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Introduction

Coagulation-fragmentation models have applications in many domains of science and technology: aerosol dynamics, polymerization, and combustion processes, for example [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists[END_REF]. M. von Smoluchowski modelled the coagulation of particles in a medium where only binary collisions occur: the numbers of particles of different sizes obey an infinite system of ordinary differential equations [START_REF] Smoluchowski | Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen[END_REF]. H. Müller rewrote the equations in terms of an integro-differential equation for the time evolution of the particle size density function [START_REF] Müller | Zur allgemeinen Theorie der raschen Koagulation[END_REF]. S. K. Friedlander considered the result of binary collisions occuring simultaneously with splitting of single particles in two new particles [START_REF] Friedlander | On the particle size spectrum of a condensing vapor[END_REF]. This gives the coagulation-fragmentation equation for the density c(x, t) of particles of size (or mass) x at times t (see [START_REF] Dubovskiǐ | Existence, uniqueness and mass conservation for the coagulation-fragmentation equation[END_REF]): x 0 F (x -y, y)c(x, t)dy, x > 0, t > 0,

with the initial condition c(x, 0) = c 0 (x) (x > 0), which is a given nonnegative function. The coagulation kernel K(x, y) describes the rate of formation of a particle of size x + y by coagulation of two particles of size x and y; the fragmentation kernel F (x, y) is describing the rate of formation of particles of size x and y by fragmentation of a particle of size x+y. Both kernels are assumed to be non-negative and symmetric. For an integer m ≥ 0, the moment of order m is defined by: M m (t) := +∞ 0

x m c(x, t)dx. The total number of particles, M 0 (t) may decrease by coagulation or increase by fragmentation, while the total mass of particles, M 1 (t) remains constant if there is neither gelation (formation of particles of infinite size by coagulation: see [START_REF] Aldous | Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists[END_REF]) nor shattering (formation of zero-size particles by fragmentation: see [START_REF] Mcgrady | Shattering" transition in fragmentation[END_REF]). We denote M 1 := M 1 (0).

Existence, uniqueness, boundedness, and positiveness of the solutions of coagulation-fragmentation equation have been considered in [START_REF] Dubovskiǐ | Existence, uniqueness and mass conservation for the coagulation-fragmentation equation[END_REF]. Exact solutions are only known for pure coagulation (F = 0) or pure fragmentation (K = 0) equation and for specific kernels and initial data, so efforts are being pursued to obtain accurate numerical solutions. We focus on stochastic (or quasi-stochastic) strategies. Several Monte Carlo (MC) methods have been developed concurrently. In [START_REF] Eibeck | Approximative solution of the coagulationfragmentation equation by stochastic particle systems[END_REF] the density is approximated using a particle system with a variable particle number. In contrast to this direct simulation scheme, where the particles represent the number density, a mass flow scheme was introduced in [START_REF] Babovsky | On a Monte Carlo scheme for Smoluchowski's coagulation equation[END_REF]: the particles represent the mass density so that the number of particles is kept constant throughout the simulation. The article [START_REF] Goodson | Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid-liquid extraction[END_REF] presents a mass flow scheme for the coagulation-fragmentation equation. In [START_REF] Zhao | Analysis of four Monte Carlo methods for the solution of population balances in dispersed systems[END_REF] time-driven MC are opposed to event-driven MC. In timedriven simulations a time step is chosen, and all events are implemented within that step; in event-driven MC, first an event is selected to occur, and time is advanced by an appropriate increment. It is found that event-driven methods generally provide better accuracy; but time-driven algorithms are more suitable in cases where the equation is to be solved within a larger process simulator that performs explicit integration in time; see [START_REF] Kotalczyk | A time-driven constant-number Monte Carlo method for the GPU-simulation of particle breakage based on weighted simulation particles[END_REF] for recent numerical experiments.

