Measures, Integrals and Martingales[END_REF]Theorem 15.8(ii)]. Hence,

d dx Eu(x + X t ) ≤ u ∞ R |p t (y -x)| dy ≤ 4 u ∞ p t ∞ .
Remark 4.5. Corollary 4.3 can be used to obtain gradient estimates for semigroups associated with one-dimensional Lévy processes (L t ) t≥0 whose characteristic exponent ψ has a decomposition of the form

ψ(ξ) = f (|ξ| 2 ) + ψ(ξ), ξ ∈ R,
for a continuous negative definite function ψ and a Bernstein function f satisfying the Hartman-Wintner condition. Indeed : Let (X t ) t≥0 and (Y t ) t≥0 be independent Lévy processes with characteristic exponent f (|ξ| 2 ) and ψ(ξ), respectively. By the proof of Corollary 4.3, the density p t of X t satisfies ( 14), and therefore we obtain for the density

q t (x) = R p t (x -z) P Yt (dz) of L t that R |q t (x + y) -q t (x)| dx ≤ R R |p t (x + y -z) -p t (x -z)| dx P Yt (dz) ≤ 4|y| p t ∞ R P Yt (dz) = 4|y| p t ∞
for all y ∈ R, see also [START_REF] Berger | On the integral modulus of infinitely divisible distributions[END_REF]Lemma 3.1]. Using this estimate, we can follow the reasoning in the proof of Corollary 4.3 to deduce that

d dx Eu(x + L t ) ≤ 4 u ∞ p t ∞ , t > 0,
for any bounded Borel measurable function u : R → R.

We are now ready to prove the first part of Schoenberg's theorem.

Proof of Theorem 3.1. We will prove the equivalence of (i), (ii) and (iii).

The direction (i)⇒(ii) is clear. For (ii)⇒(iii) we assume first that f satisfies the Hartman-Wintner condition, i.e. lim r→∞ f (r)/ log r = ∞. By assumption,

ψ k (ξ) := ψ(|ξ|) := f (|ξ| 2 ), ξ ∈ R k , is a continuous negative definite function for k = 1 + 2n, n ∈ N 0 , satisfying ( 
HW). In particular, there exists a k-dimensional Lévy process (X k t ) t≥0 with characteristic exponent ψ k . Because of (HW), X k t has a density p k t with respect to Lebesgue measure. In particular, (i) in Proposition 4.1 holds for any k = 1 + 2n. If we set g k t (r) := p k t (2 √ r), then by [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF],

d dr g k t (r) = 1 √ r d ds p k t (s) s=2 √ r (11) = 1 √ r (-2πsp k+2 t (s)) s=2 √ r = -4πg k+2 t (r).
Iterating this procedure, we obtain

d n dr n g 1 t (r) = (-4π) n g 1+2n t (r) for all n ∈ N, r > 0.
As g 1+2n t ≥ 0 for n ∈ N 0 , this proves that g 1 t is completely monotone, i.e. there exists a finite measure µ t on (0, ∞) such that

g 1 t (r) = (0,∞)
e -rs µ t (ds), r ≥ 0.

Applying Fubini's theorem we find

e -tf (r 2 ) = R e ixr p 1 t (|x|) dx = R e ixr (0,∞) e -s|x| 2 /4 µ t (ds) dx = (0,∞) R
e ixr e -s|x| 2 /4 dx µ t (ds)

= √ 4π (0,∞) 1 √ s e -r 2 /s µ t (ds). (15) 
This identity shows that r → e -tf (r) is completely monotone. In view of (1) this implies that

- 1 t d dr e -tf (r) = f (r)e -tf (r)
is completely monotone. Letting t → 0 we conclude that f is completely monotone, and so f is a Bernstein function; see [START_REF] Schilling | Bernstein functions[END_REF]Theorem 3.7] for an alternative proof that e -tf (•) ∈ CM implies that f is a Bernstein function. If f does not satisfy the Hartman-Wintner condition, we set f (r) := f (r) + r.

Note that R k ξ → f (|ξ| 2 ) is a continuous negative definite function for any k = 1 + 2n, n ∈ N 0 and > 0. As f ≥ 0, f obviously satisfies the Hartman-Wintner condition.

The first part of this proof shows that f is a Bernstein function. Consequently, f is a Bernstein function as the pointwise limit of Bernstein functions, cf. [START_REF] Schilling | Bernstein functions[END_REF]Corollary 3.8(ii)].

