
HAL Id: hal-03487014
https://hal.science/hal-03487014

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

On the optimal control of variational–hemivariational
inequalities

Yi-Bin Xiao, Mircea Sofonea

To cite this version:
Yi-Bin Xiao, Mircea Sofonea. On the optimal control of variational–hemivariational inequalities. Jour-
nal of Mathematical Analysis and Applications, 2019, 475, pp.364 - 384. �10.1016/j.jmaa.2019.02.046�.
�hal-03487014�

https://hal.science/hal-03487014
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


On the Optimal Control of
Variational-Hemivariational Inequalities

Yi-bin Xiao1 and Mircea Sofonea2∗

1 School of Mathematical Sciences

University of Electronic Science and Technology of China

Chengdu, Sichuan, 611731, PR China

2 Laboratoire de Mathématiques et Physique
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Abstract. The present paper represents a continuation of [26]. There, a continuous
dependence result for the solution of an elliptic variational-hemivariational inequality
was obtained and then used to prove the existence of optimal pairs for two associated
optimal control problems. In the current paper we complete this study with more
general results. Indeed, we prove the continuous dependence of the solution with
respect to a parameter which appears in all the data of the problem, including the
set of constraints, the nonlinear operator and the two functionals which govern the
variational-hemivariational inequality. This allows us to consider a general associated
optimal control problem for which we prove the existence of optimal pairs, together
with a new convergence result. The mathematical tools developed in this paper are
useful in the analysis and control of a large class of boundary value problems which,
in a weak formulation, lead to elliptic variational-hemivariational inequalities. To
provide an example, we illustrate our results in the study of an inequality which
describes the equilibrium of an elastic body in frictional contact with a foundation
made of a rigid body covered by a layer of soft material.
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1 Introduction

Variational and hemivariational inequalities are widely used in the study of many
nonlinear boundary value problems and have a large number of applications in Con-
tact Mechanics and Engineering see, for instance, [4, 19, 24, 25, 29]. The theory of
variational inequalities was developed in early sixty’s, by using arguments of mono-
tonicity and convexity, including properties of the subdifferential of a convex function.
In contrast, the analysis of hemivariational inequalities uses as main ingredient the
properties of the subdifferential in the sense of Clarke [7], defined for locally Lipschitz
functions, which may be nonconvex. Hemivariational inequalities were first introduced
in early eighty’s by Panagiotopoulos in the context of applications in engineering prob-
lems. Studies of variational and hemivariational inequalities can be found in several
comprehensive references, e.g., [1, 3, 6, 9, 10, 12, 15, 21, 34, 35, 36, 37].

Variational-hemivariational inequalities represent a special class of inequalities, in
which both convex and nonconvex functions are present. Recent references in the field
include the book [28] and the paper [5]. The book [28] deals with existence, uniqueness
and convergence results for various classes of variational-hemivariational inequalities.
It also contains applications of these inequalities in the study of mathematical models
which describe the contact between a deformable body and a foundation. The paper
[5] deals with existence, approximation, and regularization results for semicoercive
variational-hemivariational inequalities and includes an application to unilateral con-
tact problems with nonmonotone boundary conditions. A similar regularization tech-
nique was used in [23] in the study of a variational-hemivariational inequality which
describes the delamination of composite structures with a contaminated interface
layer.

The optimal control theory deals with the existence and, when possible, the
uniqueness of optimal state-control pair. It also deals with the derivation of necessary
conditions of optimality or, better, necessary and sufficient conditions of optimality.
Optimal control problems for variational and hemivariational inequalities have been
discussed in several works, including [2, 8, 14, 16, 17, 22, 30, 31, 32, 33]. Due to the
nonsmooth and nonconvex feature of the functionals involved, the treatment of opti-
mal control problems for such inequalities requires the use of their approximation by
smooth optimization problems. And, on this matter, establishing convergence results
for the optimal pairs represents a topic of major interest.

In [26] we have studied variational-hemivariational inequalities of the form: find
u ∈ Kg such that

〈Au, v − u〉+ ϕ(u, v)− ϕ(u, u) + j0(u; v − u) ≥ (f, πv − πu)Y ∀ v ∈ Kg. (1.1)

Here and everywhere in this paper X is a reflexive Banach space, 〈·, ·〉 denotes the
duality pairing betweenX∗ and its dualX∗, Y is a real Hilbert space endowed with the
inner product (·, ·)Y and π : X → Y . Moreover, in (1.1) we supposed that Kg = gK
where K ⊂ X and g > 0, A : X → X∗, ϕ : X ×X → R, j : X → R and f ∈ Y . Note
that the function ϕ(u, ·) is assumed to be convex and the function j is locally Lipschitz
and, in general, nonconvex. Therefore, following the terminology in the literature, we
see that inequality (1.1) represents a variational-hemivariational inequality.
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A short description of the results obtained in [26] is the following. First, the exis-
tence and uniqueness of the solution of (1.1) was proved by using a result proved in
[18], based on arguments of surjectivity for pseudomonotone operators and the Ba-
nach fixed point argument. Then, under specific assumptions on the functions ϕ and
j, the continuous dependence of the solution with respect f and g was studied and a
convergence result was proved. Next, two optimal control problems were considered,
in which the control were f and g, respectively. The existence of optimal pairs together
with some convergence results were proved, for each problem. Finally, these abstract
results were used in the study of a one-dimensional mathematical model which de-
scribes the equilibrium of an elastic rod in unilateral contact with a foundation, under
the action of a body force.

As it results from above, the study in [26] was focused on the dependence of the
solution with respect the parameters f and g or, equivalently, with respect to f and
the set of constraints Kg. Nevertheless, various examples can be considered in which
the solution depends on a number of parameters which appear in the operator A, or
in the functions ϕ and j, as well. All of these parameters could play the role of control
in optimal control problems associated to inequality (1.1). For this reason, there is a
need to extend the results in [26] to more general cases and this is the aim of this
current paper. Considering such extension leads to various mathematical difficulties.
To overcome them we use new assumptions and new arguments, different to those
used in [26], which represents the trait of novelty of this current paper.

The rest of the manuscript is organized as follows. In Section 2 we review some
notation and preliminary results. In Section 3 we introduce a variational-hemivaria-
tional inequality in which all the data depend on a parameter p. We state the behavior
of the solution of this inequality with respect to p and provide a convergence result.
Then, in Section 4 we consider a class of optimal control problems associated to the
variational-hemivariational inequality, for which we prove the existence and conver-
gence of the optimal pairs. Finally, in Section 5 we give an example which illustrate
a potential application of our abstract study. The example arises from Contact Me-
chanics and is given by a variational-hemivariational inequality which describes the
contact of an elastic body with a foundation made of a rigid body covered by a layer
of deformable material.

2 Preliminaries

We use notation ‖ · ‖X and 0X for the norm and the zero space element of X, re-
spectively. Unless stated otherwise, all the limits, upper and lower limits below are
considered as n→∞, even if we do not mention it explicitly. The symbols “⇀” and
“→” denote the weak and the strong convergence in various spaces which will be
specified. Nevertheless, for simplicity, we write gn → g for the convergence in R.