The aim of the present work is to extend to the coagulation-fragmentation equation the time-driven constant-number method introduced in [START_REF] Lécot | A quasi-Monte Carlo method for the coagulation equation[END_REF][START_REF] Lécot | A quasi-Monte Carlo scheme for Smoluchowski's coagulation equation[END_REF] for pure coagulation. The method uses quasi-random numbers (low-discrepancy point sets) in place of pseudo-random numbers. The basic notations and concepts of quasi-Monte Carlo (QMC) methods are given in [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]. We denote I := [0, 1). For a dimension s, the Lebesgue measure is denoted λ s . For U = {u 0 , . . . , u N -1 } ⊂ I s and for a Borel set B ⊂ I s the local discrepancy is For many MC schemes, it is possible to develop corresponding QMC algorithms by replacing the pseudo-random numbers with quasi-random numbers. In [START_REF] Lécot | A quasi-Monte Carlo method for the coagulation equation[END_REF][START_REF] Lécot | A quasi-Monte Carlo scheme for Smoluchowski's coagulation equation[END_REF], it was shown that it is convenient to take special measures in order to benefit from the great uniformity of quasi-random points: as time advances, the simulation particles are renumbered according to size at every time step.

D N (B, U ) := 1 N 0≤k<N 1 B (u k ) -λ s (B),
The present paper is restricted to the presentation and analysis of a QMC (deterministic) scheme, which is able to produce an approximation of the density c(x, t) for any (x, t): this may be of interest in some cases (we think of inverse problems). The remainder of the paper is organized as follows. In Section 2, the QMC algorithm is presented. We establish in Section 3 a convergence result for the discrepancy of the numerical particles relative to the exact mass distribution. Results of computational experiments are shown in section 4.

The quasi-Monte Carlo scheme

The case of pure coagulation was analyzed in our previous paper [START_REF] Lécot | A quasi-Monte Carlo method for the coagulation equation[END_REF]. If F is not identically null, we assume that, for every x > 0, the function y ∈ (0, x) → F (x -y, y) is not identically null. We multiply Eq. (1) by x/M 1 . If we write x = x -y + y in the first integral, it can be split up into two integrals, which are equated by a change of variable; we apply the same transformation to the last integral and we use the symmetry of K and F (see [START_REF] Babovsky | On a Monte Carlo scheme for Smoluchowski's coagulation equation[END_REF][START_REF] Eibeck | Stochastic particle approximations for Smoluchowski's coagulation equation[END_REF][START_REF] Goodson | Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid-liquid extraction[END_REF]). By introducing the mass density function f (x, t) := xc(x, t)/M 1 (which is a probability density function), we obtain the mass-flow equation:

for x > 0, t > 0, ∂f ∂t (x, t) = x 0 K(x -y, y)f (x -y, t)f (y, t)dy - +∞ 0 K(x, y)f (x, t)f (y, t)dy + +∞ 0 F (x + y, x)f (x + y, t)dy - x 0 F (x, y)f (x, t)dy, (2) 
where K and F are the modified coagulation and fragmentation kernels respectively defined by: K(x, y) := M 1 K(x, y)/y (for x, y > 0), and F (x, y) := yF (x -y, y)/x (for x > y > 0). We denote f 0 (x) := xc 0 (x)/M 1 the initial data. We introduce a weak formulation of Eq. ( 2), so we define a set of test functions. If R * + := (0, +∞), then a function σ : R * + → R + is said to be simple if its image is a finite pointset of R + ; let S(R * + ) be the set of all measurable simple functions on R * + . We multiply Eq. ( 2) by a simple function σ ∈ S(R * + ) and we integrate over R * + . We write the first (double) integral on the right-hand side of the new equation (by using variables (y, z), where z := x-y):

+∞ 0 +∞ 0 K(z, y)f (z, t)f (y, t)σ(y+z)
dydz and we write the third double integral on the same side (by using variables (x, z), where z := x + y):

+∞ 0 z 0 F (z, x)f (z, t)σ(x)dxdz.
By renaming then integration variables in the first and third double integrals, we obtain a first weak formulation of the mass-flow equation:

d dt +∞ 0 f (x, t)σ(x)dx = +∞ 0 +∞ 0 K(x, y)f (x, t)f (y, t)(σ(x + y) -σ(x))dydx + +∞ 0 x 0 F (x, y)f (x, t)(σ(y) -σ(x))dydx
Before doing the numerical integration, we convert the integral over [0, x] to an integral over [0, 1]. For x ≥ y > 0, let