(iii)⇒(i): Since f is a Bernstein function, there exists a subordinator (S t ) t≥0 with Laplace transform e -tf . If (B t ) t≥0 is a k-dimensional Brownian motion, then X t := B St is a k-dimensional Lévy process with characteristic exponent f (|ξ| 2 ). This implies that

R k ξ → f (|ξ| 2
) is a continuous and negative definite function.

It remains to prove the equivalence of (iii) and (iv) in Theorem 3.1. To this end, we recall a result on the distribution of subordinated Brownian motion. Lemma 4.6. Let (B t ) t≥0 be a k-dimensional Brownian motion and (S t ) t≥0 an independent subordinator with Laplace exponent f . Then the distribution of X t := B St equals

P(X t ∈ B) = P(S t = 0)δ 0 (B) + B p t (x) dx, B ∈ B(R k ), t > 0;
here p t : R k → [0, ∞) is a rotationally invariant function and p t ( √ •) ∈ CM.

Proof. Since (S t ) t≥0 and (B t ) t≥0 are independent, we have 

P(X t ∈ B) = [0,∞) P(B s ∈ B) P(S t ∈ ds) = δ 0 (B)P(S t = 0) + (0,∞) B 1 (2πs) k/2 exp
The fact that p t ( √ •) is completely monotone follows directly from this representation and the differentiation lemma for parameter-dependent integrals.

Proof of Theorem 3.1, equivalence of (iii) & (iv). (iii)⇒(iv): As f is a Bernstein function, there exists a subordinator (S t ) t≥0 with Laplace exponent f . The subordinated Brownian motion X t := B St is a Lévy process with characteristic exponent ψ(ξ) = f (|ξ| 2 ) and, by Lemma 4.6,

P(X t ∈ B) = P(S t = 0)δ 0 (B) + B p t (x) dx, B ∈ B(R k ),
for the rotationally invariant non-negative function p t defined in ( 16) satisfying p t ( √ •) ∈ CM. By the Markov property of (S t ) t≥0 , we have for any s ≤ t P(S t = 0) = E P(z + S t-s = 0) z=Ss = E 1 {Ss=0} P(S t-s = 0) as (S t ) t≥0 has non-decreasing sample paths. Consequently, f (t) := P(S t = 0) satisfies f (t + s) = f (t)f (s). Since f is right-continuous, this implies, by the Cauchy-Abel functional equation, P(S t = 0) = f (t) = e -ct for some c ∈ [0, ∞], see e.g. [START_REF] Khoshnevisan | From Lévy-Type Processes to Parabolic SPDEs[END_REF]Theorem A.1] for a proof.

For the converse direction (iv)⇒(iii), we can argue exactly as in the proof of (15) in the step "(ii)⇒(iii)." t is given by ( 16), i.e.

p k t (r) = (0,∞) 1 (2πs) k/2 exp - r 2 2s P(S t ∈ ds).
If we differentiate p k t with respect to r, then we obtain

d dr p k t (r) = -r (0,∞) 1 s 1 (2πs) k/2 exp - r 2 2s P(S t ∈ ds) = -2πrp k+2 t (r).
(ii) Since the Lévy measure ν k (dy) is the vague limit of t -1 p k t (y) dy, cf. ( 12), the assertion follows formally from (i) by dividing both sides by t -1 and letting t → 0. For a rigorous argument we note that the density m k of the Lévy measure ν k is given by

m k (r) = (0,∞) 1 (2πs) k/2 exp - r 2 2s µ(ds)
where µ denotes the Lévy measure of the subordinator (S t ) t≥0 , cf. [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Theorem 30.1]. Now the claim follows using exactly the same calculation as in (i).

Proof of Theorem 3.3. For the existence of the process (X k-2 t ) t≥0 see Remark 4.2. Since both A k and A k-2 are pseudo-differential operators with rotationally invariant symbols, cf. [START_REF] Jacob | Pseudo Differential Operators and Markov Processes[END_REF], it is obvious that A k u and A k-2 u are rotationally invariant for any smooth rotationally invariant u with compact support. By ( 6) and ( 7), we have

A k u(r) = -F -1 k (ψ • F k u)(r) = 2π 1 r d dr F -1 k-2 (ψ • F k u)(r) = -2π 1 r d dr A k-2 (F -1 k-2 F k u)(r).
If we can show that

-2πF -1 k-2 (F k u)(r) = r 0 s • u(s) ds -C =: v(r), r > 0,
where C := ∞ 0 su(s) ds, then the claim follows; note that A k-2 (C1 R k-2 ) = 0 by the very definition of the generator. Applying (4), we find

