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Optimal cash management with uncertain, interrelated

and bounded demands

Abstract

We consider the cash management problem with uncertain demands. These
demands may be interrelated and globally bounded. Most research done in
this field assumes a given information about a probability distribution of
demands. In practice, however, it is difficult to correctly estimate this dis-
tribution. Here, we report on an optimal online algorithm called balanced
cash supply for interrelated demands (BCSID) which is free of any distribu-
tion assumption. BCSID has information about the minimal and maximal
ratio of two consecutive demands. The new algorithm has the smallest rel-
ative difference in relation to the optimal result when demands are adverse.
Hence, our algorithm is particularly relevant for risk averse cash managers.
Furthermore, we provide a heuristic algorithm called approximated balanced
bounded cash supply for interrelated demands (aBBCSID). This algorithm
has the same information as does BCSID; it also has information about the
global bounds of the demands. In addition, we carry out extensive numeri-
cal testing and compare these two algorithms to simple benchmarks and the
solution of [11]. The testing proves the practical relevance of BCSID and
aBBCSID.

Keywords: combinatorial optimization, cash management problem, online
algorithm, interrelated demands, bounded demands, competitive analysis

1. Introduction

The main cash management problem was introduced by [3]. Here, an
investor holds two distinct types of assets, the first one being a ”cash balance
into which periodic receipts of income are deposited and from which a steady
flow of expenditures are made” ([12], p. 413); the second asset is a non-cash
asset which bears interest at a given constant rate. The investor is allowed
to convert one asset into the other at any period; regardless of the direction
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of the conversion, the investor must pay a ”broker fee”. Also, conversion
takes place instantaneously such that there is no need for a ”buffer stock”.
Baumol’s model in essence answers the question of when and how many units
of the non-cash asset to convert into cash.
From a recent review by [14], we observe that most current contributions to
the cash management problem focus on stochastic programming and robust
optimization. Stochastic programming assumes that information about the
distribution of the uncertain input is given. In [4], the authors derive the
optimal transaction policy by applying a stochastic maximum principle. In
[7], a multi-stage stochastic linear program is formulated and various kinds
of assets are considered. In [2], a multidimensional cash management system
where cash balances fluctuate as a homogeneous diffusion process is consid-
ered and an optimal solution is developed. Another reference for a stochastic
model is presented in [9]; the authors develop a solution which minimizes
the transaction costs when cash flows are not independently or identically
distributed.
In contrast to stochastic models where distributions are required, robust
optimization utilizes a set for the uncertain data ([10]). [15] proposed an
effective solution for the cash management problem of stationary companies
based on mixed-integer linear programming and robust optimization. More-
over, [16] incorporated risk preferences for cash management decisions; they
developed a multi-objective cash management model based on compromise
programming. In [13], particle swarm optimization and genetic algorithms
are applied to the cash management problem using various assets; again, the
objective is to minimize the total costs of cash management. More recently,
[17] provided a formal definition of cash management systems with multiple
accounts.

Our focus, however, is not on stochastic means nor robust optimization
to solve the cash management problem; rather, we focus on developing al-
gorithms which minimize the competitive ratio and are thus optimal online.
[20] established this ratio which is widely used for other online financial prob-
lems, e.g. online portfolio selection [5] and automated credit rating prediction
[8]. In simple terms, the competitive ratio of an online algorithm problem
is the maximum possible quotient in terms of costs incurred by the online
algorithm and the best possible solution.
Finding optimal online algorithms is also referred to as online optimization
and is more appropriate for sequential decision making problems for which
no distributions are available (see [10]). According to [6], an algorithm is

