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Let P = {p n } ∞ n=1 be a sequence of positive integers with p n > 1 and D = {D n } ∞ n=1 be a sequence of subsets of N with CardD n = 2 or 3. The infinite convolution of probability measures

Borel probability measure which is singular with respect to the Lebesgue measure on R. In this paper, we prove the spectrality of such measure, i.e., to find a set Λ ⊂ R such that the set {e -2πiλx |λ ∈ Λ} is an orthonormal basis of L 2 (µ P,D ).

Introduction

Let R be the dual group of R, which consists of all continuous characters of R. Actually, the dual group R is isomorphic to R, in other words, R = {e -2πiλx : λ ∈ R} R. Let µ be a Borel probability measure on R. It is said to be a spectral measure if we can find a (countable) set E Λ = {e -2πiλx : λ ∈ Λ} ⊂ R which forms a Hilbert basis of L 2 (µ), the space of square µ-integrable functions. Such a set Λ ⊂ R is called a spectrum of the measure µ.

Let us consider the Lebesgue measure on R d , d ≥ 1. A set Ω of positive finite Lebesgue measure is said to be a spectral set if the Lebesgue measure restricted on it is a spectral measure. Recall that a set Ω is called a tile by translation if there is a set T ⊂ R d such that t∈T 1 Ω (λ -t) = 1 for the Lebesgue measure almost every λ ∈ R d . A famous conjecture on spectral sets raised by Fuglede [START_REF] Fuglede | Commuting self-adjoint partial differential operators and a group theoretic problem[END_REF] is that a Borel set of positive finite Lebesgue measure is a spectral set if and only if it is a tile by translation. The conjecture fail on R d , d ≥ 3, but it is still open on R and R 2 . See [START_REF] Kolountzakis | Structure of tilings of the line by a function[END_REF][START_REF] Laba | Fuglede's conjecture for a union of two intervals[END_REF][START_REF] Lagarias | Tiling the line with translates of one tile[END_REF] for the works towards this conjecture. Note that this conjecture could be generalized to general locally compact groups and the general conjecture is widely open. For the works towards this general conjecture, we refer the readers to [START_REF] Fan | Compact open spectral sets in Q p[END_REF][START_REF] Fan | Fuglede's conjecture holds in Q p[END_REF][START_REF] Laba | The spectral set conjecture and multiplicative properties of roots of polynomials[END_REF][START_REF] Malikiosis | Fuglede's conjecture on cyclic groups of order p n q[END_REF].

For a finite subset E of R, we denote by δ E := 1 CardE e∈E δ e the uniformly discrete probability measure on E, where δ e is the Dirac measure at the point e. Let P = {p n } ∞ n=1 be a sequence of integers strictly bigger than 1 and D = {D n } ∞ n=1 be a sequence of finite subsets in N. For the pair {P, D}, we associate a Borel probability measure µ P,D defined by the infinite convolution of uniformly discrete probability measures:

µ P,D = δ P -1 1 D 1 * δ P -1 2 D 2 * • • • , (1•1) 
where P n = p 1 p 2 • • • p n for all n ≥ 1. We remark that the infinite convolution (1•1) converges in a weak sense. Such measure is called a Cantor-Moran measure. It is not hard to see that the measure µ P,D is singular with respect to the Lebesgue measure and has the support

T (P, D) := ∞ n=1 P -1 n D n .
Historical speaking, Strichartz [START_REF] Strichartz | Mock Fourier series and transforms associated with certain Cantor measures[END_REF] first studied the spectrality of Cantor-Moran measures. Many works follow his initiation. An, He and Lau [START_REF] An | Spectrality of a class of infinite convolutions[END_REF] and An, He and Li [START_REF] An | Spectrality of infinite Bernoulli convolutions[END_REF] studied the spectrality of Cantor-Moran measures under the condition that p n are constant for all n ∈ N * . He and He [START_REF] He | On the Fourier orthonormal bases of Cantor-Moran measures[END_REF], Fu and Wen [START_REF] Fu | Spectrality of infinite convolutions with threeelement digit sets[END_REF] and Tang and Yin [START_REF] Tang | Spectrality of Moran measures with four-element digit sets[END_REF] studied the spectrality of Cantor-Moran measures under the condition that CardD n are a constant equal to 2, 3 or 4 for all n ∈ N * . For other works, see [START_REF] An | A class of spectral Moran measures[END_REF][START_REF] Dutkay | Spectral measures generated by arbitrary and random convolutions[END_REF].

This paper is devote to studying the spectrality of a new class of Cantor-Moran measures. More precisely, we study the Cantor-Moran measure µ P,D satisfying the following conditions: In fact, the conditions (C2) and (C3) is to guarantee that the measure µ P,D satisfies Moran's open set condition. Now we state the main theorem.

Theorem 1.1.

Let P = {p n } ∞ n=1 be a sequence of integers with p n > 1. Let D = {D n } ∞
n=1 be a sequence of sets with D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2) and (C3). Then the associated Cantor-Moran measure µ P,D is a spectral measure.

Actually, He and He [START_REF] He | On the Fourier orthonormal bases of Cantor-Moran measures[END_REF] and Fu and Wen [START_REF] Fu | Spectrality of infinite convolutions with threeelement digit sets[END_REF] proved that if CardD n are a constant equal to 2 (resp. 3) for all n ∈ N and the measure µ P,D satisfies the condition (C2) (resp. (C3)), then it is a spectral measure. It follows that we only need to prove Theorem 1.1 under the extra condition:

(C4) the sets {n : CardD n = i} are not finite, for i = 2, 3.
In what follows, we denote τ (n) := CardD n for all n ∈ N. It is not hard to see that the conditions (C2) and (C3) imply that τ (n) | p n , for all n ≥ 1.

(1•2)

For i = 2, 3, we define

L(τ, i) = sup {n : ∃ infinite many k, τ (k) = τ (k + 1) = • • • = τ (k + n -1) = i} .
Observe that L(τ, i) take values in

N * ∪ {∞} for i = 2, 3. For σ = {σ n } ∞ n=1 ∈ {-1, 1} N , we define Λ σ n := τ (i)=2,i≤n P i {0, σ i 2 1+ i } + τ (j)=3,j≤n P j {0, 1 3 , - 1 3 } and Λ σ := ∪ ∞ n=1 Λ σ n . It is easy to see that for σ, σ ∈ {-1, 1} N , if σ k = σ k for all k with τ (k) = 2, then Λ σ n = Λ σ n for all n ∈ N * and consequently Λ σ = Λ σ . Let µ n = δ P -1 1 D 1 * δ P -1 2 D 2 * • • • * δ P -1 n Dn , and 
µ >n = δ P -1 n+1 D n+1 * δ P -1 n+2 D n+2 * • • • .
It is easy to verify that µ P,D = µ n * µ >n and µ n is a spectral measure with spectrum Λ σ n for any σ ∈ {-1, 1} N . Theorem 1.1 follows directly from the following theorem.