F k u(r) = 1 (2π) k/2 r k/2-1 ∞ 0 u(s)s k/2 J k/2-1 (sr) ds = 1 (2π) k/2 r k/2-1 ∞ 0 d ds v(s) s k/2-1 J k/2-1 (sr) ds.
Since v has compact support, the integration by parts formula yields

F k u(r) = - 1 (2π) k/2 r k/2-1 ∞ 0 v(s)s k/2-2 k 2 -1 J k/2-1 (sr) + s d ds J k/2-1 (sr) ds. As d dz J k/2-1 (z) = - k 2 -1 1 z J k/2-1 (z) + J k/2-2 (z),
cf. [20, (10.6.2)], we get

F k u(r) = - 1 (2π) k/2 r (k-2)/2-1 ∞ 0 v(s)s (k-2)/2 J (k-2)/2-1 (sr) ds = - 1 2π F k-2 v(r).
Consequently,

F -1 k-2 (F k u)(r) = - 1 2π v(r).
Proof of Corollary 3.4. (i) By ( 16) and the monotone convergence theorem, we have Since s → e -tf (s 4 ) is a continuous function this implies lim s→∞ e -tf (s 4 ) s = 0. This, in turn, gives ∞ = -lim s→∞ log e -tf (s 4 ) s = lim s→∞ (tf (s 4 ) -log s).

Consequently, f (s 4 ) log(s 2 ) ≥ 1 t log s 2 log s = 1 2t

for s > 0 sufficiently large and t > 0 small. Letting t → 0 proves lim s→∞ f (s 4 ) log(s 2 ) = ∞, and this implies readily the assertion.

(ii) The direction "⇐" follows directly from the definition of a compound Poisson process. To prove "⇒", we define a stopping time τ := inf{t > 0; X t = 0}. By the strong Markov property, P(X t = 0, τ < t) = E 1 {τ <t} P(z + X t-τ = 0) z=Xτ = 0 as P(x + X s = 0) = 0 for all s > 0 and x = 0, cf. [START_REF] Kingman | On random sequences with spherical symmetry[END_REF]. This shows P(X t = 0) = P(X t = 0, τ ≥ t) = P sup here N denotes the jump measure [START_REF] Kelker | Distribution theory of spherical distributions and a location-scale parameter generalization[END_REF] and ν the Lévy measure of (X t ) t≥0 . Combining both considerations and using that, by assumption and (10), P(X t = 0) = e -ct for some c ∈ [0, ∞), we get ν(R k \ {0}) = c < ∞. This proves that (X t ) t≥0 is a compound Poisson process.

For an alternative proof of Corollary 3.4(ii) see [START_REF] Sato | Lévy Processes and Infinitely Divisible Distributions[END_REF]Theorem 27.4].

Proposition 4 . 1 .

 41 Let (X k t ) t≥0 be a k-dimensional Lévy process with rotationally invariant characteristic exponent ψ k (ξ) = ψ(|ξ|), ξ ∈ R k . If ψ satisfies the Hartman-Wintner condition, then the following statements are equivalent.

5 .

 5 Proof of Corollary 3.2, Theorem 3.3 & Corollary 3.4 Proof of Corollary 3.2. (i) The proof of Theorem 3.1 shows that p k
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 1141 k/2 P(S t ∈ ds) t = 0) = P(X t = 0) = e -ct .From this the equivalence "(a)⇔(b)" follows easily. In order to prove "(b)⇔(c)" we use the following -ry r κ-1 dr, y ≥ 0, -tf (r) r k/2-1 dr.If ψ(ξ) := f (|ξ| 2 ) satisfies the Hartman-Wintner condition, then obviously E(S -k/2 t ) < ∞ for all t > 0. Conversely, suppose that E(S -k/2 t) < ∞ for sufficiently small t > 0. Introducing polar coordinates, we get ∞ -tf (r) r -1/2 dr ≤ ∞ 0 e -tf (r) r k/2-1 dr < ∞, -tf (r) r -1/2 dr = -tf (s 4 ) s ds.

s≤t |X s | = 0 .

 0 On the other hand, we haveP sup s≤t |X s | = 0 ≤ P(N t (R k \ {0}) = 0) = e -tν(R k \{0}) ;

In the end, this characterization relies on a deep application of the Krein-Milman theorem, cf.[START_REF] Schilling | Bernstein functions[END_REF] Theorem 4.8].