Definition 1 An operator A : X → X∗ is said to be:
a) monotone, if for all u, v ∈ X, we have 〈Au− Av, u− v〉 ≥ 0;
b) bounded, if A maps bounded sets of X into bounded sets of X∗;
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c) pseudomonotone, if it is bounded and un → u weakly in X with

lim sup 〈Aun, un − u〉 ≤ 0

implies lim inf 〈Aun, un − v〉 ≥ 〈Au, u− v〉 for all v ∈ X;
d) hemicontinuous, if for all u, v, w ∈ X, the function λ 7→ 〈A(u + λv), w〉 is

continuous on [0, 1].

We now recall the definition of the Clarke subdifferential for a locally Lipschitz
function.

Definition 2 A function j : X → R is said to be locally Lipschitz if for every x ∈ X
there exists Ux a neighborhood of x and a constant Lx > 0 such that

|j(y)− j(z)| ≤ Lx‖y − z‖X for all y, z ∈ Ux.

The generalized (Clarke) directional derivative of j at the point x ∈ X in the direction
v ∈ X is defined by

j0(x; v) = lim sup
y→x, λ↓0

j(y + λv)− j(y)

λ
.

The generalized gradient (subdifferential) of j at x is a subset of the dual space X∗

given by
∂j(x) = { ζ ∈ X∗ | j0(x; v) ≥ 〈ζ, v〉 ∀ v ∈ X }.

A locally Lipschitz function j is said to be regular (in the sense of Clarke) at the
point x ∈ X if for all v ∈ X the one-sided directional derivative j′(x; v) exists and
j0(x; v) = j′(x; v).

We shall use the following properties of the generalized directional derivative and
the generalized gradient.

Proposition 3 Assume that j : X → R is a locally Lipschitz function. Then the
following hold:

(i) For every x ∈ X, the function X 3 v 7→ h0(x; v) ∈ R is positively homogeneous
and subadditive, i.e., j0(x;λv) = λj0(x; v) for all λ ≥ 0, v ∈ X and j0(x; v1 + v2) ≤
j0(x; v1) + j0(x; v2) for all v1, v2 ∈ X, respectively.

(ii) For every v ∈ X, we have j0(x; v) = max { 〈ξ, v〉 | ξ ∈ ∂j(x) }.

We now recall the notion of convergence in the sense of Mosco, denoted by “
M−→ ”,

which will be used in the Sections 3–5 of this paper.

Definition 4 Let X be a normed space, {Kn} a sequence of nonempty subsets of X
and K a nonempty subset of X. We say that the sequence {Kn} converges to K in
the Mosco sense if the following conditions hold.

(M1)

{
For each v ∈ K there exists a sequence {vn} such that

vn ∈ Kn for each n ∈ N and vn → v in X.

(M2)

{
For each sequence {vn} such that

vn ∈ Kn for each n ∈ N and vn ⇀ v in X we have v ∈ K.
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Note that the convergence in the sense of Mosco depends on the topology of the

normed space X and, for this reason, we write it explicitly Kn
M−→ Kn in X. More

details on this topic could be found in [20].

We proceed with the following version of the Weierstrass theorem.

Theorem 5 Let X be a reflexive Banach space, K a nonempty weakly closed subset
of X and J : X → R a weakly lower semicontinuous function. In addition, assume
that either K is bounded or J is coercive, i.e., J(v)→∞ as ‖v‖X →∞. Then, there
exists at least an element u such that

u ∈ K, J(u) ≤ J(v) ∀ v ∈ K. (2.1)

The proof of Theorem 5 can be found in many books and survey, see, for instance,
[13, 27].

We now introduce the variational-hemivariational inequality we are interested in
and state its unique solvability. The functional framework is the following. Let Λ
be a set of parameters and, for any p ∈ Λ, consider a set Kp ⊂ X, an operator
Ap : X → X∗, the functions ϕp : X×X → IR and jp : X → IR and an element fp ∈ Y .
With these data, for p ∈ Λ given, we state the following inequality problem.

Problem P . Find an element u = u(p) such that

u ∈ Kp, 〈Apu, v − u〉+ ϕp(u, v)− ϕp(u, u) + j0
p(u; v − u) (2.2)

≥ (fp, πv − πu)Y ∀ v ∈ Kp.

In the study of Problem P , we consider the following hypotheses on the data.

Kp is nonempty, closed and convex subset of X. (2.3)


Ap : X → X∗ is such that

(a) it is pseudomonotone;

(b) it is strongly monotone, i.e., there exists mp > 0 such that

〈Av1 − Av2, v1 − v2〉 ≥ mp‖v1 − v2‖2
X for all v1, v2 ∈ X.

(2.4)



ϕp : X ×X → R is such that

(a) ϕp(u, ·) : X → R is convex and lower semicontinuous,

for all u ∈ X;

(b) there exists αp > 0 such that

ϕp(u1, v2)− ϕp(u1, v1) + ϕp(u2, v1)− ϕp(u2, v2)

≤ αp‖u1 − u2‖X ‖v1 − v2‖X for all u1, u2, v1, v2 ∈ X.

(2.5)
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jp : X → R is such that

(a) it is locally Lipschitz;

(b) ‖ξ‖X∗ ≤ c0p + c1p ‖v‖X for all v ∈ X, ξ ∈ ∂jp(v),

with c0p, c1p ≥ 0;

(c) there exists βp > 0 such that

j0
p(v1; v2 − v1) + j0

p(v2; v1 − v2) ≤ βp ‖v1 − v2‖2
X

for all v1, v2 ∈ X.

(2.6)

αp + βp < mp. (2.7)

fp ∈ Y. (2.8) π : X → Y is a linear continuous operator, i.e.,

‖πv‖Y ≤ d0 ‖v‖X ∀ v ∈ X with d0 > 0.
(2.9)

The unique solvability of the variational-hemivariational inequality (1.1) is pro-
vided by the following result.

Theorem 6 Assume (2.3)–(2.9). Then, Problem P has a unique solution u ∈ Kp.

Theorem 6 represents a slightly modified version of Theorem 18 in [18]. Its proof
is is carried out in several steps, by using the properties of the subdifferential, both
in the sense of Clarke and in the sense of convex analysis, surjectivity result for
pseudomonotone multivalued operators, and the Banach fixed point argument. For
additional details we also refer the reader to [26] and [28, Remark 13].

We end this section with the remark that everywhere in this paper assumption
(2.4) (a) can be dropped if we suppose that the operator Ap is bounded and hemicon-
tinuous. Indeed, it is well known that a bounded monotone hemicontinuous operator
defined on X with values in X∗ is pseudomonotone.

3 A convergence result

Theorem 6 allows us to define the map p 7→ u(p) which associates to each p ∈ Λ
the solution u = u(p) ∈ Kp of the variational-hemivariational inequality (2.2). In
this section we present an important property of this map, which represents a crucial
ingredient in the study of optimal control problems associated to inequality (2.2).