F(x, y) := y 0 F (x, w)dw, Ḟ(x) := F(x, x), F(x, y) := F(x, y) Ḟ(x) .
For x > 0, let F x be the function y ∈ [0, x] → F(x, y) ∈ [0, 1], with F x (0) := 0. We assume that this function is strictly increasing; let F -1 x be the inverse function. In the integral over [0, x], we change variable y to u := F x (y), and we obtain another weak formulation of the mass-flow equation:

d dt +∞ 0 f (x, t)σ(x)dx = +∞ 0 +∞ 0 K(x, y)f (x, t)f (y, t)(σ(x + y) -σ(x))dydx + +∞ 0 Ḟ(x)f (x, t) 1 0 σ • F -1 x (u)du -σ(x) dx. (3) 
We suppose that K and Ḟ are bounded and we set K ∞ := sup x,y>0 K(x, y), Ḟ∞ := sup x>0 Ḟ(x). For b ≥ 2 and m ≥ 1, we put N := b m : this is the number of numerical particles used for the simulation. We need a low discrepancy sequence for the time evolution: U = {u 0 , u 1 , . . .} ⊂ I 3 . For n ∈ N, we write: U n := {u p : nN ≤ p < (n + 1)N }. We make the following assumptions: U is a (t, 3)-sequence in base b (for some t ≥ 0) and

π 3 2 (U n ) is a (0, m, 2)-net in base b (where π 3 2 is the projection defined by π 3 2 (x 1 , x 2 , x 3 ) := (x 1 , x 2 )).

Initialization

We choose a set X 0 = {x 0 0 , . . . , x 0 N -1 } ⊂ R * + of N particles such that the initial mass probability f 0 (x)dx is approximated by the probability distribution:

f 0 (x) := 1 N 0≤k<N δ(x -x 0 k ),
where δ(x -ξ) is the Dirac measure at a point ξ ∈ R * + . This reverts to generating N samples from the density function f 0 .

Time discretization

A fixed time step ∆t is chosen such that ∆t( K ∞ + Ḟ∞ ) < 1. We set t n := n∆t and we denote f n (x) := f (x, t n ). We suppose that a set X n = {x n 0 , . . . , x n N -1 } ⊂ R * + of N particles has been computed so that

f n (x) := 1 N 0≤k<N δ(x -x n k )
approximates (in a sense to be made precise below) the exact mass probability f n (x)dx. The approximation of the solution at time t n+1 is calculated as follows.

(i) Renumbering the particles Particles are relabeled at the beginning of the time step by increasing mass:

x n 0 ≤ x n 1 ≤ • • • ≤ x n N -1 .
This sorting guarantees theoretical convergence: see Section 3 below.

(ii) Coagulation/fragmentation

We define an auxiliary probability measure g n+1 by using an explicit Euler scheme in time for Eq. ( 3):

+∞ 0 g n+1 (x)σ(x) = 1 N 0≤k<N 1 - ∆t N 0≤ <N K(x n k , x n ) -∆t Ḟ(x n k ) σ(x n k ) + ∆t N 0≤k<N 1 N 0≤ <N K(x n k , x n )σ(x n k + x n ) + Ḟ(x n k ) 1 0 σ • F -1 x n k (u)du .
Since we replace the derivative with a finite difference quotient, the measure g n+1 approximates f n+1 (x)dx, but it is not a sum of Dirac measures. We recover this kind of approximation if we use a QMC quadrature rule. Let 

R k, := [k/N, (k + 1)/N ) × [ /N, ( + 
Γ n+1 σ (u) := 0≤k, <N 1 R k, (u 1 , u 2 ) 1 -χ n k, (u 3 ) -ϕ n k (u 3 ) σ(x n k ) +χ n k, (u 3 )σ(x n k + x n ) + ϕ n k (u 3 )σ • F -1 x n k 1 -u 3 ∆t Ḟ(x n k ) (for u = (u 1 , u 2 , u 3 ) ∈ I 3 ), which is such that +∞ 0 g n+1 (x)σ(x) = I 3 Γ n+1 σ (u)du.
We determine f n+1 by performing a QMC quadrature in