Theorem 1.2. Let P = {p n } ∞ n=1 be a sequence of integers with p n > 1. Let D = {D n } ∞
n=1 be a sequence of sets with D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2), (C3) and (C4). Then the following statements hold.

(i) If L(τ, 2) ≥ 2, then there exists σ ∈ {-1, 1} N such that µ P,D is a spectral measure with spectrum Λ σ . (ii) If L(τ, 2) = 1, then µ P,D is a spectral measure with spectrum Λ σ for any σ ∈ {-1, 1} N .
We organize the paper as follows. In Section 2, we introduce some basic notions and tools in the study of Cantor-Moran measure. In Section 3, we define the notion of orthonormal sets and show orthonormal sets of µ P,D . In Section 4, the key lemmas and techniques to prove Theorem 1.1 are shown. In Section 5, we prove Theorem 1.2. In Section 6, we give some examples and remarks.

Preliminary

In this section, we recall some basic notions in Fourier analysis. We introduce the notion of α-sequences. The function cos(x) cos(y) cos(x -y) and the infinite product Π ∞ n=1 (1 -ab n ) are also studied.

Notation

Throughout this paper, we denote

N = {0, 1, 2, • • • }, N * = N \ {0} and N >K = {n ∈ N : n > K}.
For two sets E, F and a real number a ∈ R, we use the usual notations aE := {ae : e ∈ E} and E + F := {e + f : e ∈ E, f ∈ F }.

Fourier transformation

Let µ be a Borel probability measure with compact support in R. Recall that the Fourier transform of µ is defined by

µ(x) = R e -2πiyx dµ(y) for x ∈ R.
In this paragraph, we are concerned with two particular singular measure (with respect to the Lebesgue measure) δ P -1 {0,d} and δ Q -1 {0,a,b} with P, Q ∈ N >1 and a, b, d ∈ N * . We are interested in their Fourier transformations. We first consider the measure δ Q -1 {0,a,b} . We have

δ P -1 {0,d} (x) = 1 2 (1 + e -2πi dx P ) = e -πi dx P cos π dx P , ∀x ∈ R.
Hence, according to the inequality cos(x) ≥ 1 -1 2 x 2 , we obtain

δ P -1 {0,d} (x) = cos(π dx P ) ≥ 1 - 1 2 π dx P 2 , ∀x ∈ R. (2•1)
Now we consider the measure δ Q -1 {0,a,b} . A simple computation allows us to see that

δ Q -1 {0,a,b} (x) = 1 3 1 + e -2πi ax Q + e -2πi bx Q = 1 3 e -πi (a+b)x Q e πi (a+b)x Q + e -πi (a-b)x Q + e -πi (b-a)x Q = 1 3 e -πi (a+b)x Q e πi (a+b)x Q + 2 cos π (a -b)x Q , for x ∈ R.
According to the fact that the norm of a complex number is bigger than or equal to the absolute value of its real part, we have

δ Q -1 {0,a,b} (x) = 1 3 e πi (a+b)x Q + 2 cos π (a -b)x Q ≥ 1 3 cos π (a + b)x Q + 2 cos π (a -b)x Q ,
for all x ∈ R. Moreover, if assuming additionally that a, b, Q, x > 0 and

(a+b)x Q < 1 2 , then we have δ Q -1 {0,a,b} (x) ≥ 1 3 cos π (a + b)x Q + 2 cos π (a -b)x Q .
According to the inequality cos(x) ≥ 1 -1 2 x 2 , we have

δ Q -1 {0,a,b} (x) ≥ 1 3 1 - 1 2 π (a + b)x Q 2 + 2 1 - 1 2 π (a -b)x Q 2 , (2•2) for a, b, Q, x > 0 and (a+b)x Q < 1
2 . On the other hand, due to the simple fact that |η| 2 = ηη, we have another form of δ Q -1 {0,a,b} (x) :

δ Q -1 {0,a,b} (x) 2 = 1 9 e πi (a+b)x Q + 2 cos -π (a -b)x Q 2 = 1 9 1 + 8 cos π ax Q cos π bx Q cos π (a -b)x Q , (2•3)
for x ∈ R. We will study the function cos(x) cos(y) cos(x -y) in Section 2.4.

α-sequence

For a sequence C = {c(n)} ∞ n=1 of positive integers bigger than 1, we define the functions α n by the formulas

α n (C) = n j=1 1 c(j)c(j + 1) • • • c(n)
, for all n ∈ N * .

The sequence {α n (C)} ∞ n=1 is called the α-sequence of the sequence C. Obviously, the functions α n have recursion formulas

α n+1 (C) = 1 c(n + 1) (α n (C) + 1), for all n ∈ N * . (2•4)
If denoting c min = min{c(n) : n ∈ N * } which is clearly bigger than 1 by the definition of the sequence C, then we estimate the upper bound of α n (C) by

α n (C) ≤ α n ({c min } ∞ n=1 ) = 1 -1 c n min c min -1 , for all n ∈ N * ,
where {c min } ∞ n=1 is the sequence of the constant number c min . Particularly, for the sequence τ = {τ (n)} ∞ n=1 defined in Section 1, since τ (n) ≥ 2 for all n ≥ 1, we have

α n (τ ) ≤ 1 - 1 2 n < 1.
(2•5)

Function cos(x) cos(y) cos(x -y)

In this paragraph, we study the minimal points of the two-variable function f (x, y) = cos(x) cos(y) cos(x -y) on R 2 . It is not hard to see that the function f (x, y) has periods (2π, 0) and (0, 2π). It follows that it has global minimal points in the area

Ω = {(x, y) : -π < x ≤ π, -π < y ≤ π}.
We have the following lemma.