2



online if it computes and proposes an output ot before knowing about the
input it at each period t.
[11] transformed the cash management problem into an online problem. They
considered the cash management problem under uncertain demands; the de-
mands are uncertain, since they are revealed sequentially and are not known
in advance. A demand Dt is an amount of cash needed to pay expenditures
during a time period t. An investor has two types of assets, cash and earn-
ing assets. All expenditures must be paid in cash; only earning assets bear
interests. Both types of assets can be converted into the other type for a
fixed price. [11] assume that the investor owns a sufficient amount of earning
assets. Therefore, we disregard cash-to-asset conversion.
If the supply of cash St is larger than the cash demand Dt during period
t, then the surplus is transferred back into the earning asset. The investor
incurs opportunity costs for every unit that was converted too early. In the
case of a cash deficit, the investor has to borrow the needed additional cash.
The deficit is made up at the beginning of the next period when the investor
converts into cash.
The investor wants to minimize the total costs associated with the expendi-
tures. For this to happen, information of the exact amount of future demands
is needed. In online problems, it is common to have some information about
the input sequence which is to be revealed. In [11], hindsight information
about the minimum (m) and maximum (M) amount of needed cash is given,
i.e. Dt ∈ [m,M ]∀t. In other words, the demands are bounded from above
(below) by M (m). We refer to this model as the model for bounded de-
mands.
Inspired by the work of [21], [19] and [18] considered interrelated prices in
the field of online conversion problems. In essence, they derived online al-
gorithms that always select the price which implies the lowest competitive
ratio as defined by [20]. The competitive ratio is proven to be a coherent
risk measure according to [1]; furthermore, it takes worst-case scenarios into
account, which can be essential for decision making.
We model the demands to be interrelated such that demands vary between
the factors θ1 and θ2 for two consecutive periods; the overall number of peri-
ods is T . In other words, Dt ∈ [Dt−1θ1, Dt−1θ2] for t = 1, . . . , T . We refer to
this model as the model for interrelated demands. Here we have information
about θ1 and θ2. We actuate the assumption of demands being interrelated
by the following idea. In real-world applications, cash managers often use the
so called scenario planning technique in order to make decision. Among other
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ideas, this technique uses the current position (the currently needed cash)
and predicts extreme scenarios (the maximum relative increase and decrease
of needed cash) until the next point of decision making. Another reason for
modeling demands to be interrelated is the fact that for many departments
within a business, the needed cash is allowed to only differ slightly from the
previously demanded cash. In addition, we only consider cash outflows and
disregard any inflows, i.e. θ1, θ2 > 0. The reason for this can be found in
the fact that there is a substantial amount of departments within a company
that do not achieve a positive net income. For instance, the human resource,
R&D and marketing department of a company are usually not the recipients
of income cash flows, although their costs are substantial. Since we consider
only cash outflows, it must follow that we assume the number of earning
assets to be sufficiently large to cover all possible future demands. This is
justified by the observation, that many businesses constantly invest part of
their earned cash inflows in some kind of earning asset (stocks, bonds, etc.);
only a small portion of their actual wealth is kept as a liquid asset.
A third demand model is the combination of the model used by [11] and our
model with interrelated demands. In other words,

Dt ∈ [min (M,max (Dt−1θ1,m)) ,max (m,min (Dt−1θ2,M))] (1)

for t = 1, . . . , T .
All three models are illustrated in Figure 1. The red (blue) line illustrates
that demand sequence where the highest (lowest) demands occur; the green
line illustrates an arbitrary sequence which is different from those two se-
quences. All models with bounded demands have a previously given max-
imum M (minimum m) threshold value that cannot be exceeded; in our
example, we have m = 1 and M = 10. For the model with bounded de-
mands, an arbitrary sequence can contain arbitrary demands between m and
M , i.e. Dt ∈ [m,M ]. As opposed to the other models, the demand can surge
(fall) from m (M) to M (m) between two arbitrary periods. The red (blue)
line remains constant at M (m), while the arbitrary demand sequence (green
line) contains the following values: D0 = 5, D1 = 1, D2 = 10, D3 = 1 and
D4 = 10.
For the model with interrelated demands, a demand Dt cannot go outside
the value of Dt−1θ1 and Dt−1θ2; in our example, we have θ1 = 0.5 and
θ2 = 1.5. The red line illustrates the demand sequence with the highest pos-
sible demands D0 = 5, D1 = 7.5, D2 = 11.25, D3 = 16.88 and D4 = 25.31.
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Figure 1: Model with bounded demands used by [11] (left), model with interrelated de-
mands (middle) and model with interrelated, bounded demands (right); the red (blue) line
gives the highest (lowest) possible demand sequence, the green line represents an arbitrary
demand sequence

The blue line represents the demand sequence with the lowest possible de-
mands D0 = 5, D1 = 2.5, D2 = 1.25, D3 = 0.63 and D4 = 0, 31. Two
arbitrary sequences (green lines) are illustrated, one rising from D0 = 5 to
D2 = D0θ

2
2 = 11.25 and then falling to D4 = D2θ

2
1 = 2.81; the other one falls

from D0 = 5 to D2 = D0θ
2
1 = 1.25 and then rises to D4 = D2θ

2
2 = 2.81.