I 3 : +∞ 0 f n+1 (x)σ(x) = 1 N nN ≤p<(n+1)N Γ n+1 σ (u p ).
The calculation on a time step may be summarized as follows. If u ∈ [0, 1), let k(u) := N u . Then, for every p with nN ≤ p < (n + 1)N , we have:

x n+1 k(u p,1 ) =            x n k(u p,1 ) + x n k(u p,2 ) if u p,3 < ∆t K x n k(u p,1 ) , x n k(u p,2 ) , F -1 x n k(u p,1 ) 1 -u p,3 ∆t Ḟ(x n k(u p,1 ) ) if 1 -∆t Ḟ x n k(u p,1 ) ≤ u p,3 , x n k(u p,1 )
otherwise.

For every p, the numbers u p,1 and u p,2 select particles; the particle k(u p,1 ) has for coagulation partner the particle k(u p,2 ) and the coagulation probability is p c := ∆t K(x n k(u p,1 ) , x n k(u p,2 ) ); the fragmentation probability of particle k(u p,1 ) is p f := ∆t Ḟ(x n k(u p,1 ) ). Then u p,3 selects an event and in the case of fragmentation, it determines the size of the new particle. The algorithm is a slight modification of the method devised for pure coagulation and uses threedimensional quasi-random numbers as well. This is interesting, because it is well known that QMC methods perform better in low dimensional spaces. Nevertheless, the extension of the convergence analysis is not straightforward, because fragmentation introduces new linear terms (the coagulation terms are quadratic in c).

Convergence analysis

We prove a convergence result for the QMC scheme previously described. First, we need to adapt the basic tools of QMC methods to the algorithm.

Let f be a probability density function on R * + . If z > 0, then σ z is the indicator function of (0, z). We define the local discrepancy of the set

X = {x k : 0 ≤ k < N } ⊂ R * + relative to f by: D N (z, X; f ) := 1 N 0≤k<N σ z (x k ) - +∞ 0 σ z (x)f (x)dx.
The star discrepancy of X relative to f is:

D N (X; f ) := sup z>0 |D N (z, X; f )|.
The error of the scheme at time t n is defined to be D N (X n ; f n ). The concept of variation of function in the sense of Hardy and Krause can be extended to a function φ defined on R * s + and is denoted by V (φ). The Koksma inequality can be generalized as follows (the proof follows the general outline of the proof of the classical Koksma inequality given in [START_REF] Zaremba | Some applications of multidimensional integration by parts[END_REF]). Proposition 1. Let f be a probability density function over R * + . If φ has bounded variation V (φ) on R * + , then for any

X = {x k : 0 ≤ k < N } ⊂ R * + , 1 N 0≤k<N φ(x k ) - +∞ 0 φ(x)f (x)dx ≤ V (φ)D N (X; f ).
We introduce the following intermediate terms.

• The local truncation error :

ε n z := 1 ∆t +∞ 0 (f n+1 (x) -f n (x))σ z (x)dx - +∞ 0 +∞ 0 K(x, y)f n (x)f n (y)(σ z (x + y) -σ z (x))dydx - +∞ 0 Ḟ(x)f n (x) 1 0 σ z • F -1 x (u)du -σ z (x) dx.
• The additional error : e n z = e n z,K + e n z,F , where

e n z,K := +∞ 0 +∞ 0 K(x, y)f n (x)f n (y)(σ z (x + y) -σ z (x)) - +∞ 0 +∞ 0 K(x, y)f n (x)f n (y)(σ z (x + y) -σ z (x))dydx, e n z,F := +∞ 0 Ḟ(x)f n (x) 1 0 σ z • F -1 x (u)du -σ z (x) - +∞ 0 Ḟ(x)f n (x) 1 0 σ z • F -1 x (u)du -σ z (x) dx.
• The QMC integration error :

d n z := 1 N nN ≤p<(n+1)N Γ n+1 σz (u p ) - I 3 Γ n+1 σz (u)du.
We have the recurrence formula:

D N (z, X n+1 ; f n+1 ) = D N (z, X n ; f n ) -∆tε n z + ∆te n z + d n z .
The local truncation error is bounded as follows.