Lemma 2.1. The function f (x, y) has the (global) minimal value -1 8 . Moreover, there are only 4 minimal points in the area Ω, which are

( 2π 3 , π 3 ), ( π 3 , 2π 3 ), (-2π 3 , -π 3 ) and (-π 3 , - 2π 
3 ) Proof. By the fact that f ( 2π 3 , π 3 ) = -1 8 , we deduce that the minimal value should be smaller than or equal to - 1 8 . As it has already been mentioned, the minimal point in Ω is the global minimal point. Since f (0, π) = f (π, 0) = 0, it does not achieve its minimal value in ∂Ω the boundary of Ω. Thus, we study the function f (x, y) in the area Ω \ ∂Ω. A simple calculation shows that

∂ x f (x, y) = cos(y) sin(y -2x) and ∂ y f (x, y) = cos(x)sin(x -2y). It follows that ∂ x f (x, y) = ∂ y f (x, y) = 0 if and only if y = ± π 2 or y -2x = 0, ± π, x = ± π 2 or x -2y = 0, ± π. y = ± π 2 or y -2x = 0, ± π.
If y = ± π 2 , the value of f (x, y) is equal to 0 which can not be its minimal value. The similar calculation shows that the function f (x, y) does not achieve its minimal value when x = ± π 2 . To find the minimal point, it remains to solve the linear equations y -2x = 0, ±π, x -2y = 0, ±π.

We obtain that the solutions of the above equation in Ω \ ∂Ω are

(0, 0), ( 2π 3 , π 3 ), ( π 3 , 2π 3 ), (- 2π 3 , - π 3 
) and (-

π 3 , - 2π 3 ). 
A simple computation tells us that

f ( 2π 3 , π 3 ) = f ( π 3 , 2π 3 ) = f (- 2π 3 , - π 3 ) = f (- π 3 , - 2π 3 ) = - 1 8 ,
and f (0, 0) = 1. Therefore, we conclude that -1 8 is the minimal value of f and the minimal points in Ω are

( 2π 3 , π 3 ), ( π 3 , 2π 3 ), (-2π 3 , -π 3 ) and (-π 3 , -2π 3 ). It is clear that if 0 < x, y < 2π 3 , then 1 + 8f (x, y) > 0.
More generally, we have the following remark. we get a non-zero lower bounded

inf n≥1 {1 + 8f (x n , y n )} > 0. 2.5. Infinite product Π ∞ n=1 (1 -ab n ) The following lemma helps us to estimate the lower bound of the infinite product Π ∞ n=1 (1 -ab n ). Lemma 2.2. Let a, b > 0 and 1 -ab n > 0 for every n ∈ N. Then Π ∞ n=1 (1 -ab n ) > 0.
Proof. Observe that Π N n=1 (1-ab n ) is decreasing and has lower bound 0. Then the limit of Π N exists when N tends to infinity. We have

log Π N n=1 (1 -ab n ) = N n=1 log(1 -ab n ) ≥ N n=1 -ab n .
It follows that lim

N →∞ log Π N n=1 (1 -ab n ) ≥ ∞ n=1 -ab n = - a 1 -b > -∞, which means that Π ∞ n=1 (1 -ab n ) > 0.

Orthonormal sets

In this section, we study the orthonormal sets of measures.

Let µ be a Borel probability measure with compact support in R. Let Λ ⊂ R be a countable set. We say that Λ is an orthonormal set of µ if µ(λ -λ ) = 0 for any λ = λ ∈ Λ. It is easy to see that a spectrum of a measure is always an orthonormal set of the same measure.

We define the function Q µ,Λ (ξ) with respect to µ and Λ by

Q µ,Λ (ξ) = λ∈Λ | µ(ξ + λ)| 2 .
In fact, the function Q µ,Λ (ξ) play a role to characterize whether Λ is an orthonormal set of µ. We have the following proposition.

Proposition 3.1 ([10]

). Let µ be a Borel probability measure with compact support. Let Λ ⊂ R be a countable set. Then

(i) Λ is an orthonormal set of µ if and only if Q µ,Λ (ξ) ≤ 1 for all ξ ∈ R. (ii) Λ is a spectrum of µ if and only if Q µ,Λ (ξ) = 1 for all ξ ∈ R. (iii) If Λ is an orthonormal set of µ then Q µ,Λ (ξ) is an entire function.
The above proposition helps us to find the candidates of spectra of the Cantor-Moran measure µ P,D .

Lemma 3.2. Let P = {p n } ∞ n=1 be a sequence of integers with p n > 1. Let D = {D n } ∞
n=1 be a sequence of sets with D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2) and (C3). For every σ ∈ {-1, 1} N * , the set Λ σ is an orthonormal set of µ P,D .

Proof. Fix σ ∈ {-1, 1} N * . Since 0 ∈ Λ σ k for all k, we have the following relation of inclusion Λ σ 1 ⊂ Λ σ 2 ⊂ Λ σ 3 ⊂ • • • . By definition, we have Λ σ = ∪ ∞ k=1 Λ σ k . It follows that for any λ = λ ∈ Λ σ , there exists k ∈ N * such that λ, λ ∈ Λ σ k .
As we have already mentioned that Λ σ k is a spectrum of µ k , we have µ k (λ -λ ) = 0. According to the fact that µ {P,D} = µ k * µ >k , we obtain

µ P,D (λ -λ ) = µ k (λ -λ ) • µ >k (λ -λ ) = 0.
Thus we conclude that Λ σ is an orthonormal set of µ P,D .

Key Lemmas

In this section, we give two key lemmas which will be helpful to prove Theorem 1.2: one is a criterion for spectra and the other is to estimate a lower bound of | µ >k |.

Let P = {p n } ∞ n=1 be a sequence of integers with

p n > 1. Let D = {D n } ∞ n=1
be a sequence of sets with D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2) and (C3).

Let σ ∈ {-1, 1} N * . Let k ∈ N * and λ ∈ Λ σ k . Recall that P k = p 1 p 2 . . . p k .
By definition, we have

|λ| P k ≤ 1 P k   τ (i)=2,i≤k P i 1 2 1+ i + τ (j)=3,j≤k P j 1 3   .
According to the simple fact that 1 2 1+ i (l i ≥ 0) is dominated by 1 2 , we have

|λ| P k ≤ τ (i)=2,i≤k P i P k • 1 2 + τ (j)=3,j≤k P j P k • 1 3 = τ (i)=2,i≤k 1 2p i+1 p i+2 . . . p k + τ (j)=3,j≤k 1 3p j+1 p j+2 . . . p k .
By (1•2), we have

|λ| P k ≤ k j=1 1 τ (j)τ (j + 1) • • • τ (k)
.