For the model with interrelated, bounded demands, a demand Dt cannot
go outside the value of Dt−1θ1 and Dt−1θ2 nor m and M . The red line
illustrates the demand sequence with the highest possible demands D0 =
5, D1 = 7.5, D2 = M = 10 = D3 = D4. The blue line represents the de-
mand sequence with the lowest possible demands D0 = 5, D1 = 2.5, D2 =
1.25, D3 = m = 1 = D4. Two arbitrary sequences (green lines) are illus-
trated, one rising from D0 = 5 to D2 = min (D0θ

2
2 = 11.25,M = 10) = 10

and then falling to D4 = D2θ
2
1 = 10 · 0.52 = 2.50; the other one falls

from D0 = 5 to D2 = max (D0θ
2
1 = 1.25,m = 1) = 1.25 and then rises to

D4 = D2θ
2
2 = 1.25 · 1.52 = 2.81.

The contributions of this paper are the following:
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1. We present the online algorithm balanced cash supply with interrelated
demands (BCSID) for given θ1, θ2 and T

2. We prove the competitive ratio and optimality of BCSID

3. We present the heuristic online algorithm called approximated balanced
bounded cash supply with interrelated demands (aBBCSID) for given
θ1, θ2,m,M, T and initial demand D0

4. We carry out a numerical testing to compare the performance of BCSID
and aBBCSID to some simple heuristics and the optimal solution for
bounded demands given by [11]

The paper is organized in five sections. In Section 2, the formal problem
description and the concepts of competitive ratio and optimality are given.
In Section 3, we first prove the worst-case sequence Dwc (S) for a selected
supply sequence S. Based on this, we derive BCSID and provide proofs
of its competitive ratio, optimality, and behavior for uncertain θ1 and θ2.
We present the heuristic algorithm aBBCSID. In Section 4, we present and
execute the numerical testing. Section 5 concludes this paper.

2. Preliminaries

In the cash management problem under uncertain demands an online
player (ON) must make a decision on how much cash St to convert (or ex-
tract) from its (limitless) earning assets at the beginning of every period
t = 1, . . . , T . If the number of earning assets were finite, then some St would
require taking out a loan which has to be paid back with interests. This
would enhance the complexity of the problem. The assumption of the earn-
ing assets being limitless is made to avoid this complexity.
The demand for cash Dt is revealed at the of end of t. Note that at t = 1 we
know the exact value of D0. The sequences of all supplies St and all demands
Dt are denoted as S and D respectively. The sets of all the feasible sequences
of S and D are denoted as S and D. All demand and supply sequences must
originate from these sets. Formally, we have

S = S1, . . . , ST , S ∈ S and D = D1, . . . , DT , D ∈ D. (2)

For every converted unit of cash, ON incurs a transaction cost c. Having
selected St, ON incurs accumulated transaction costs cSt at the beginning of
every period t. When Dt is revealed at the end of t, there are three possible
scenarios:
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1. The supply of cash extracted equals the demand of cash, St = Dt. In
this case, the incurred total costs of ON are cDt.

2. Too much cash has been extracted, i.e. St > Dt. We first incur the
transaction costs cSt, which can be separated into cDt and c (St −Dt)
(because St > Dt) for the excess cash. An excess unit cannot yield
the interest rate i and must be transferred back into the earning asset
for cost cback. Hence, every excess unit incurs opportunity cost h with
h = c+ i+ cback. In this scenario, the incurred total costs of ON are

cDt+c (St −Dt)+i (St −Dt)+cback (St −Dt) = cDt+h (St −Dt) . (3)

3. Too little cash has been extracted, i.e. St < Dt. Then we incur credit
costs (Dt − St) j at the end of t; j is the difference of interest rate
paid to the creditor and interest rate of the earning asset per unit. We
set this difference to be always non-negative. In other words, j is the
shortage cost factor for each unit of excess demand. At the end of t,
we have to convert the missing Dt−St and incur also transaction costs
c (Dt − St). In this scenario, the incurred total costs of ON are

cSt + c (Dt − St) + j (Dt − St) = cDt + j (Dt − St) . (4)