Lemma 1. If for every x > 0, the function t → f (x, t) is twice continuously differentiable over (0, T ) and if f, ∂f ∂t , ∂ 2 f ∂t 2 are integrable over R * + × (0, T ), then, for t n+1 ≤ T ,

|ε n z | ≤ +∞ 0 t n+1 tn ∂ 2 f ∂t 2 (x, t) dtdx.
The part of the additional error associated to coagulation is bounded in our previous paper (see Lemma 13.4 of [9]). Lemma 2. If for every y > 0, the function K(•, y) : x ∈ (0, +∞) → K(x, y) is of bounded variation V ( K(•, y)) and sup y>0 V ( K(•, y)) < +∞, and if for every x > 0, the function

K(x, •) : y ∈ (0, +∞) → K(x, y) is of bounded variation V ( K(x, •)) and sup x>0 V ( K(x, •)) < +∞, then |e n z,K | ≤ sup y>0 V ( K(•, y)) + sup x>0 V ( K(x, •)) + 3 K ∞ D N (X n ; f n ).
We have the following bound for the part of the additional error associated to fragmentation.

Lemma 3. If for every y > 0, the map F(•, y) : x ∈ [y, +∞) → F(x, y) is of bounded variation V (F(•, y)) and sup y>0 V (F(•, y)) < +∞, then |e n z,F | ≤ sup y>0 V (F(•, y)) + Ḟ∞ D N (X n ; f n ).
Proof. We have

e n z,F = +∞ 0 f n (x) x 0 F (x, y)(σ z (y) -σ z (x))dy - +∞ 0 f n (x) x 0 F (x, y)(σ z (y) -σ z (x))dy.
If we define a function: ϕ(x) := x 0 F (x, y)(σ z (y) -σ z (x))dy (for x > 0), then

e n z,F := 1 N 0≤k<N ϕ(x n k ) - +∞ 0 ϕ(x)f n (x)dx.
Using the generalized Koksma inequality leads to: (•,y)) + Ḟ∞ , the result of the lemma follows.

|e n z,F | ≤ V (ϕ)D N (X n ; f n ). Since V (ϕ) ≤ sup y>0 V (F
For bounding the QMC integration error d n z , we use the following result (see Lemma 3.4 of [START_REF] Niederreiter | Point sets and sequences with small discrepancy[END_REF]): Lemma 4. Let U be a (t, m, s)-net in base b. For every elementary interval J ⊂ I s-1 and for every u s ∈ I, we have:

|D b m (J × (u s , 1), U )| ≤ b t-m .
Lemma 5. If K is of bounded variation V HK ( K) in the sense of Hardy and Krause, and if for every y > 0, the function F(•, y) : x ∈ [y, +∞) → F(x, y) is of bounded variation V (F(•, y)) and sup y>0 V (F(•, y)) < +∞, then

|d n z | ≤ (2 + c K ∆t)b -(m-t)/3 + (1 + c F ∆t) (m-t)/2 ,
where

c K := 4V HK ( K) + 3 K ∞ and c F := sup y>0 V (F(•, y)) + sup x≥y>0 F(x, y). ( 4 
)
Proof. The function Γ n+1 σz is the indicator function of some subset P n z of I 3 , thus d n z = D N (P n z , U n ). We have the disjoint union: P n z = (P n z,0 \ P n z,1 ) ∪ P n z,2 ∪ P n z,F , where

P n z,0 := 0≤k, <N x n k <z R k, × I, P n z,1 := 0≤k, <N x n k <z R k, × (I n k, ∪ J n k ), P n z,2 := 0≤k, <N x n k +x n <z R k, × I n k, , P n z,F := 0≤k, <N R k, × J n k ∩ u ∈ I : F -1 x n k 1 -u ∆t Ḟ(x n k ) < z .
We also have the disjoint union: P n z = P n z,0 \ P n z,1 ∪ P n z,2 ∪ P n z,F , where