It follows from (2•4) that |λ| P k ≤ α k (τ ). (4•1)
Let n ≥ k + 1. Due to (1•2) and the equation ( 4•1), we obtain

|λ| P n = 1 p n p n-1 . . . p k+1 |λ| P k ≤ α k (τ ) n i=k+1 1 τ (i) .
Let |ξ| < 1. Now we estimate the upper bound of dn Pn |ξ + λ| (resp.

|an±bn|

Pn |ξ + λ|) when τ (n) = 2 (resp. τ (n) = 3
). We first consider the case when τ (n) = 2. By (C1), we have d n < p n . It follows that

d n P n |ξ + λ| ≤ d n p n |ξ| P n-1 + |λ| P n-1 < n-1 i=k+1 1 τ (i) k j=1 1 τ (j) + α k (τ ) . (4•2)
Then we consider the case when τ (n) = 3. By (C2), we have max{a n , b n } < p n . It follows that

|a n ± b n | P n |ξ + λ| ≤ |a n ± b n | p n |ξ| P n-1 + |λ| P n-1 < 2 n-1 i=k+1 1 τ (i) k j=1 1 τ (j) + α k (τ ) . (4•3)
The last inequality is deduced by the simple fact that |an±bn| pn < 2. Now we give a necessary condition for the spectrality of µ P,D . The proof heavily depends on the main ideas from Strichartz [START_REF] Strichartz | Remarks on "Dense analytic subspaces in fractal L 2spaces[END_REF].

Lemma 4.1. Let σ ∈ {-1, 1} N * . Suppose that there exist an increasing sequence {n k } ∞ k=1 ⊂ N * and , > 0 such that | µ >n k (ξ + λ)| > , for all |ξ| < and for all λ ∈ Λ σ n k . Then Λ σ is a spectrum of µ P,D . Proof. Fix |ξ| < . Let F n k (λ) = | µ n k (ξ + λ)| 2 if λ ∈ Λ σ n k , 0
otherwise, for all k ∈ N * and

F (λ) = | µ(ξ + λ)| 2 if λ ∈ Λ σ , 0 otherwise.
It is easy to check the functions F n k and F are non-negative for all k ∈ N * . Since µ n k converges weakly to µ as k tends to infinity, it is clear that

lim k→∞ F n k (λ) = F (λ), for all λ ∈ R. (4•4)
By Proposition 3.1 (ii) and Lemma 3.2, we have

λ∈Λ σ F (λ) = λ∈Λ σ | µ(ξ + λ)| 2 ≤ 1. (4•5)
On the other hand, it follows from the hypothesis of ξ and {n k } ∞ k=1 that

F (λ) = F n k (λ) • | µ >n k (ξ + λ)| 2 > F n k (λ),
for all λ ∈ R and for all k ∈ N * . In other words, for all k ∈ N * , the functions F n k are dominated by 1 F which is an integral function due to (4•5). By dominated convergence theorem, we have lim

k→∞ λ∈Λ σ F n k (λ) = λ∈Λ σ lim k→∞ F n k (λ) = λ∈Λ σ F (λ). (4•6)
On the other side, since Λ σ n k is a spectrum of µ n k , we have

λ∈Λ σ F n k (λ) = λ∈Λn k F n k (λ) = 1.
It follows that

Q µ P,D ,Λ σ (ξ) = λ∈Λ σ F (λ) = 1. (4•7)
The above demonstration is the same for any real number ξ with |ξ| < . Hence, the equation (4•7) holds for all |ξ| < . According to Proposition 3.1 (iii) and the identity theorem, the equation (4•7) holds for all ξ ∈ R, which completes the proof due to Proposition 3.1 (ii).

Lemma 4.1 is crucial to the proof of Theorem 1.1, because it converts the problem of proving the spectrality to looking for an increasing subsequence of N * satisfying the assumption in Lemma 4.1.

Under the assumption that τ (k + 1) = 3 and k ≥ 4, the following lemma shows that we have already a non-zero lower bound of | µ >k+1 |. Lemma 4.2. Let k ≥ 4 be an integer such that τ (k + 1) = 3. Then there exists > 0 such that

| µ >k+1 (ξ + λ)| ≥ , for all |ξ| < 1 and λ ∈ Λ σ k for all σ ∈ {-1, 1} N * . Proof. Observe that k ≥ 4 is equivalent to say that 4π 9 (1 + 1 2 k ) < π 2 . (4•8)
By definition, we have

| µ >k+1 (ξ + λ)| =Π τ (i)=2,i≥k+2 | δ P -1 i {0,d i } (ξ + λ)|• Π τ (j)=3,j≥k+2 | δ P -1 j {0,a i ,b i } (ξ + λ)|. (4•9) 
We estimate the lower bound of

| δ P -1 i {0,d i } (ξ + λ)| and | δ P -1 j {0,a i ,b i } (ξ + λ)| for all τ (i) = 2, i ≥ k + 2
and for all τ (j) = 3, j ≥ k + 2. We first deal with

| δ P -1 i {0,d i } (ξ + λ)| with τ (i) = 2, i ≥ k + 2.
By the equation (2•1), we have

| δ P -1 i {0,d i } (ξ + λ)| ≥ 1 - 1 2 π d i |ξ + λ| P i 2 . (4•10)
By the equation (4•2) and the assumption τ (k + 1) = 3, we obtain

π d i |ξ + λ| P i ≤ π 3 • 2 i-2-k 1 + 1 2 k . (4•11) Since i ≥ k + 2, we have π 3 • 2 i-2-k 1 + 1 2 k ≤ π 3 1 + 1 2 k < π 2 . (4•12)
Combining equation (4•10), (4•11) and (4•12), we have

| δ P -1 i {0,d i } (ξ + λ)| ≥ 1 - 1 2 π 3 • 2 i-2-k 1 + 1 2 k 2 > 0. It follows that Π τ (i)=2,i≥k+2 | δ P -1 i {0,d i } (ξ + λ)| ≥Π τ (i)=2,i≥k+2 (1 - 1 2 ( π 3 • 2 i-2-k (1 + 1 2 k )) 2 ). (4•13)
By Lemma 2.2, the right-hand side of (4•13) is strictly positive. Now we deal with

| δ P -1 j {0,a i ,b i } (ξ + λ)| with τ (j) = 3, j ≥ k + 2. We consider two different cases: τ (k + 2) = 2 and τ (k + 2) = 3. If τ (k + 2) = 2,
then the number j has to be bigger than or equal to k + 3. By the equation (4•17), we have

π |a j ± b j | P j |ξ + λ| < π 3 • 2 j-3-k 1 + 1 2 k < π 3 1 + 1 2 k < π 2 . (4•14)
On the other hand, if τ (k + 2) = 3, then by the equation (4•17), we also have

π |a j ± b j | P j |ξ + λ| < π 3 2 • 2 j-4-k 1 + 1 2 k < 4π 9 1 + 1 2 k < π 2 . (4•15)
Then by the equation (2•2), we have

| δ P -1 j {0,a j ,b j } (ξ + λ)| ≥ 1 3 1 - 1 2 π (a j + b j )(ξ + λ) P j 2 + 2 3 1 - 1 2 π (a j -b j )(ξ + λ) P j 2 . (4•16)
By the equation (4•3) and the assumption τ (k + 1) = 3, we obtain 