Contrary to other models, we only apply opportunity costs to the excess cash
not invested; the rationale for this choice is the point of view that if St meets
exactly the demand Dt, then ON incurs the lowest costs possible. A positive
deviation excludes ON from gaining further interest payments. A negative
deviation, however, allows ON to receive more interest payments. This is
overcompensated by the incurred credit costs; in other words, the interest
bearing rate of the earning asset is assumed to be inferior or equal to the
interest rate paid to a creditor. If this was not the case, then the solution to
never extract any cash at the beginning of t would always incur the lowest
cost possible.
From the above points, we see that it is always best to convert exactly Dt

at t since ON only incurs the costs cDt and avoids any additional costs. If
we knew the future demands, then we could always ensure that St = Dt for
t = 1, . . . , T , or in other words, S = D. We denote such a player with perfect
information as OPT. The costs of ON for extracting the cash supply St at t
for an uncertain demand Dt is (regardless of the occurring scenario)

cDt + jmax (0, Dt − St) + hmax (0, St −Dt) , (5)
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while OPT’s incurred costs are cDt.
The cumulated costs ON (D,S)t for ON after an arbitrary period t are

ON (D,S)t =
t∑

τ=1

cDτ + jmax (0, Dτ − Sτ ) + hmax (0, Sτ −Dτ ) , (6)

with ON (D,S)T = ON (D,S) being the total costs of ON using S on se-
quence D. OPT’s accumulated costs OPT (D)t after period t are

OPT (D)t = c

t∑
τ=1

Dτ , (7)

with OPT (D)T = OPT (D) being the total costs of OPT on sequence D.
The ratio of ON (D,S)t and OPT (D)t is denoted as r (D,S)t.
There exists many different types of costs which find relevance in literature,
e.g. fix and variable holding costs. In this work, we focus merely on variable
credit and opportunity costs.
The ratio of ON using S and OPT on demand sequence D is

ON (D,S)

OPT (D)
= 1 +

T∑
t=1

jmax(0,Dt−St)+hmax(0,St−Dt)

T∑
t=1

cDt

= r (D,S)T .

(8)

We want to minimize r (D,S)T , its value being greater than or equal to 1.
Since the performance of a generic online algorithm ALG depends merely on
the sequence D, on which ALG has no influence, and the decision variable
S, we state the following: the worst-case scenario ratio, i.e. the competitive
ratio rALG (see [20]), of ALG using SALG is

rALG = max
D∈D

r
(
D,SALG

)
T
. (9)

Another way to interpret above equation is the following: independent of the
demand sequence D ∈ D, ALG always incurs at most rALG times of the costs
which OPT achieves, formally

ON
(
D,SALG

)
≤ rALGOPT (D)∀D ∈ D. (10)

An online algorithm is optimal if it incurs the smallest r possible, i.e. there
exists no other online algorithm which guarantees a smaller r than the one
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guaranteed by ALG’. In other words, ALG’ is optimal if it always selects the
decision variable SALG

′
such that

SALG
′

= arg min
S∈S

max
D∈D

r (D,S)T . (11)

An online problem can be considered solved (from a worst-case perspective) if
there exists an optimal online algorithm. It is not possible to create another
algorithm with a lower competitive ratio for these problems. The only room
for improvement might be time complexity and average-case performance.
However, online algorithms with better time complexity and/or average-case
performance tend to have a higher competitive ratio and are thus not desir-
able.

3. Cash Management with uncertain, interrelated demands

In this section we first consider the worst-case demand sequence Dwc (S)
for an arbitrary cash supply sequence S. In other words, we prove the exis-
tence and the value of the worst-case demand for a selected St in an arbitrary
period t regardless of any online algorithms. We find that there is a supply
S∗t which minimizes the total costs (relative to OPT) for this worst-case
demand in t. The online algorithm balanced cash supply for interrelated de-
mands (BCSID) always selects S∗t in every period t. Knowing the worst-case
demand sequence when selecting S∗t in each period, we prove the competitive
ratio and subsequently the optimality of BCSID.
We assume the demands to be interrelated, that is, Dt ∈ [Dt−1θ1, Dt−1θ2]
for t = 1, . . . , T and 0 < θ1 ≤ θ2 < ∞. In Figure 2, we illustrate possible
demand corridors for various parameter combinations of θ1 and θ2, D0 = 1
and T = 4. A demand corridor contains all possible demand sequences for
given θ1, θ2, T and D0. As can be seen, using 0 < θ1 ≤ θ2 < ∞, it is also
possible to model demands which are always growing (falling) over time; this
can be seen in the red (blue) lines. Demand bounds diverge if θ1 < 1 and
θ2 > 1 (green lines); in limit, this implies the lower (upper) bound on Dt to
be zero (infinity).
We now find the worst-case demand sequence Dwc (S).