Let {pn} be a sequence of elements in Λ and assume that, for each n ∈ N, the
corresponding set Kpn , operator Apn , functions ϕpn , jpn and element fpn satisfy as-
sumptions (2.3)–(2.8) with constants mpn , αpn , c0pn c1pn , βpn . To avoid any confusion,
when used for p = pn, we refer to these assumptions as assumptions (2.3)n–(2.8)n.
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Then, if condition (2.9) is satisfied, we deduce from Theorem 6 that for each n ∈ N
there exists a unique solution un = u(pn) for the following problem.

Problem Pn. Find an element un = u(pn) such that

un ∈ Kpn , 〈Apnun, v − un〉+ ϕpn(un, v)− ϕpn(un, un) + j0
pn(un; v − un) (3.1)

≥ (fpn , πv − πun)Y ∀ v ∈ Kpn .

We now consider the following additional assumptions.

Kpn
M−→ Kp in X, as n→∞. (3.2)

For any n ∈ N there exists Fn ≥ 0 and δn ≥ 0 such that

(a) ‖Apnv − Apv‖X ≤ Fn(‖v‖X + δn) for all v ∈ X;

(b) lim
n→0

Fn = 0;

(c) the sequence {δn} ⊂ R is bounded.

(3.3)



For any n ∈ N there exists a function cn : R+ → R+ such that

(a) ϕpn(u, v1)− ϕpn(u, v2) ≤ cn(‖u‖X)‖v1 − v2‖X
∀u, v1, v2 ∈ X;

(b) the sequence {cn(‖vn‖X)} ⊂ R is bounded

whenever the sequence {vn} ⊂ X is bounded.

(3.4)


For all sequences {un}, {vn} ⊂ X such that

un ⇀ u in X, vn → v in X, we have

lim sup
(
ϕpn(un, vn)− ϕpn(un, un)

)
≤ ϕp(u, v)− ϕp(u, u).

(3.5)


For all sequences {un}, {vn} ⊂ X such that

un ⇀ u in X, vn → v in X, we have

lim sup j0
pn(un; vn − un) ≤ j0

p(u; v − u).

(3.6)

{
For all sequence {vn} ⊂ X such that

vn ⇀ v in X, we have πvn → πv in Y.
(3.7)

fpn ⇀ fp in Y, as n→∞. (3.8)

There exists m0 > 0 such that m0 + αpn + βpn ≤ mpn ∀n ∈ N. (3.9)

The sequences {c0pn}, {c1pn} ⊂ R are bounded. (3.10)

The main result of this section is the following.
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Theorem 7 Assume (2.3)–(2.9) and, for each n ∈ N, assume (2.3)n–(2.8)n. More-
over, assume (3.2)–(3.10) and denote by un and u the solutions of Problems Pn and
P, respectively. Then the sequence {un} converges strongly to u, i.e.,

un → u in X. (3.11)

Note that in applications, Λ ⊂ Z where Z is a normed space and conditions (3.2)–
(3.6) and (3.8)–(3.10) are satisfied when pn ⇀ p in Z. In this case Theorem 7 implies
that

pn ⇀ p in Z =⇒ u(pn)→ u(p) in X, (3.12)

which shows that the operator p 7→ u(p) : Λ→ X is weakly-strongly continuous.

The proof of Theorem 7 will be carried out in several steps that we present in
what follows. Everywhere below we assume that the hypotheses of Theorem 7 hold.
The first step of the proof is the following.

Lemma 8 There is an element ũ ∈ Kp and a subsequence of {un}, still denoted by
{un}, such that un ⇀ ũ in X, as n→∞.

Proof. We first establish the boundedness of {un} in X. Let v be a given element in
Kp. We use assumption (3.2) and consider a sequence {vn} such that vn ∈ Kpn for all
n ∈ N and

vn → v in X. (3.13)

Let n ∈ N. We test with vn ∈ Kpn in (3.1) to obtain

〈Apnun, un − vn〉 ≤ (3.14)

+ϕpn(un, vn)− ϕpn(un, un) + j0
pn(un; vn − un) + (fpn , πun − πvn)Y .

Moreover, using the strongly monotonicity of the operator Apn we deduce that

〈Apnun, un − vn〉 ≥ mpn‖un − vn‖2
X + 〈Apnvn, un − vn〉. (3.15)

Next, we write

ϕpn(un, vn)− ϕpn(un, un)

= ϕpn(un, vn)− ϕpn(un, un) + ϕpn(vn, un)− ϕpn(vn, vn)

+ϕpn(vn, vn)− ϕpn(vn, un),

then we use assumptions (2.5)n(b), (3.4) to see that

ϕpn(un, vn)− ϕpn(un, un) (3.16)

≤ αpn‖un − vn‖2
X + cn(‖vn‖X)‖un − vn‖X .
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On the other hand, by (2.6)n(b) and Proposition 3(ii), we have

j0
pn(un; vn − un)

= j0
pn(un; vn − un) + j0

pn(vn;un − vn)− j0
pn(vn;un − vn)

≤ j0
pn(un; vn − un) + j0

pn(vn;un − vn) + |j0
pn(vn;un − vn)|

≤ βpn‖un − vn‖2
X + |max{〈ζ, un − vn〉 | ζ ∈ ∂jpn(vn)}|

and, using assumption (2.6)n(b) we find that

j0
pn(un; vn − un) ≤ βpn‖un − vn‖2

X + (c0pn + c1pn‖vn‖X)‖un − vn‖X . (3.17)

Finally, assumption (2.9) yields

(fpn , πun − πvn)Y ≤ d0‖fpn‖Y ‖un − vn‖X . (3.18)

We now combine inequalities (3.14)–(3.18) to see that

mpn ‖un − vn‖2
X ≤ 〈Apnvn, vn − un〉

+αpn‖un − vn‖2
X + cn(‖vn‖X)‖un − vn‖X

+βpn‖un − vn‖2
X + (c0pn + c1pn‖vn‖X)‖un − vn‖X + d0‖fpn‖Y ‖un − vn‖X ,

which implies that

(mpn − αpn − βpn) ‖un − vn‖X ≤ ‖Apnvn‖X (3.19)

+cn(‖vn‖X) + (c0pn + c1pn‖vn‖X) + d0‖fpn‖Y .

Note that assumptions (3.9) and (3.3) imply that

m0 ≤ mpn − αpn − βpn and ‖Apnvn‖X ≤ ‖Apvn‖X + Fn(‖vn‖X + δn),

respectively. Therefore, using these inequalities in (3.19) we deduce that

m0 ‖un − vn‖X ≤ ‖Apvn‖X + Fn(‖vn‖X + δn) (3.20)

+cn(‖vn‖X) + (c0pn + c1pn‖vn‖X) + d0‖fpn‖Y .