π |a j ± b j | P j |ξ + λ| < π 3 • τ (k + 2) • 2 j-4-k 1 + 1 2 k . ( 4 
| δ P -1 j {0,a j ,b j } (ξ + λ)| ≥ 1 - 1 2 π 3 • 2 j-3-k 1 + 1 2 k 2 > 0. (4•18)
Thus we obtain 

Π τ (j)=3,j≥k+2 | δ P -1 j {0,a i ,b i } (ξ + λ)| ≥Π τ (j)=3,j≥k+2 1 - 1 2 π 3 • 2 j-3-k 1 + 1 2 k 2 . ( 4 

Proof of Theorem 1.2

Let P = {p n } ∞ n=1 be a sequence of integers with p n > 1. Let D = {D n } ∞ n=1
be a sequence of sets with D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2), (C3) and (C4). In this section, we find a sequence

{n k } ∞ k=1 , > 0 and σ ∈ {-1, 1} N * such that | µ >n k (ξ + λ)| ≥ ,
for all |ξ| < 1 and λ ∈ Λ σ n k for all k ∈ N * , which satisfy the condition in Lemma 4.1. We then prove Theorem 1.2. The proof is decomposed into 4 parts according to 4 cases: L(τ, 2) ≥ 2; L(τ, 3) ≥ 3; L(τ, 3) = 2 and meanwhile L(τ, 2) = 1; finally L(τ, 3) = L(τ, 2) = 1.

L(τ, 2) ≥ 2

For θ = {θ(n)} ∞ n=1 ∈ {0, 1} N * and a sequence C = {C(n)} ∞ n=1 of real numbers, we define

α θ n (C) = n j=1 θ(j) c(j)c(j + 1) • • • c(n)
, for all n ∈ N * .

We remark that if θ(n) = 1 for all n ∈ N * , then the sequence

{α θ n (C)} ∞ n=1 is the α-sequence of C.
Now we estimate the upper bound of α θ n (τ ) along a particular subsequence. We have the following lemma. 

i) τ (n k -i) = 2 for all k ∈ N * and for all 0 ≤ i ≤ -1. (ii) 1 ≤ j 1 < n 1 , n k < j k+1 < n k+1 and τ (j k ) = 3 for all k ∈ N * . Let θ = {θ(i)} ∞ i=1 with θ(i) = 1 if i = n k for some k ∈ N * , 0 otherwise. Then we have α θ n k (τ ) < 3 2 +1 , for all k ≥ 2. Proof. Define the subsequence {m k } ∞ k=1 of N by m 1 = min{j : τ (j) = 3} and m +1 = min{n k , j : n k > m , j > m , τ (j) = 3, k ∈ N * }, for ≥ 1. It is easy to see that {n k } ∞ k=1 is a subsequence of {m k } ∞ k=1 . We define the sequence τ = { τ (n)} ∞ n=1 by τ (1) = τ (m 1 )τ (m 1 -1) • • • τ (1) and τ (n) = τ (m n )τ (m n -1) • • • τ (m n-1 + 1),
for all n ≥ 2. By (i) and (ii), we obtain that for all n ∈ N * , τ (n) take values in the set

{2 k 3 : k ∈ N} ∪ {2 +k : k ∈ N}.
This implies that τ (n) ≥ 3 for all n ∈ N * . By the definition of α-sequence, we have

α n ( τ ) = n j=1 1 τ (j) τ (j + 1) . . . τ (n) = 1 τ (1)τ (2) . . . τ (m n ) + n i=1 1 τ (m i )τ (m i + 1) . . . τ (m n ) , (5•1)
for all n ∈ N * . By the definition of θ, we have

α θ n k (τ ) = k i=1 1 τ (n i )τ (n i + 1) . . . τ (n k ) , for all k ∈ N * . (5•2) Fix k ∈ N * . Let be the integer satisfying m = n k . It is not hard to check that α θ n k (τ ) < α ( τ ). (5•3)
Thus it is sufficient to estimate the upper bound of α ( τ ). By (i) and (ii), we get that τ (m -1 ) = 3,

n k -m -1 + 1 ≥ and τ (n k -i) = 2 for 0 ≤ i ≤ -1. It follows that τ ( ) = τ (n k )τ (n k -1) • • • τ (m -1 + 1) ≥ 2 .
(5•4)

By the recursion formula (2•4), we have

α ( τ ) = 1 τ ( ) (α -1 ( τ ) + 1). (5•5)
Since τ (n) ≥ 3 for all n ∈ N * , combining (5•4) and (5•5), we obtain

α ( τ ) ≤ 1 2 (α -1 ({3} ∞ k=1 ) + 1) < 1 2 1 2 + 1 = 3 2 +1 ,
where {3} ∞ k=1 is the sequence of the constant number 3. This completes the proof.

Under the assumption that L(τ, 2) ≥ 2, we construct the sequence {n k } ∞ k=1 satisfying the condition in Lemma 4.1 and consequently prove the spectrality of µ P,D . Proposition 5.2. Suppose L(τ, 2) ≥ 2. There exists a subsequence

{n k } ∞ k=1 of N, > 0 and σ ∈ {-1, 1} N * such that | µ >n k (ξ + λ)| ≥ , for all |ξ| < 1 and λ ∈ Λ σ n k .
Proof. We choose the sequence {n k } ∞ k=1 satisfying the following conditions.

(1)

1 2 n k + 13 24 < 2 3 for all k ∈ N * . (2) τ (n k -i) = 2 for all k ∈ N * and all 0 ≤ i ≤ L(τ, 2) -1. (3) There exists a sequence {j k } ∞ k=1 such that 1 ≤ j 1 < n 1 , n k < j k+1 < n k+1 and τ (j k ) = 3 for all k ∈ N * . It is clear that such sequence {n k } ∞ k=1 exists. Define the sequence σ = {σ(i)} ∞ i=1 by σ(i) = 1 if i = n k for some k ∈ N * , - 1 otherwise. 
Let k ∈ N * . We consider two cases:

λ ∈ Λ σ n k -1 and λ ∈ Λ σ n k \ Λ σ n k -1 .
Let us first concentrate on the case when λ ∈ Λ σ n k -1 . By (4•1), we have

|λ| P n k = 1 p n k • |λ| P n k -1 < α n k -1 (τ ) 2 < 1 2 .
Let ξ be a real number with |ξ| < 1. It follows that,