P n z,1 := 0≤k, <N x n k <z R k, × I n k,
and

P n z,F := 0≤k, <N x n k ≥z R k, × (1 -∆tF(x n k , z) , 1). 
Consequently, d n z can be split up:

d n z = d n z,K + D N (P n z,F , U n ), where d n z,K := D N (P n z,0 , U n ) -D N (P n z,1 , U n ) + D N (P n z,2 , U n ).
In [START_REF] Lécot | A quasi-Monte Carlo method for the coagulation equation[END_REF] (Lemma 13.6) we have proved:

|d n z,K | ≤ (2 + c K ∆t)b -(m-t)/3
. We now establish a bound for |D N (P n z,F , U n )|. By denoting I k := [k/N, (k + 1)/N ), we have:

P n z,F = 0≤k<N x n k ≥z I k × I × (1 -∆tF(x n k , z), 1).
We set σ c z := 1 -σ z and we introduce the function:

φ n z (u) := 0≤k<N 1 I k (u)F(x n k , z)σ c z (x n k ), u ∈ I,
where 1 I k is the indicator function of

I k . Then P n z,F = {u ∈ I 3 : u 3 > 1 -∆tφ n z (u 1 )}. Let d 1 be an integer such that d 1 ≤ m -t: its value is determined hereafter. For a 1 ∈ N with 0 ≤ a 1 < b d 1 , we define: I a 1 := [a 1 b -d 1 , (a 1 + 1)b -d 1 ) and P n z,F := 0≤a 1 <b d 1 I a 1 × I × (1 -∆t inf I a 1 φ n z , 1), P n z,F := 0≤a 1 <b d 1 I a 1 × I × (1 -∆t sup I a 1 φ n z , 1), ∂P n z,F := 0≤a 1 <b d 1 I a 1 × I × [1 -∆t sup I a 1 φ n z , 1 -∆t inf I a 1 φ n z ].
We have

P n z,F ⊂ P n z,F ⊂ P n z,F and P n z,F \ P n z,F ⊂ ∂P n z,F . Consequently, D N (P n z,F , U n ) -λ 3 (∂P n z,F ) ≤ D N (P n z,F , U n ) ≤ D N (P n z,F , U n ) + λ 3 (∂P n z,F ).
Since the I a 1 × I are disjoint elementary intervals in base b, an application of Lemma 4 yields: max

|D N (P n z,F , U n )|, |D N (P n z,F , U n )| ≤ b d 1 +t-m . Besides, λ 3 (∂P n z,F ) = ∆t b d 1 0≤a 1 <b d 1 sup I a 1 φ n z -inf I a 1 φ n z .
If we introduce the function

ψ z (x) := F(x, z)σ c z (x) (for x > 0), then φ n z (u) = ψ z (x n k(u)
). We define the sets:

E n a 1 := [x n a 1 b m-d 1 , x n (a 1 +1)b m-d 1 -1 ].
Since the particles are numbered by increasing size, we get:

u ∈ I a 1 ⇒ x n k(u) ∈ E n a 1 . Consequently we have: sup I a 1 φ n z -inf I a 1 φ n z ≤ sup E n a 1 ψ z -inf E n a 1 ψ z .
Since

0≤a 1 <b d 1 sup E n a 1 ψ z -inf E n a 1 ψ z ≤ V (ψ z ) ≤ V (F(•, z)) + sup x>0 F(x, z),
we obtain:

|D N (P n z,F , X n )| ≤ b d 1 +t-m + c F ∆tb -d 1 . By choosing d 1 = (m - t)/2 , we get |D N (P n z,F , U n )| ≤ (1 + c F ∆t)b -(m-t)/2
. In conjunction with the bound for d n z,K , this gives the final result. By combining the results of Lemmas 1, 2, 3 and 5, we obtain an upper bound for the error D N (X n ; f n ); it resembles the final result of [START_REF] Lécot | A quasi-Monte Carlo method for the coagulation equation[END_REF] and is similarly established. Since N = b m , we have 1/b (m-t)/3 = O(1/N 1/3 ) and 1/b (m-t)/2 = O(1/N 1/2 ). Proposition 2. If (1) for every x > 0, the function t → f (x, t) is twice continuously differentiable over (0, T ) and f, ∂f ∂t , ∂ 2 f ∂t 2 are integrable over R * + × (0, T ), (2) K is of bounded variation V HK ( K) in the sense of Hardy and Krause, (3) for every y > 0, the function F(•, y) : x ∈ [y, +∞) → F(x, y) is of bounded variation V (F(•, y)) and sup y>0 V (F(•, y)) < +∞, then

D N (X n ; f n ) ≤ e ctn D N (X 0 ; f 0 ) + ∆t +∞ 0 tn 0 e c(tn-t) ∂ 2 f ∂t 2 (x, t) dtdx + 2 ∆t + c K 1 b (m-t)/3 + 1 ∆t + c F 1 b (m-t)/2 e ctn -1 c
where t n = n∆t, c K , c F are given by Eq. ( 4) and

c := sup x>0 V ( K(x, .)) + sup y>0 V ( K(., y)) + 3 K ∞ + sup y>0 V (F(•, y)) + Ḟ∞ .
This upper bound does not converge as fast as we would like, but is nevertheless a worst-case deterministic bound. The O(N -1/3 ) convergence of the bound is due to QMC integration of indicator functions in 3D; the O(1/∆t) is due to the summation of integration errors at every time step. The same result would have been obtained if the same QMC pointset has been used at every time step (which leads in practice to a method where the error increases with the number of time steps). A more complicated error analysis would take into account that an infinite QMC sequence is used, but in this case, the QMC integration of indicator functions would be in 4D and leads to O(N -1/4 ) convergence. The present bound only guarantees that the error can be arbitrarily small, if ∆t is small enough and N is large enough. It does not aim to provide an optimal time step for a given N . Numerical experiments show that the method converges faster than O(N -1/2 ) and the error decreases with ∆t.

Numerical results

The efficiency of the QMC scheme is tested empirically. To do this, approximate solutions are computed in a case where analytical solutions for the moments are available. A quantity of interest when simulating liquidliquid extraction problems is the Sauter mean diameter of drops, which is calculated with the second and third moments. The QMC solutions are also compared with those given by the MC scheme adapted from the algorithm described in [START_REF] Babovsky | On a Monte Carlo scheme for Smoluchowski's coagulation equation[END_REF]. We consider the case where coagulation and fragmentation occur simultaneously with the following kernels: K(x, y) = 1 and F (x, y) = 2/(x + y), which is considered in [START_REF] Goodson | Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid-liquid extraction[END_REF] (since K and F are unbounded, the hypotheses of Proposition 2 are not satisfied). Then Eq. ( 1) becomes:

∂c ∂t (x, t) = 1 2 x 0 c(x -y, t)c(y, t)dy -c(x, t) +∞ 0 c(y, t)dy +2 +∞ x 1 y c(y, t)dy -c(x, t), x > 0, t > 0. (5) 
We restrict ourselves to monodisperse initial condition: c(x, 0) = δ(x -1). By multiplying Eq. ( 5) by x m and using integration over (0, +∞), we get differential equations for the moments M m (t), which can be solved to obtain:

M 2 (t) = 3 -2e -t/3 and M 3 (t) = 18 -36e -t/3 + 19e -t/2 .

We compute the solution up to time T = 1.0 with N particles (N varying from 2 7 to 2 20 ) and P time steps (P varying from 2 0 × 100 to 2 4 × 100).

All QMC computations use a (1, 3)-sequence in base 2 constructed by H.