Lemma 1. The elements D1, . . . , DT of the worst-case demand sequence
Dwc (S) for a selected cash supply strategy S ∈ S obey the following rule

Dt =

{
Dt−1θ2 if St ≤ Dt−1θ1θ2

j+h
jθ1+hθ2

Dt−1θ1 else
(12)
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Figure 2: Possible demand corridors for variable parameter combinations of θ1 and
θ2, D0 = 1 and T = 4

for t = 1, . . . , T and given D0.

Proof. After an arbitrary period t = 1, . . . , T the ratio of ON and OPT
(denoted as ρ) is at most

ρ = max
Dt

cDt + jmax (0, Dt − St) + hmax (0, St −Dt)

cDt

. (13)

Note that only Dt is considered. We know that demands are interrelated;
this alters ρ such that

ρ = max
xt∈[θ1,θ2]

cDt−1xt+jmax(0,Dt−1xt−St)+hmax(0,St−Dt−1xt)
cDt−1xt

= 1 + 1
c

max
xt∈[θ1,θ2]

(
jmax

(
0, 1− St

Dt−1xt

)
+ hmax

(
0, St

Dt−1xt
− 1
))

.

(14)
For xt = θ2 the term max

(
0, 1− St (Dt−1xt)

−1) is maximized (compared to

θ1 ≤ xt < θ2), while xt = θ1 maximizes the term max
(
0, St (Dt−1xt)

−1 − 1
)

(compared to θ1 < xt ≤ θ2). Hence, instead of considering the impact on ρ
for xt ∈ [θ1, θ2], we merely need to investigate the impact on ρ for xt = θ1
and xt = θ2. Rationally, St should not be higher than Dt−1θ2, nor lower than
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Dt−1θ1. Therefore, ρ simplifies to

ρ = 1 + 1
c

max
xt∈{θ1,θ2}

(
jmax

(
0, 1− St

Dt−1xt

)
+ hmax

(
0, St

Dt−1xt
− 1
))

= 1 + 1
c

max
(
jmax

(
0, 1− St

Dt−1θ1

)
+ hmax

(
0, St

Dt−1θ1
− 1
)
,

jmax
(

0, 1− St
Dt−1θ2

)
+ hmax

(
0, St

Dt−1θ2
− 1
))

= 1 + 1
c

max
(

0 + h
(

St
Dt−1θ1

− 1
)
, j
(

1− St
Dt−1θ2

)
+ 0
)
.

(15)

We now search for that S∗t which minimizes ρ. Since lowering (raising) St
implies raising the right (left)-hand side of the max expression, there must
exist one S∗t for which both elements have the same value, formally

h
(

S∗t
Dt−1θ1

− 1
)

= j
(

1− S∗t
Dt−1θ2

)
and finally S∗t = Dt−1θ1θ2

j+h
jθ1+hθ2

. (16)

For St = S∗t , ρ becomes

ρ = 1 + 1
c

max
(
h
(
θ2

j+h
jθ1+hθ2

− 1
)
, j
(

1− θ1 j+h
jθ1+hθ2

))
= 1 + 1

c
max

(
hj θ2−θ1

jθ1+hθ2
, hj θ2−θ1

jθ1+hθ2

)
= 1 + hj

c
θ2−θ1
jθ1+hθ2

.

(17)

We now consider a deviation from S∗t and show that the resulting ρ is not
lower. Assume we employ St = S∗t + εt. Then we have

ρ = 1 + 1
c

max
(
h
(
S∗t+εt
Dt−1θ1

− 1
)
, j
(

1− S∗t+εt
Dt−1θ2

))
= 1 + 1

c
max

(
h

(
Dt−1θ1θ2

j+h
jθ1+hθ2

+εt

Dt−1θ1
− 1

)
, j

(
1−

Dt−1θ1θ2
j+h

jθ1+hθ2
+εt

Dt−1θ2

))
= 1 + 1

c
max

(
h
(
θ2

j+h
jθ1+hθ2

+ εt
Dt−1θ1

− 1
)
, j
(

1− θ1 j+h
jθ1+hθ2

− εt
Dt−1θ2

))
(18)

with εt being the absolute difference between the selected St and S∗t (εt ∈ R∀t).
For εt < 0, we find that

h

(
θ2

j + h

jθ1 + hθ2
+

εt
Dt−1θ1

− 1

)
< hj

θ2 − θ1
jθ1 + hθ2

. (19)
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However, we also find that

j

(
1− θ1

j + h

jθ1 + hθ2
− εt
Dt−1θ2

)
> hj

θ2 − θ1
jθ1 + hθ2

. (20)