π a n k +1 P n k +1 |ξ + λ| ≤ π a n k +1 p n k +1 |ξ| P n k + |λ| P n k < π 1 2 n k + 1 2 < 2π 3 .
Moreover, we have lim sup

k→+∞ π a n k +1 P n k +1 |ξ + λ| < 2π 3 .
The similar estimation shows that lim sup

k→+∞ π b n k +1 P n k +1 |ξ + λ| < 2π 3 .
Due to Remark 2.1, we deduce that there exists > 0 such that

| σ P -1 n k +1 {0,a n k +1 ,b n k +1 } (ξ + λ)| > .
According to Lemma 4.2 and the arbitrariness of λ ∈ Λ σ n k -1 , we obtain that there exists > 0 such that

| µ >n k (ξ + λ)| ≥ for all k ∈ N * and for all λ ∈ Λ σ n k -1 . (5•6) It remains to establish (5•6) for λ ∈ Λ σ n k \ Λ σ n k -1 . Let θ(n) = σ(n)+1 2 for all n ∈ N * . This means that θ(n) = 1 (resp. 0) if and only if σ(n) = 1 (resp. -1). Let λ ∈ Λ σ n k \ Λ σ n k -1 . It follows that π a n k +1 P n k +1 (ξ + λ ) = π a n k +1 p n k +1 ξ P n k + λ P n k . ( 5•7) 
A simple computation shows that

λ P n k ≤ 1 P n k   τ (i)=2,i≤n k P i θ(i) 2 1+ i + τ (j)=3,j≤n k P j 1 3   ≤ τ (i)=2,i≤n k θ(i) 2p i+1 p i+2 . . . p n k + τ (j)=3,j≤n k -L(τ,2) 1 3p j+1 p j+2 . . . p n k ≤ n k i=1 θ(i) τ (i) • • • τ (n k ) + 1 3 • 2 L(τ,2) τ (j)=3,j≤n k -L(τ,2) 1 3p j+1 . . . p n k -L(τ,2) ≤ α θ k (τ ) + 1 3 • 2 L(τ,2)-1 .
(5•8)

Due to Lemma 5.1, we have

α θ k (τ ) + 1 3 • 2 L(τ,2)-1 < 3 2 L(τ,2)+1 + 1 3 • 2 L(τ,2)-1 = 13 24
.

(

, we have

π a n k +1 P n k +1 (ξ + λ ) < π 1 2 n k + 13 24 < 2π 3 .
Moreover, we have lim sup

k→+∞ π a n k +1 P n k +1 (ξ + λ ) < 2π 3 .
(5•10)

Similarly, we have lim sup

k→+∞ π b n k +1 P n k +1 (ξ + λ ) < 2π 3 . (5•11)
On the other side, a simple computation shows that

π a n k +1 P n k +1 (ξ + λ ) = π a n k +1 p n k +1 ξ P n k + λ P n k > πa n k +1 p n k +1 - 1 P n k + 1 τ (n k ) - α n k -1 (τ ) p n k .
for 0 ≤ i ≤ -1. By iteration, we obtain

α n k (τ ) - 1 2 = 1 3 (α n k -(τ ) - 1 2 
).

Since α n k -(τ ) < 1, we conclude that

α n k (τ ) < 1 2 + 1 2 • 3 .
Now we construct the sequence {n k } ∞ k=1 satisfying the condition in Lemma 4.1.

Proposition 5.4. Suppose L(τ, 3) ≥ 3. There exist a subsequence {n k } ∞ k=1 of N * and > 0 such that

| µ >n k (ξ + λ)| ≥ , for all |ξ| < 1 and all λ ∈ Λ σ n k for all σ ∈ {-1, 1} N * . Proof. We pick the sequence {n k } ∞ k=1 that satisfies (1) 5 9 + 1 2 n k < 2 3 . (2) τ (n k -i) = 3 for all -1 ≤ i ≤ L(τ, 3) -2 and all k ∈ N * .
It is not hard to see that such sequence {n k } ∞ k=1 exists. We claim that the sequence {n k } ∞ k=1 is what we want. Now we prove the claim. Let k ∈ N * . Due to Lemma 5.3 and the hypothesis that L(τ, 3) ≥ 3, we have

α n k (τ ) < 1 2 + 1 2 • 3 L(τ,3) < 5 9
. Due to Remark 2.1, we deduce that there exists > 0 such that

Let σ ∈ {-1, 1} N * . Let λ ∈ Λ σ n k . Let
| σ P -1 n k +1 {0,a n k +1 ,b n k +1 } (ξ + λ)| > .
Combining this with Lemma 4.2, we complete the proof. Proof. Since L(τ, 3) = 2 and L(τ, 2) = 1, there exists K ∈ N * such that the length of consecutive "2" (resp. "3") is less than or equal to 1 (resp. 2) in the subsequence {τ (k)} k>K . We choose a subsequence {n k } ∞ k=1 of N >K such that

(1) 23 36 + 1 2 n k < 2 3 . (2) τ (n k + 1) = τ (n k ) = 3 for all k ∈ N * .
It is easy to check that such sequence {n k } ∞ k=1 exists. Let k ∈ N * . By the assumption that L(τ, 3) = 2 and L(τ, 2) = 1, we have τ (n k -1) = 2 and τ (n k -2) = 3. By the recursion formula (2•4), we have

α n k (τ ) = 1 3 1 2 1 3 1 τ (n k -3) (α n k -4 (τ ) + 1) + 1 + 1 + 1 , that is, α n k (τ ) = 1 18 α n k -4 (τ ) + 1/τ (n k -3) + 10 18 .
By the facts that α n k -4 (τ ) < 1 and τ (n k -3) ≥ 2, we have Due to Remark 2.1, we deduce that there exists > 0 such that

α n k (τ ) < 1 
| σ P -1 n k +1 {0,a n k +1 ,b n k +1 } (ξ + λ)| > .
Combining this with Lemma 4.2, we complete the proof.

5.4. L(τ, 2) = L(τ, 3) = 1
In this paragraph, we study the last case: L(τ, 2) = L(τ, 3) = 1. Observably, there exists N ∈ N * such that τ (N + 2n -1) = 3 and τ (N + 2n) = 2 for n ∈ N. We first estimate the upper bound of the α-sequence of τ . Then we construct the sequence {n k } ∞ k=1 satisfying the condition in Lemma 4.1. We have the following lemma. 

α N +2n-1 (τ ) = 1 6 (α N +2n-3 (τ ) + 1 2 ),
which is equivalent to

α N +2n-1 (τ ) - 3 5 = 1 6 (α N +2n-3 (τ ) - 3 5 
).

By iteration, we have

α N +2n-1 (τ ) - 3 5 = 1 6 n (α N -1 (τ ) - 3 5 
).