Next, by (3.13) and (3.8) we know that the sequences {vn} and {fpn} are bounded
in X and Y , respectively. Therefore, using assumptions (2.4)(a), (3.3)(b), (c), (3.4)(b),
(3.10) and inequality (3.20), we deduce that that there is a constant C > 0 indepen-
dent of n such that ‖un − vn‖X ≤ C. This implies that {un} is a bounded sequence
in X and, from the reflexivity of X, by passing to a subsequence, if necessary, we
deduce that

un ⇀ ũ in X, as n→∞ (3.21)

with some ũ ∈ X. Finally, recall that un ∈ Kpn . Therefore, the convergence (3.21)
combined with assumption (3.2) shows that ũ ∈ Kp which concludes the proof. �

The second step in the proof is as follows.
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Lemma 9 The element ũ ∈ Kp is a solution of Problem P.

Proof. Let v be a given element in Kp. We use assumption (3.2) and consider a
sequence {vn} such that vn ∈ Kpn for all n ∈ N and (3.13) holds. Let n ∈ N. Then
inequality (3.14) holds and, passing to the upper limit in this inequality, we find that

lim sup 〈Apnun, un − vn〉 ≤ lim sup [ϕpn(un, vn)− ϕpn(un, un)] (3.22)

+ lim sup j0
pn(un; vn − un) + lim sup (fpn , πun − πvn)Y .

We now use the convergences (3.21), (3.13) and assumptions (3.5), (3.6), to deduce
that

lim sup [ϕpn(un, vn)− ϕpn(un, un)] ≤ ϕp(ũ, v)− ϕp(ũ, ũ), (3.23)

lim sup j0
pn(un; vn − un) ≤ j0

p(ũ; v − ũ). (3.24)

On the other hand, the convergences (3.21), (3.13) and assumptions (3.7), (3.8) yield

lim (fpn , πun − πvn)Y = (fp, πũ− πv)Y . (3.25)

We now combine relations (3.22)–(3.25) to deduce that

lim sup 〈Apnun, un − vn〉 ≤ ϕp(ũ, v)− ϕp(ũ, ũ) (3.26)

+j0
p(ũ; v − ũ) + (fp, πũ− πv)Y .

Next, we write

〈Apnun, un − vn〉 = 〈Apun, un − v〉+ 〈Apun, v − vn〉+ 〈Apnun − Apun, un − vn〉.

Then we use we assumptions (2.4)(a), (3.3) and the convergence (3.13) to see that

〈Apun, v − vn〉 → 0,

|〈Apnun − Apun, un − vn〉| ≤ Fn(‖un‖X + δn)‖un − vn‖X → 0,

which imply that

lim sup 〈Apnun, un − vn〉 = lim sup 〈Apun, un − v〉. (3.27)

We now combine inequality (3.26) with (3.27) to obtain that

lim sup 〈Apun, un − v〉 ≤ ϕp(ũ, v)− ϕp(ũ, ũ) (3.28)

+j0
p(ũ; v − ũ) + (fp, πũ− πv)Y .

Next, we take v = ũ in (3.28) and use Proposition 3(i) to deduce that

lim sup 〈Apun, un − ũ〉 ≤ 0. (3.29)

10



Exploiting now the pseudomonotonicity of Ap, from (3.21) and (3.29), we have

〈Apũ, ũ− v〉 ≤ lim inf 〈Apun, un − v〉 for all v ∈ X. (3.30)

Next, from (3.30) and (3.28) we obtain that ũ satisfies the inequality (2.2), which
concludes the proof. �

We are now in position to provide the proof of Theorem 7.

Proof. Since Problem P has a unique solution, denoted u, it follows from Lemma 9
that ũ = u. This implies that every subsequence of {un} which converges weakly in X
has the same limit and, therefore, it follows that the whole sequence {un} converges
weakly in X to u, as n→∞.

We now prove that un → u in X, as n→∞. To this end, we take v = ũ ∈ Kp in
both (3.30) and (3.28), then we use equality ũ = u to obtain

0 ≤ lim inf 〈Apun, un − u〉 ≤ lim sup 〈Apun, un − u〉 ≤ 0,

which shows that 〈Apun, un − u〉 → 0, as n→∞. Therefore, using the strong mono-
tonicity of the operator Ap and the convergence un ⇀ u in X, we have

mA‖un − u‖2
X ≤ 〈Apun − Apu, un − u〉 = 〈Apun, un − u〉 − 〈Apu, un − u〉 → 0,

as n → ∞. Hence, it follows that un → u in X, which concludes the proof of the
theorem. �

4 An optimal control problem

In this section we assume that the set of parameters Λ has a special structure that we
describe in what follows. Let Q be a reflexive Banach space with the norm ‖ · ‖Q, Θ
a normed space endowed with the norm ‖ · ‖Θ and denote by Z their product space,
i.e., Z = Q × Θ. A generic element of Z will be denoted by p = (q, η). We endow Z
with the norm

‖p‖Z = ‖q‖Q + ‖η‖Θ ∀ p = (q, η) ∈ Z.

Let U ⊂ Q and Σ ⊂ Θ be given nonempty subsets assumed to be weakly closed
in Q and Θ, respectively, and let Λ = U × Σ. Then, for each q ∈ U and η ∈ Σ
we have p = (q, η) ∈ Λ and, under the assumption of Theorem 6, we denote by
u = u(p) = u(q, η) the solution of Problem P . Moreover, for each η ∈ Σ, let F (η)
denote a subset of U which depends on η. With these notation define the set of
admissible pairs for Problem P by equality

Vad(η) = { (u, q) : q ∈ F (η), u = u(q, η) }. (4.1)

In other words, a pair (u, q) belongs to Vad(η) if and only if q ∈ F (η) and, moreover,
u is the solution of Problem P with p = (q, η). Consider also a cost functional L :
X ×U → R. Then, the optimal control problem we are interested in is the following.
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Problem Q. Given η ∈ Σ, find (u∗, q∗) ∈ Vad(η) such that

L(u∗, q∗) = min
(u,q)∈Vad(η)

L(u, q). (4.2)

To solve Problem Q we consider the following assumptions.

F (η) is a nonempty weakly closed subset of Q. (4.3)

For all sequences {uk} ⊂ X and {qk} ⊂ U such that

uk → u in X, qk ⇀ q in Q, we have

(a) lim inf
k→∞

L(uk, qk) ≥ L(u, q),

(b) lim
k→∞

[
L(uk, qk)− L(u, qk)

]
= 0.

(4.4)


There exists h : U → IR such that

(a) L(u, q) ≥ h(q) ∀u ∈ X, q ∈ U,
(b) ‖qk‖Q → +∞ =⇒ h(qk)→∞.

(4.5)

U is a bounded subset of Q. (4.6)

Example 10 A typical example of function L which satisfies conditions (4.4) and
(4.5) is obtained by taking

L(u, p) = g(u) + h(q) ∀u ∈ X, q ∈ U,

where g : X → IR is a continuous positive function and h : U → IR is a weakly lower
semicontinuous coercive function, i.e., it satisfies condition (4.5)(b).

Our first result in this section is the following existence result.

Theorem 11 Assume (2.3)–(2.8), for any p ∈ Λ. Moreover, assume (2.9), (3.12),
(4.3), (4.4) and, in addition, assume that either (4.5) or (4.6) hold. Then Problem Q
has at least one solution (u∗, q∗).