In practical words, if ON possesses less cash than S∗t , then the demand Dt−1
will rise by the factor θ2 in the worst-case. For 0 < ε, we observe the opposite.
If ON’s amount of cash is higher than S∗t , then the demand will fall by the
factor θ1 in the worst-case. Since we consider the demand and supply for
an arbitrary period t, we conclude that the worst-case demand sequence
continues to behave as mentioned above, i.e. if the actual cash supply is
below or equal to S∗t , then the demand rises by the factor θ2 and falls by the
factor θ1 otherwise. This finishes the proof.

One simple online algorithm for the cash management problem with un-
certain demands is called learning cash supply (LCS). The idea behind LCS
is the assumption that the demand of yesterday resembles the demand of
today.
Algorithm LCS: At period t, convert into cash until you have the amount
of SLCSt available, with

SLCSt = Dt−1 (21)

for all t = 1, . . . , T . Note that we do not provide the competitive ratio for
LCS since it is not optimal (see example in Table 1) and does not have any
hindsight information about the demand sequence; thus, LCS is not in the
focus of this work.
We illustrate the importance of Lemma 1 with an example. We use different
cash supply strategies, the first one being S∗ = S∗1 , . . . , S

∗
T , followed by Sε =

S∗1 − ε, . . . , S∗T − ε with ε = {−0.01, 0.01}, S− with S−t = 0∀t and the last
one being SLCS. We set the parameters as follows: θ1 = 0.90, θ2 = 1.05, T =
6, D0 = 10, j = 0.10, h = 0.08 and c = 0.01. Clearly, the worst-case sequence
is different for each strategy. Therefore, the worst-case demand for period t
using St is denoted as Dwc

t (St).
The resulting supplies, the worst-case demands and the accumulated costs for
ON and OPT are illustrated in Table 1 for each strategy. Furthermore, since
we deal with worst-case demand sequences for each cash supply sequence,
the ON-to-OPT ratio becomes the competitive ratio for the given parameter
combination. This ratio is also given in the table. We see that the supply
strategy S∗ does not incur the lowest overall costs for ON; however, it achieves
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t
1 2 3 4 5 6

S∗t 9.78 8.80 7.92 7.13 6.41 5.77
Dwc
t (S∗t ) 10.50 11.03 11.58 12.16 12.76 13.40

ON (Dwc (S∗) ,S∗)t 0.18 0.36 0.56 0.76 0.98 1.21
OPT (Dwc (S∗))t 0.11 0.22 0.33 0.45 0.58 0.71
r (Dwc (S∗) ,S∗)t 1.69 1.69 1.69 1.69 1.69 1.69

S−t 0 0 0 0 0 0
Dwc
t

(
S−t
)

10.50 11.03 11.58 12.16 12.76 13.40
ON (Dwc (S−) ,S−)t 1.16 2.37 3.64 4.98 6.38 7.86
OPT (Dwc (S−))t 0.11 0.22 0.33 0.45 0.58 0.71
r (Dwc (S−) ,S−)t 11.00 11.00 11.00 11.00 11.00 11.00

S−0.01t 9.77 10.25 10.77 11.31 11.87 12.47
Dwc
t

(
S−0.01t

)
10.5 11.03 11.58 12.16 12.76 13.40

ON (Dwc (S−0.01) ,S−0.01)t 0.18 0.37 0.56 0.77 0.99 1.21
OPT (Dwc (S−0.01))t 0.11 0.22 0.33 0.45 0.58 0.71

r (Dwc (S−0.01) ,S−0.01)t 1.70 1.70 1.70 1.70 1.70 1.70
S0.01
t 9.79 8.81 7.93 7.14 6.42 5.78

Dwc
t (S0.01

t ) 9.00 8.10 7.29 6.56 5.90 5.31
ON (Dwc (S0.01) ,S0.01)t 0.15 0.29 0.41 0.53 0.63 0.72

OPT (Dwc (S0.01))t 0.09 0.17 0.24 0.31 0.37 0.42
r (Dwc (S0.01) ,S0.01)t 1.70 1.70 1.70 1.70 1.70 1.70