According to the fact that α N -1 (τ ) < 1, we conclude that

α N +2n-1 (τ ) < 3 5 + 2 5 • 6 n .
By the similar computation, we have

α N +2n < 4 5 + 1 5 • 6 n .
This completes the proof. Now we estimate the lower bound of | µ >k+1 | for k sufficiently large. Lemma 5.7. Let k be an integer with 1 2 

k + 2 5• √ 6 k-N -1 < 2 √ 2 π -3 5 . Then there exists > 0 such that | µ >k+1 (ξ + λ)| > for all |ξ| < 1 and all λ ∈ Λ σ k+1 for all σ ∈ {-1, 1} N * . Proof. Let σ ∈ {-1, 1} N * , |ξ| < 1 and λ ∈ Λ σ k .
The case when τ (k + 1) = 3 is already proved in Lemma 4.2. Thus we assume here that τ (k + 1) = 2, that is, k = N + 2n + 1 for some n ∈ N. By the definition of µ >N +2n+2 , we have

| µ >N +2n+2 (ξ + λ)| = i∈N | δ P -1 N +2(n+i+2) {0,d N +2(n+i+2) } (ξ + λ)|• j∈N | δ P -1 N +2(n+j+2)-1 {0,a N +2(n+j+2)-1 ,b N +2(n+j+2)-1 } (ξ + λ)|. (5•18)
We estimate the lower bounds of

| δ P -1 N +2m {0,d N +2m } (ξ + λ)| and | δ P -1 N +2m-1 {0,a N +2m-1 ,b N +2m-1 } (ξ + λ)|,
for m ≥ n + 2. We first deal with δ P -1 N +2m {0,d N +2m } with m ≥ n + 2. By (2•1), we have

| δ P -1 N +2m {0,d N +2m } (ξ + λ)| ≥ 1 - 1 2 π d N +2m |ξ + λ| P N +2m 2 . (5•19) By (4•2), we obtain π d N +2m |ξ + λ| P N +2m < π N +2m-1 i=N +2n+2 1 τ (i) N +2n+1 j=1 1 τ (j) + α N +2n+1 (τ ) . (5•20)
By Lemma 5.6 and the fact that τ (j) ≥ 2, we have

π d N +2m |ξ + λ| P N +2m < π 2 • 6 m-n-2 1 2 N +2n+1 + 3 5 + 2 5 • 6 n .
(5•21)

By the hypothesis that

1 2 k + 2 5• √ 6 k-N -1 < 2 √ 2 π -3 5 , we have π 2 • 6 m-n-2 1 2 N +2n+1 + 3 5 + 2 5 • 6 n ≤ π 2 1 2 N +2n+1 + 3 5 + 2 5 • 6 n < √ 2.
(5•22) Combining (5•19), (5•20) and (5•22), we have

| δ P -1 N +2m {0,d N +2m } (ξ + λ)| ≥ 1 - 1 2 1 2 • 6 m-n-2 1 2 N +2n+1 + 3 5 + 2 5 • 6 n 2 > 0. It follows that i∈N | δ P -1 N +2(n+i+2) {0,d N +2(n+i+2) } (ξ + λ)| ≥ i∈N 1 - 1 2 • 6 i 1 2 N +2n+1 + 3 5 + 2 5 • 6 n 2 .
(5•23) By Lemma 2.2, the right-hand side of (5•23) is strictly positive. Now we deal with δ P -1 N +2m-1 {0,a N +2m-1 ,b N +2m-1 } (ξ + λ) with m ≥ n + 2. For simplicity's sake, let j = N + 2m -1. By (2•2), we have

δ P -1 j {0,a j ,b j } (ξ + λ) ≥ 1 3 1 - 1 2 π (a j + b j )|ξ + λ| P j 2 + 2 1 - 1 2 π (a j -b j )|ξ + λ| P j 2 (5•24)
By ( 4•3), we obtain

|a j ± b j | P j |ξ + λ| < 2 j-1 i=k+1 1 τ (i) k s=1 1 τ (s) + α k (τ ) (5•25)
By Lemma 5.6 and the fact that τ (j) ≥ 2, we have 

π |a j ± b j | P j |ξ + λ| < 2π 6 m-n 1 2 N +2n+1 + 3 5 + 2 5 • 6 n . ( 5 
|a j ± b j | P j |ξ + λ| ≥ 1 - 1 2 2π 6 m-n ( 1 2 N +2n+1 + 3 5 + 2 5 • 6 n 2 > 0. (5•28) It follows that s∈N δ P -1 N +2(n+s+1)+1 {0,a N +2(n+s+1)+1 ,b N +2(n+s+1)+1 } (ξ + λ) ≥ s∈N 1 - 1 2 2π 6 s+1 ( 1 2 N +2n+1 + 3 5 + 2 5 • 6 n 2 .
(5•29) By Lemma 2.2, the right-hand side of (5•29) is strictly positive. Since the equations (5•23) and (5•29) are strictly positive, we complete the proof.

It remains to estimate the lower bound of | µ k+1 |. We decompose the proof into two parts according to two cases: there exists a subsequence {n k } ∞ k=1 of N >N +1 such that p n k > τ (n k ); p N +2n-1 = 3 and p N +2n = 2 for all n ∈ N. We have the following two lemmas. If n k = N + 2m + 1, the we have

π d n k +1 |ξ + λ| P n k +1 < π |λ| P n k + 1 P n k < π 4 5 + 1 5 • 6 m + 1 2 n k < √ 2.
This means that | δ P -1 n k +1 {0,d n k +1 } (ξ + λ)| has a lower bounded independent of k, which completes the proof due to Lemma 5. Due to Remark 2.1, this means that | δ P -1 n k +1 {0,a n k +1 ,b n k +1 } (ξ + λ)| has a lower bounded independent of k, which completes the proof due to Lemma 5.7. This completes the proof.

Conclusion

Combining Proposition 5.2, Proposition 5.4, Lemma 5.8 and Lemma 5.9, we obtain the following proposition. Proposition 5.10. Let P = {p n } ∞ n=1 be a sequence of integers with p n > 1 and D = {D n } ∞ n=1 be a sequence of sets with CardD n = 2 or 3 and D n ⊂ N. Suppose that the pair {P, D} satisfies the conditions (C1), (C2), (C3) and (C4). Then the following statements hold.

( C1 )

 C1 For every n ≥ 1, CardD n = 2 or 3. (C2) If CardD n = 2, the set D n has the form {0, d n } such that d n = 2 n d n where n ∈ N and d n is a positive odd number. Moreover, 2 n divides p n and 2 divides pn gcd(dn,pn) . (C3) If CardD n = 3, the set D n has the form {0, a n , b n } such that max{a n , b n } < p n , {a n , b n } ≡ {1, 2} mod 3, gcd{a n , b n } = 1 and 3 divides p n .