The proof will be carried out in several steps that we present in what follows. To
this end, everywhere below we assume that the hypotheses of Theorem 11 hold and,
given η ∈ Σ, we consider the function J(·, η) : U → IR defined by

J(q, η) = L(u(q, η), q) ∀ q ∈ U. (4.7)

The first step of the proof is as follows.

Lemma 12 For all sequences {qk} ⊂ U and {ηk} ⊂ Σ such that qk ⇀ q in Q, ηk ⇀
η in Θ and for all s ∈ U , the inequality below holds:

lim sup
k→∞

[J(s, ηk)− J(qk, ηk)] ≤ J(s, η)− J(q, η). (4.8)

12



Proof. Assume that {qk} ⊂ U and {ηk} ⊂ Λ are two sequences such that qk ⇀
q in Q, ηk ⇀ η in Θ and let s ∈ U . Then, using (4.7) we have

J(s, ηk)− J(qk, ηk) = L(u(s, ηk), s)− L(u(qk, ηk), qk). (4.9)

Moreover, assumption (3.12) implies that u(s, ηk)→ u(s, η), u(qk, ηk)→ u(q, η), both
in X. Therefore, assumption (4.4) and definition (4.7) imply that

lim
k→∞
L(u(s, ηk), s) = L(u(s, η), s) = J(s, η), (4.10)

lim sup
k→∞

[−L(u(qk, ηk), qk)] ≤ −L(u(q, η), q) = −J(q, η). (4.11)

We now pass to the upper limit in (4.9) and use relations (4.10), (4.11) to deduce
that (4.8) holds. �

We now consider the following auxiliary problem.

Problem R. Given η ∈ Σ, find q∗ ∈ F (η) such that

J(q∗, η) = min
q∈F (η)

J(q, η). (4.12)

The solvability of Problem R is provided by the following result.

Lemma 13 Problem R has at least one solution q∗.

Proof. Let η ∈ Σ. We take ηk = η in the statement of Lemma 12 to see that for all
sequences {qk} ⊂ U such that qk ⇀ q and for all s ∈ U we have

lim sup
k→∞

[J(s, η)− J(qk, η)] ≤ J(s, η)− J(q, η),

which implies that
lim inf
k→∞

J(qk, η) ≥ J(q, η).

We conclude from here that the function J(·, η) : U → R is lower semicontinuous.
Assume now that (4.5) holds. Then, for any sequence {qk} ⊂ U , we have

J(qk, η) = L(u(qk, η), qk) ≥ h(qk).

Therefore, if ‖qk‖Q →∞ we deduce that J(qk, η)→∞ which shows that the function
J(·, η) is coercive. Recall also the assumption (4.3) and the reflexivity of the space Q.
The existence of at least one solution to Problem R is now a direct consequence of
Theorem 5. On the other hand, if (4.6) holds we are still in position to apply Theorem
5. We deduce from here that, if either (4.5) or (4.6) hold, then Problem R has at least
a solution, which concludes the proof. �

We are now in position to provide the proof of Theorem 11.

Proof. Using the definitions (4.7) and (4.1) it is easy to see that{
(u∗, q∗) is a solution of Problem Q if and only if

q∗ is a solution of Problem R and u∗ = u(q∗, η).
(4.13)
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Theorem 11 is a direct consequence of the equivalence (4.13) and Lemma 13. �

Let η ∈ Σ and, for each n ∈ N, consider a perturbation ηn ∈ Σ of η together with
the set of admissible pairs defined by

Vad(ηn) = { (u, q) : q ∈ F (ηn), u = u(q, ηn) }. (4.14)

With these data we consider the following perturbation of Problem Q.

Problem Qn. Given ηn ∈ Σ, find (u∗n, q
∗
n) ∈ Vad(ηn) such that

L(u∗n, q
∗
n) = min

(u,q)∈Vad(ηn)
L(u, q). (4.15)

We also consider the following auxiliary problem.

Problem Rn. Given ηn ∈ Σ, find q∗n ∈ F (ηn) such that

J(q∗n, ηn) = min
q∈F (ηn)

J(q, ηn). (4.16)

The proof of Lemma 13 shows that Problem Rn has at least one solution q∗n, for
each n ∈ N. Moreover, using (4.7) and definition (4.14) it is easy to see that{

(u∗n, q
∗
n) is a solution of Problem Qn if and only if

q∗n is a solution of Problem Rn and u∗n = u(q∗n, ηn).
(4.17)

This implies that for each n ∈ N, Problem Qn has at least one solution (u∗n, q
∗
n).

In order to study the link between the solutions to Problems Qn and Problem Q
we consider the following assumptions.

ηn ⇀ η in Θ. (4.18)

F (ηn)
M−→ F (η) in Q. (4.19)

For all sequences {uk} ⊂ X and {qk} ⊂ U such that

uk → u in X, qk ⇀ q in Q, we have

lim
k→∞

L(uk, qk) = L(u, q).

(4.20)

Then, we have the following convergence result.

Theorem 14 Assume (2.3)–(2.8), for any p ∈ Λ. Moreover, assume (2.9), (3.12),
(4.3), (4.4) and, in addition, assume that either (4.5) or (4.6) holds. For each n ∈ N,
let (u∗n, q

∗
n) be a solution of Problem Qn. Then, if (4.18)–(4.20) hold, there exists a

subsequence of the sequence {(u∗n, q∗n)}, again denoted by {(u∗n, q∗n)}, and an element
(u∗, q∗) ∈ X ×Q, such that

u∗n → u∗ in X, (4.21)

q∗n ⇀ q∗ in Q. (4.22)

Moreover, (u∗, q∗) is a solution of Problem Q.
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The proof of Theorem 14 will be carried out in several steps that we present
in what follows. To this end, everywhere below we assume that the hypotheses of
Theorem 14 are satisfied. The first step of the proof concerns the function (4.7) and
is as follows.

Lemma 15 (i) For all sequence {ηk} ⊂ Σ such that ηk ⇀ η in Θ and for all q ∈ U ,
the equality below holds:

lim
k→∞

J(q, ηk) = J(q, η). (4.23)

(ii) For all sequences {qk} ⊂ U and {ηk} ⊂ Σ such that qk → q in Q, ηk ⇀ η in Θ
the equality below holds:

lim
k→∞

[J(qk, ηk)− J(q, ηk)] = 0. (4.24)

Proof. (i) Let {ηk} ⊂ Σ be a sequence such that ηk ⇀ η in Θ and let q ∈ U . We use
the definition (4.7) to see that

J(q, ηk)− J(q, η) = L(u(q, ηk), q)− L(u(q, η), q). (4.25)

On the other hand, using the convergence u(q, ηk) → u(q, η) in X, guaranteed by
assumption (3.12), we deduce from (4.20) that

lim
k→∞

[L(u(q, ηk), q)− L(u(q, η), q)] = 0. (4.26)

We now combine relations (4.25) and (4.26) to see that the equality (4.23) holds.