Niederreiter [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]. The moment M m (t n ) at time t n can be approximated, using the MC or QMC scheme, by:

M m,N,P,n := 1 N 0≤k<N (x n k ) m-1 . (6) 
First we compute the absolute error in the moment estimation at time αT , for α = 1/100, 1/10 and 1:

E α m,N,P := |M m (αT ) -M m,N,P,αP |.
Figure 1 represents the log-log plots (base 2) of these absolute errors, for different values of N and P . In all cases, the QMC simulations give better re- sults (for the same discretization parameters) than those given by the Monte Carlo scheme. The error seems stable on the time interval [1/100, 1/10], so that it makes sense to compare the methods on the whole time interval [0, 1]: the mean absolute error in the moment estimation is calculated as follows: Figure 2 shows the log-log plots (base 2) of the mean absolute error in the estimation of the moments of order 2 and 3, for different values of N and P . In both cases, the QMC simulations show faster convergence than the Monte Carlo scheme.

Conclusion

In this paper, we have presented and analyzed a new algorithm for the approximation of the continuous coagulation-fragmentation equation. A sample of N numerical particles is used to simulate the behavior of the system as a whole. Time is discretized into P time steps and the mass density is approximated by a sum of N Dirac measures. Three-dimensional quasi-random points are used to change the particles masses according to the dynamics of the equation.

A deterministic error bound is established. The accuracy of the algorithm is assessed through comparison with exact values, in a test case where analytical results are available. The numerical approximations given by the QMC scheme converge to the exact results when P and N are large enough. The errors given by the QMC simulation are always smaller than the errors given by the MC method using the same P and N .

As announced, we have restricted the study to a deterministic scheme. Randomized QMC would be an interesting alternative (see [START_REF] L'ecuyer | A randomized quasi-Monte Carlo simulation method for Markov chains[END_REF][START_REF] L'ecuyer | Sorting methods and convergence rates for Array-RQMC: Some empirical comparisons[END_REF]), but requires a different analysis: this will be the subject of a forthcoming paper. 
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where 1 B

 1 denotes the indicator function of B. The discrepancy of U is D N (U ) := sup J |D N (J, U )|, where the supremum is taken over all subintervals J ⊂ I s . The star discrepancy of U is D N (U ) := sup J |D N (J , U )|, where J runs through all subintervals of I s with a vertex at the origin. QMC methods are versions of MC methods, where the pseudo-random samples are replaced with low-discrepancy point sets. Powerful methods of constructing low-discrepancy point sets are based on the theory of (t, m, s)-nets and (t, s)sequences. For an integer b ≥ 2, an elementary interval in base b is an interval of the form s i=1 [a i b -d i , (a i + 1)b -d i ), with integers d i ≥ 0 and 0 ≤ a i < b d i . If 0 ≤ t ≤ m are integers, a (t, m, s)-net in base b is a point set U of N = b m points in I s such that D N (J, U ) = 0 for every elementary interval J in base b with measure b t-m . If b ≥ 2 and t ≥ 0 are integers, a sequence u 0 , u 1 , . . . of points in I s is a (t, s)-sequence in base b if, for all integers n ≥ 0 and m > t, the points u p with nb m ≤ p < (n + 1)b m form a (t, m, s)-net in base b.

  1)/N ) ⊂ I 2 be an elementary interval in base b: we denote by 1 R k, its indicator function. Let χ n k, be the indicator function of I n k, := [0, ∆t K(x n k , x n )) and let ϕ n k be the indicator function of J n k := [1 -∆t Ḟ(x n k ), 1). To σ ∈ S(R * + ) corresponds the indicator function:
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 1 Figure 1: Error in the second (left) and third (right) moment estimation at time 1/100 (top) 1/10 (middle) and 1 (bottom), as a function of N (number of particles varying from 2 7 to 2 20 ), for P (number of time steps) between 100 and 1 600. Log-log plots of the MC (dashed line) versus QMC (solid lines) results.

  hT /100) -M m,N,P,hP/100 |.
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 2 Figure 2: Mean error in the second (top) and third (bottom) moment estimation as a function of N (number of particles varying from 2 7 to 2 20 ), for P (number of time steps) between 100 and 1 600. Log-log plots of the MC (dashed line) versus QMC (solid lines) results.