Remark 2 . 1 .

 21 For any sequences {x n } ∞ n=1 and {y n } ∞ n=1 satisfying 0 < x n , y n <

  If we assume τ (k + 1) = 3, then by Lemma 4.1 and the fact that | µ >k | = | δ P k+1 {0,a k+1 ,b k+1 } | • | µ >k+1 |, to prove the spectrality of µ P,D , it only needs to estimate the lower bound of | δ P k+1 {0,a k+1 ,b k+1 } |. This is exactly what we will do in Section 5.

Lemma 5 . 1 .

 51 Let ≥ 2. Suppose that {n k } ∞ k=1 and {j k } ∞ k=1 are increasing subsequences of N * satisfying the following conditions.

(

  

5. 3 .

 3 L(τ, 3) = 2, L(τ, 2) = 1 In this paragraph, we construct the sequence {n k } ∞ k=1 satisfying the condition in Lemma 4.1 under the assumption that L(τ, 3) = 2 and L(τ, 2) = 1. Proposition 5.5. Suppose L(τ, 3) = 2 and L(τ, 2) = 1. Then there exists a subsequence {n k } ∞ k=1 of N * and > 0 such that | µ >n k (ξ + λ)| ≥ , for all |ξ| < 1 and all λ ∈ Λ σ n k for all σ ∈ {-1, 1} N * .

Lemma 5 . 6 .

 56 α N +2n (τ ) < 4 5 + 1 5•6 n and α N +2n-1 (τ ) < 3 5 + 2 5•6 n for all n ∈ N. Proof. Let n ∈ N. By the recursion formula (2•4), we have α N +2n-1 (τ α N +2n-2 (τ ) = 1 2 (α N +2n-3 (τ ) + 1). (5•17) Combining (5•16) and (5•17), we have

  •26) Due to (5•25) and the fact that m ≥ n + 2, we have π |a j ± b j | P j |ξ + λ| < 24), (5•25), (5•26) and (5•27), we have

Lemma 5 . 8 . 1   ≤ 1 τ 4 5 + 1 5• 6 m 4 15 + 1 15• 6 m

 5811416416 Suppose that there exists a subsequence{n k } ∞ k=1 of N >N +1 such that p n k > τ (n k ). Then we have | µ >n k (ξ + λ)| ≥ for all k ∈ N * , |ξ| < 1 and λ ∈ Λ σ n k for all σ ∈ {-1, 1} N * . Proof. Let k ∈ N * . By the facts that τ (n k ) | p n k and p n k > τ (n k ), we have p n k ≥ 2τ (n k ). Let λ ∈ Λ σ n k . A simple computation shows that |λ| P n k ≤ τ (i)=2,i≤n k p i+2 . . . p n k + τ (j)=3,i≤n k 1 3p j+1 p j+2 . . . p n k = 1 τ (n k )   τ (i)=2,i≤n k -1 1 2p i+1 p i+2 . . . p n k -1 + τ (j)=3,i≤n k -1 1 3p j+1 p j+2 . . . p n k -1 + (n k ) (α n k -1 (τ ) + 1),where last line is due to the fact that p n ≥ τ (n) for all n. By Lemma 5.6, we have1 τ (n k ) (α n k -1 (τ ) + 1) = if n k = N + 2m, if n k = N + 2m + 1.

Lemma 5 . 9 .

 59 If p N +2n-1 = 3 and p N +2n = 2 for all n ∈ N, then | µ >N +2n-1 (ξ+ λ)| > for all n ∈ N, |ξ| < 1 and λ ∈ Λ σ N +2n-1 for all σ ∈ {-1, 1} N * . Proof. By the fact that 0 < d N +2n < p N +2n = 2, we have d N +2n = 1. It follows that π d N +2n |ξ + λ| P

  7. If n k = N + 2m, then we have

	Moreover, we have												
			lim sup k→+∞	π	a n k +1 |ξ + λ| P n k +1	<	2π 3	.		
	Similarly, we have												
			lim sup k→+∞	π	b n k +1 |ξ + λ| P n k +1	<	2π 3	.		
	π	a n k +1 |ξ + λ| P n k +1	< π	|λ| P n k	+	1 P n k	< π	4 15	+	1 15 • 6 m +	1 2 n k	<	2π 3	.
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By the facts that α n k -1 (τ ) < 1 -1 2 n k -1 , p n k > τ (n k ) = 2 and P n k > 2 n k , we deduce that π a n k +1 P n k +1 (ξ + λ ) > 0.

(5•12)

The similar estimation shows that

Due to Remark 2.1, we obtain that there exists > 0 such that

According to Lemma 4.2 and the arbitrariness of

, we obtain that there exists > 0 such that

(5•13)

Combining (5•6) and (5•13), we complete the proof.

L(τ, 3) ≥ 3

In this paragraph, we first estimate the upper bound of α n (τ ) along a particular subsequence of N. Then we construct the sequence {n k } ∞ k=1 satisfying the condition in Lemma 4.1.

Lemma 5.3. Let be a positive integer. Suppose that {n k } ∞ k=1 is an increasing subsequence of N * such that τ (n k -i) = 3 for all k ≥ 1 and for all 0 ≤ i ≤ -1. Then we have

Proof. Let k ∈ N * . By the recursion formula (2•4) and the hypothesis that

It is easy to see that the equation (5•14) is equivalent to

for all |ξ| < 1 and λ ∈ Λ σ n k for every σ ∈ {-1, 1} N * . Combing Lemma 4.1 and Proposition 5.10, we complete the proof of Theorem 1.2.

Remark

There are other elements that impact the spectra of µ P,D besides L(τ, 2) and L(τ, 3). We give an example to illustrate it. n k for all σ ∈ {-1, 1} N . Moreover, the measure µ P,D is a spectral measure with spectrum Λ σ for every σ ∈ {-1, 1} N .

Proof. It suffices to estimate the lower bound of | δ

. For any γ > 0 which satisfies η + γ < 2 3 , there exists K > 0 such that for any k > K, we have

< η + γ. For any γ > 0 which satisfies η + γ + γ < 2 3 , there exists K > K such that for any k > K , (η + γ)(1

where the function f (x, y) = cos(x) cos(y) cos(x -y) is defined in Section 2.4. By Lemma 2.1, it is clear that > 0. It follows that

for any k > K . Combining (6•2) and Lemma 4.1, we complete the proof.

We remark that the case when L(τ, 2) ≥ 2 and the case in Proposition 6.1 may happen in the same time.