(ii) Assume now that {qk} ⊂ U and {ηk} ⊂ Σ are two sequences such that
qk → q in Q and ηk ⇀ η in Θ. We write

J(qk, ηk)− J(q, ηk) = L(u(qk, ηk), qk)− L(u(q, ηk), q) (4.27)

= L(u(qk, ηk), qk)− L(u(q, η), qk)

+L(u(q, η), qk)− L(u(q, η), q)

+L(u(q, η), q)− L(u(q, ηk), q)

and, since u(qk, ηk) → u(q, η), u(q, ηk) → u(q, η), both in X, assumptions (4.4)(b)
and (4.20) imply that

L(u(qk, ηk), qk)− L(u(q, η), qk)→ 0,

L(u(q, η), qk)− L(u(q, η), q)→ 0,

L(u(q, η), q)− L(u(q, ηk), q)→ 0.

Wo now use these convergences in equality (4.27) to deduce that (4.24) holds, which
concludes the proof �

In the next step we prove the following convergence result concerning Problems
Rn and R.
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Lemma 16 For each n ∈ N, let q∗n be a solution of Problem Rn. Then, there exists
a subsequence of the sequence {q∗n}, again denoted by {q∗n}, and an element q∗ ∈ Q,
such that (4.22) holds. Moreover, q∗ is a solution of Problem R.

Proof. We claim that the sequence {q∗n} is bounded in Q. This claim is obviously
satisfied if we assume that (4.6) holds. Assume in what follows that (4.5) holds. If
{q∗n} is not bounded in Q, then we can find a subsequence of the sequence {q∗n},
again denoted by {q∗n}, such that ‖q∗n‖Q → ∞. Therefore, using definition (4.7) and
condition (4.5) we deduce that

J(q∗n, ηn) = L(u(q∗n, ηn), q∗n) ≥ h(q∗n)→∞,

which implies that
J(q∗n, ηn)→∞. (4.28)

Let s be a given element in F (η) and note that assumption (4.19) and condition
(M1) in Definition 4 impliy that there exists a sequence {sn} such that sn ∈ F (ηn)
for each n ∈ N and

sn → s in Q. (4.29)

Moreover, since q∗n is a solution of Problem Rn we have J(q∗n, ηn) ≤ J(sn, ηn) and,
therefore,

J(q∗n, ηn) ≤ [J(sn, ηn)− J(s, ηn)] + [J(s, ηn)− J(s, η)] + J(s, η) ∀n ∈ N. (4.30)

On the other hand, the convergences (4.29) and (4.18) allow us to use equality
(4.24) in Lemma 15(ii) to find that J(sn, ηn)−J(s, ηn)→ 0 and, in addition, equality
(4.23) in Lemma 15(i) shows that J(s, ηn)−J(s, η)→ 0. Thus, (4.30) implies that the
sequence {J(q∗n, ηn)} is bounded, which contradicts (4.28). We conclude from above
that the sequence {q∗n} is bounded in Q and, therefore, there exists a subsequence of
the sequence {q∗n}, again denoted by {q∗n}, and an element q∗ ∈ Q, such that (4.22)
holds.

We now prove that q∗ is a solution of Problem R. To this end we recall that
q∗n ∈ F (ηn), for all n ∈ N. Therefore, using (4.22) and condition (M2) in Definition
4, guaranteed by assumption (4.19), we deduce that q∗ ∈ F (η). Next, we consider an
arbitrary element s ∈ F (η) and, using condition (M1), we know that there exists a
sequence {sn} such that sn ∈ F (ηn) for each n ∈ N and (4.29) holds. Since q∗n is the
solution to Problem Rn we have J(q∗n, ηn) ≤ J(sn, ηn) which implies that

0 ≤ [J(s, ηn)− J(q∗n, ηn)] + [J(sn, ηn)− J(s, ηn)]. (4.31)

We now use the convergences (4.18), (4.22), (4.29), Lemma 12 and Lemma 15(ii) to
see that

lim sup
n→∞

[J(s, ηn)− J(q∗n, ηn)] ≤ J(s, η)− J(q∗, η), (4.32)

lim
n→∞

[J(sn, ηn)− J(s, ηn)] = 0, (4.33)
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respectively. We now pass to the upper limit (4.31) and use (4.32), (4.33) to deduce
that

0 ≤ J(s, η)− J(q∗, η)

and, since q∗ ∈ F (η), we deduce that q∗ is a solution of Problem R, which concludes
the proof. �

We now have all the ingredients to provide the proof of Theorem 14.

Proof. We first use (4.17) to see that, for each n ∈ N, q∗n is a solution to Problem Rn.
Then, we use Lemma 16 to see that there exists a subsequence of the sequence {q∗n},
again denoted by {q∗n}, and an element q∗ ∈ Q, such that (4.22) holds. Moreover, q∗ is a
solution of Problem R. Let u∗ = u(q∗, η). Then, equivalence (4.13) shows that (u∗, q∗)
is a solution of Problem Q. On the other hand, (4.17) implies that u∗n = u(q∗n, ηn) and
the convergences (4.22), (4.18) show that p∗n = (q∗n, ηn) ⇀ p∗ = (q∗, η) in Z. It follows
now from assumption (3.12) that (4.21) holds, which concludes the proof. �

5 An elastic contact problem

The abstract results in Sections 3–4 are useful in the study of various mathematical
models which describe the equilibrium of elastic bodies in frictional contact with a
foundation. In this section we provide an example of such model and, to this end, we
need some notations and preliminaries. For details on the material below we refer the
reaer to [11, 27], for instance.

Let d ∈ {2, 3}. We denote by Sd the space of second order symmetric tensors on
Rd or, equivalently, the space of symmetric matrices of order d. We recall that inner
product and norm on Rd and Sd are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ )
1
2 ∀σ, τ ∈ Sd,

where the indices i, j run between 1 and d and, unless stated otherwise, the summation
convention over repeated indices is used. The zero element of the spaces Rd and Sd
will be denoted by 0.

Let Ω ⊂ Rd be a domain with smooth boundary Γ. The boundary Γ is divided
into three measurable disjoint parts Γ1, Γ2 and Γ3 such that meas (Γ1) > 0. A generic
point in Ω∪Γ will be denoted by x = (xi). We use the standard notation for Sobolev
and Lebesgue spaces associated to Ω and Γ. In particular, we use the spaces L2(Ω)d,
L2(Γ2)d, L2(Γ3) and H1(Ω)d, endowed with their canonical inner products and asso-
ciated norms. Moreover, for an element v ∈ H1(Ω)d we still write v for the trace of
v to Γ. In addition, we consider the space

V = {v ∈ H1(Ω)d : v = 0 on Γ1 },

which is a real Hilbert space endowed with the canonical inner product

(u,v)V =

∫
Ω

ε(u) · ε(v) dx (5.1)
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and the associated norm ‖·‖V . Here and below ε represents the deformation operator,
i.e.,

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i),

where an index that follows a comma denotes the partial derivative with respect to
the corresponding component of x, e.g., ui,j = ∂ui

∂j
. The completeness of the space V

follows from the assumption meas (Γ1) > 0 which allows the use of Korn’s inequality.
We denote by 0V the zero element of V and we recall that, for an element v ∈ V , the
normal and tangential components on Γ are given by vν = v · ν and vτ = v − vνν,
respectively. Finally, V ∗ represents the dual of V and 〈·, ·〉 denotes the duality pairing
between V ∗ and V . We also denote by ‖γ‖ the norm of the trace operator γ : V →
L2(Γ3)d and we recall the inequality

‖v‖L2(Γ)d ≤ ‖γ‖‖v‖V ∀v ∈ V. (5.2)

In addition, we use the space Y = L2(Ω)d × L2(Γ3)d equiped with the canonical
product topology and the operator π : V → Y defined by

πv = (v, γv) ∀v ∈ V. (5.3)

The contact model we consider in this section is constructed by using a function
F and a set B which satisfy the following conditions.

F : Ω× Sd → Sd is such that

(a) there exists LF > 0 such that
‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(b) there exists mF > 0 such that
(F(x, ε1)−F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

for all ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(c) F(·, ε) is measurable on Ω for all ε ∈ Sd,
(d) F(x,0) = 0 for a.e. x ∈ Ω.

(5.4)

mF > ‖γ‖2. (5.5)

B is a closed convex subset of Sd such that 0 ∈ B. (5.6)

Note that assumption (5.5) allows us to find a constant m̃0 ∈ IR such that

mF − ‖γ‖2 > m̃0 > 0. (5.7)

Moreover, we use (5.6) and denote in what follows by PB : Sd → B the projection
operator on the set B.

To complete the model we consider the data ω, µ, f 0, f 2, g and ρ assumed to
satisfy the following conditions.
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ω ∈ L∞(Ω), ω(x) ≥ 0 for a.e. x ∈ Ω. (5.8)

µ ∈ L∞(Γ3), µ(x) ≥ 0 for a.e. x ∈ Γ3, ‖µ‖L∞(Γ3)‖γ‖2 ≤ m̃0. (5.9)

f 0 ∈ L2(Ω)d, f 2 ∈ L2(Γ2)d. (5.10)

g ≥ 0, ρ > 0. (5.11)

Let Λ be the set of elements p = (ω, µ,f 0,f 2, g, ρ) such that (5.8)–(5.11) hold.
Note that Λ is a subset of the product space L∞(Ω)×L∞(Γ3)×L2(Ω)×L2(Γ2)×R2

and, moreover, inequality m̃0 > 0 in (5.7) guarantees that Λ is not empty. Next, for
any p = (ω, µ,f 0,f 2, g, ρ) ∈ Λ we define the set Kp, the operator Ap, the functions
ϕp, jp and the element f p, by equalities

Kp = {v ∈ V | vν ≤ g a.e. on Γ3 }, (5.12)

Ap : V → V ∗, 〈Apu,v〉 =

∫
Ω

Fε(u) · ε(v) dx (5.13)

+

∫
Ω

ω
(
ε(u)− PBε(u)

)
· ε(v) dx,

ϕp : V × V → R, ϕp(u,v) =

∫
Γ3

µu+
ν ‖vτ‖ da, (5.14)

jp : V → R, jp(v) =

∫
Γ3

jρ(vν) da, (5.15)

f p ∈ Y, (f p, πv)Y =

∫
Ω

f 0 · v dx+

∫
Γ3

f 2 · γv da, (5.16)

for all u,v ∈ V . Here and below r+ represents the positive part of r, i.e., r+ =
max {r, 0}. Moreover, jρ : R→ R is the function defined by

jρ(r) =

∫ r

0

kρ(s) ds ∀r ∈ IR, (5.17)

where

kρ(r) =


0 if r < 0,

r if 0 ≤ r < ρ,

2ρ− r if ρ ≤ r < 2ρ,

r − 2ρ if r ≥ 2ρ.

(5.18)

It is easy to see that the function kρ : R → R is Lipschitz continuous, yet not
monotone. As a result the function jρ is not convex.

With these notation, for p ∈ Λ given, we consider the following problem.
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Problem S. Find a displacement field u = u(p) such that

u ∈ Kp, 〈Apu,v − u〉+ ϕp(u,v)− ϕp(u,u) + j0
p(u;v − u) (5.19)

≥ (f p, πv − πu)Y for all v ∈ V.

Following the arguments in [28], it can be shown that Problem S represents the
variational formulation of a mathematical model which describes the equilibrium of
an elastic body in frictional contact with a foundation, under the action of external
forces. It is assumed that the foundation is made of a rigid material covered by a
layer of deformable material. The data F , ω and B are related to the constitutive
law, while f 0 and f 2 denote the density of body forces and applied tractions which act
on the body and the surface Γ2, respectively. In addition, µ represents the coefficient
of friction and ρ is a given stiffness coefficient. Finally, g represents the thickness of
the deformable layer.

Contact models which lead to inequality problems of the form (5.19) have been
considered in the books [19, 28]. There, the reader can find the classical formulation of
the models, including the mechanical assumptions which lead to their construction,
as well as their variational analysis, based on arguments similar to that we briefly
resume below in this section.

Our first result in the study of Problem S is the following.

Theorem 17 Assume (5.4)–(5.6). Then, for each p = (ω, µ,f 0,f 2, g, ρ) ∈ Λ there
exists a unique solution u = u(p) to the Problem S. Moreover, if the sequence {pn}
with pn = (ωn, µn, ρn, gn,f 0n,f 2n) ∈ Λ is such that

ωn → ω in L∞(Ω), (5.20)

µn → µ in L∞(Γ3), (5.21)

f 0n ⇀ f 0 in L2(Ω)d, f 2n ⇀ f 2 in L2(Γ2)d, (5.22)

gn → g, (5.23)

ρn → ρ, (5.24)

then u(pn)→ u(p) in V .

Proof. Let p = (ω, µ,f 0,f 2, g, ρ) ∈ Λ. For the existence and uniqueness part we apply
Theorem 6 on the space X = V . To this end, we remark that, obviously, condition
(2.3) is satisfied. Moreover, the operator Ap defined by (5.13) satisfies condition (2.4).
Indeed, for u, v, w ∈ V , by assumption (5.4)(a) and the properties of the projection
operator PB, we have

〈Apu− Apv,w〉V ∗×V ≤ (LF + 2‖ω‖L∞(Ω))‖u− v‖V ‖w‖V .
This proves that

‖Apu− Apv‖V ∗ ≤ (LF + 2‖ω‖L∞(Ω))‖u− v‖V ,
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for all u, v ∈ V , which implies that Ap is Lipschitz continuous. On the other hand,
using assumption (5.4)(b) and the nonexpansivity of the projector operator yields

〈Apu− Apv,u− v〉V ∗×V ≥ mF‖u− v‖2
V ,

for all u, v ∈ V . This shows that condition (2.4)(b) is satisfied with mp = mF . Since
Ap is Lipschitz continuous and monotone, it follows that Ap is pseudomonotone and,
therefore, (2.4)(a) holds.

Next, for ϕp defined by (5.14), we use the trace inequality (5.2) to see that (2.5)
holds with αp = ‖µ‖L∞(Γ3)‖γ‖2.

On the other hand, since j′ρ(r) = kρ(r) for all r ∈ IR, it follows that jρ is a C1

function and, therefore, is a locally Lipschitz function. Moreover, it is easy to see that
|kρ(r)| ≤ 2ρ+ |r| for r ∈ IR and the function r 7→ kρ(r) + r is nondecreasing. We use
these properties and equality j0

ρ(r; s) = kρ(r)s, valid for all r, s ∈ IR, to see that the
function jρ satisfies condition (2.6) on X = IR with c0ρ = 2ρ, c1ρ = 1 and βρ = 1.
Therefore, following the arguments in [28, p.219] we deduce that the function jp given

by (5.15) satisfies (2.6) with c0p = 2ρ
√

2meas(Γ3) ‖γ‖, c1p =
√

2 ‖γ‖2 and βp = ‖γ‖2.
It follows from above that αp + βp = (‖µ‖L∞(Γ3) + 1)‖γ‖2 and, using assumption

(5.9) and inequality (5.7), we deduce that αp + βp < mF = mp which shows that the
smallness condition (2.7) is satisfied. We also note that conditions (2.8) and (2.9) are
obviously satisfied.

Therefore, we are in position to use Theorem 6. In this way we deduce that there
exists a unique element u ∈ V such that (5.19) holds, which concludes the existence
and uniqueness part of the theorem.

For the continuous dependence part we use Theorem 7. Assume that (5.20)–(5.24)
hold. We start with the remark that (5.23) implies (3.2). Moreover, using the conver-
gence (5.20) it is easy to see that condition (3.3) is satisfied with Fn = 2 ‖ωn−ω‖L∞(Ω)

and δn = 0. Next, (3.4)(a) holds with cn(r) = ‖µn‖L∞(Γ3)‖γ‖2 r and, using conver-
gence (5.21) combined with the compactness of the trace, we see that (3.4)(b) and
(3.5) hold, too.

On the other hand, since the function jρ is regular, Lemma 8 in [28] guarantees
that

j0
p(u;v) =

∫
Γ3

j0
ρ(uν ; vν) da =

∫
Γ3

kρ(uν)vν da ∀u, v ∈ V, p ∈ Λ. (5.25)

Moreover, an elementary argument shows that

|kρn(r)− kρ(r)| ≤ 2 |ρn − ρ| ∀ r ∈ R. (5.26)

Therefore, if un ⇀ u and vn → v in V , using (5.25) and (5.26) we deduce that

j0
pn(un;vn − un) =

∫
Γ3

kρn(unν)(vnν − unν) da

≤ 2 |ρn − ρ|
∫

Γ3

|vnν − unν | da+

∫
Γ3

kρ(unν)(vnν − unν) da.
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Then, the convergence (5.24), the compactness of the trace and the properties of the
function kρ imply that

lim sup j0
pn(un;vn − un) ≤

∫
Γ3

kρ(uν)(vν − uν) da = j0
p(u;v − u)

which shows that condition (3.6) holds.
Next, by standard compactness arguments it follows that the operator (5.3) sat-

isfies condition (3.7). Moreover, the convergences (5.22) show that (3.8) holds, too.
Finally, we recall that αpn = ‖µn‖L∞(Γ3)‖γ‖2, c0pn = 2ρn

√
2meas(Γ3) ‖γ‖, c1pn =√

2 ‖γ‖2, βpn = ‖γ‖2 and mpn = mF . Therefore, using (5.9) and (5.7) we deduce that
condition (3.9) is satisfied with m0 = mF − m̃0 − ‖γ‖2 and, obviously, (3.10) holds.

It follows from above that we are in position to use Theorem 7 in order to deduce
that u(pn)→ u(p) in V , which concludes the proof. �

We now associate to Problem S an optimal control problem, in the framework
described in Section 4. To this end we consider the space Z = Q × Θ, where Q =
R × L2(Γ2)d and Θ = R3 × L2(Ω)d. The spaces Q and Θ are equiped with their
canonical product norms, denoted by ‖ · ‖Q and ‖ · ‖Θ, respectively. We endow Z with
the norm

‖p‖Z = ‖q‖Q + ‖η‖Θ ∀ p = (q1, η) ∈ Z.
A generic element of Z will be denoted by p = (q, η) where q = (g,f 2) ∈ Q and
η = (ω, µ, ρ,f 0) ∈ Θ.

Let U ⊂ Q, Σ ⊂ Θ, Λ ⊂ Z be the sets given by

U = { q = (g,f 2) ∈ Q : 0 ≤ g ≤ g0, ‖f 2‖L2(Γ2)d ≤ h0 },

Σ = { η = (ω, µ, ρ,f 0) ∈ Θ : ω, µ ≥ 0, ρ > ρ0, µ‖γ‖2 ≤ m̃0 },

Λ = U × Σ,

where g0 > 0, h0 > 0 and ρ0 > 0 are given, ρ0 < g0. Moreover, for each η =
(ω, µ, ρ,f 0) ∈ Σ, let F (η) ⊂ U be the subset given by

F (η) = { q = (g,f 2) ∈ U : ρ ≤ g ≤ g0}. (5.27)

Then, under the assumptions (5.4)–(5.6), it follows from Theorem 17 that for each
p ∈ Λ Problem S has a uniques solution u = u(p) = u(q, η). For each η ∈ Σ we
define the set of admissible pairs for Problem S by equality

Vad(η) = { (u, q) : q ∈ F (η), u = u(q, η) }.

Consider also the cost functional L : V × U → R given by

L(u, q) =

∫
Γ3

(uν − φ)2 da ∀u ∈ V, q ∈ U, (5.28)

where φ ∈ L2(Γ3) is given. Then, the optimal control problem we are interested in is
the following.

22



Problem T . Given η = (ω, µ, ρ,f 0) ∈ Σ, find (u∗, q∗) ∈ Vad(η) such that

L(u∗, q∗) = min
(u,q)∈Vad(η)

L(u, q).

With this choice, the mechanical interpretation of Problem T is the following:
given a contact process described by the variational-hemivariational inequality (5.19)
with the data q = (g,f 2) ∈ U and η = (ω, µ, ρ,f 0) ∈ Σ, we are looking for a thickness
g ∈ [ρ, g0] and a density of surface tractions f 2 ∈ L2(Γ2) with ‖f 2‖L2(Γ2)d ≤ h0 such
that the normal component of the corresponding solution is as close as possible, on
Γ3, to the “desired normal displacement” φ.

Note that, in this case assumptions (3.12), (4.3), (4.4) and (4.6) are satisfied.
Therefore Theorem 11 guarantees the existence of the solutions of the optimal control
problem T . Moreover, note that assumption (4.18) implies the convergence (4.19) and,
in addition, (4.20) holds. Therefore, the convergence result stated in Theorem 14 can
be applied in the study of Problem T .
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