SLCSt 10.00 9.00 8.10 7.29 6.56 5.91
Dwc
t

(
SLCSt

)
9.00 8.10 7.29 6.56 5.91 5.31

ON
(
Dwc

(
SLCS

)
,SLCS

)
t

0.17 0.32 0.46 0.59 0.70 0.80
OPT

(
Dwc

(
SLCS

))
t

0.09 0.17 0.24 0.31 0.37 0.42
r
(
Dwc

(
SLCS

)
,SLCS

)
t

1.89 1.89 1.89 1.89 1.89 1.89

Table 1: Worst-case demand sequences and incurred ON to OPT ratios for various cash
supply strategies with given θ1 = 0.90, θ2 = 1.05, T = 6, D0 = 10, j = 0.10, h = 0.08 and
c = 0.01

the lowest competitive ratio compared to all other strategies (1.69) for all t.
If ON extracts more than S∗t (i.e. ε > 0), then the worst-case demands will
always fall by the factor θ1; the worst-case demands always increase by θ2 if
less than S∗t (i.e. ε < 0) has been extracted. Consequently, for ε 6= 0 we incur
a higher competitive ratio. Furthermore, we see that extracting no cash at
all (using S−) incurs the highest costs for ON and the highest competitive
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ratio (11.00); clearly, it is not a good strategy for the selected parameter
combination. Finally, we note that LCS also incurs a higher competitive
ratio. Clearly, LCS is not optimal (in the sense that it incurs the lowest
competitive ratio). We further conclude that an online algorithm that uses
S∗ is a candidate for fulfilling the optimality criteria.
We now define the algorithm BCSID which always uses S∗t in the beginning
of period t.
Algorithm BCSID: In the beginning of period t, convert into cash until
you have the amount of S∗t available.
BCSID is applicable for worst-case and non-worst-case demand sequences.
The latter is illustrated in Section 4, where we demonstrate its performance.
For instance, a trivial non-worst-case demand sequence might be D with
D1, . . . , DT = D0; the resulting S∗t is S∗t = D0θ1θ2

(j+h)
jθ1+hθ2

∀t. We now prove
the competitive ratio and optimality of BCSID.

Theorem 1. BCSID’s competitive ratio is

rBCSID = 1 +
hj (θ2 − θ1)
c (jθ1 + hθ2)

(22)

for the cash management problem with opportunity costs h, borrowing costs
j, transaction costs c and demand change bounds θ1 and θ2.

Proof. Assume we use S = S∗. Using Lemma 1, the ratio of ON and OPT
in the worst-case sequence Dwc (S∗) after T periods is

r (Dwc (S∗) ,S∗)T =

T∑
t=1

cDwct (S∗t )+jmax(0,Dwct (S∗t )−S∗t )+hmax(0,S∗t−Dwct (S∗t ))

c
T∑
t=1

Dwct (S∗t )

= 1 +

T∑
t=1

jmax(0,Dwct (S∗t )−S∗t )+hmax(0,S∗t−Dwct (S∗t ))

c
T∑
t=1

Dwct (S∗t )

.

(23)

We know that for the output sequence S∗ it is of no importance whether
the demands fall or rise by the factor θ1 or θ2 between consecutive periods.
Therefore, we set

Dwc (S∗) = D1 (S∗1) , . . . , DT (S∗T )
= D0θ2, D

wc
1 (S∗1) θ2, . . . , D

wc
T−1

(
S∗T−1

)
θ2,

(24)
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with D0θ2 = Dwc
0 (S∗0). Equation (23) then simplifies to

r (Dwc (S∗) ,S∗)T = 1 +

T∑
t=1

jDwct−1(S∗t−1)θ2−S∗t+h0

c
T∑
t=1

Dwct−1(S∗t−1)θ2

= 1 +
j

(
T∑
t=1

Dwct−1(S∗t−1)θ2−
T∑
t=1

S∗t

)

c
T∑
t=1

Dwct−1(S∗t−1)θ2

= 1 + j
c
− j

T∑
t=1

Dwct−1(S∗t−1)θ1θ2
j+h

jθ1+hθ2

c
T∑
t=1

Dt−1(S∗t−1)θ2

= 1 + j
c
− jθ1 j+h

jθ1+hθ2

T∑
t=1

Dwct−1(S∗t−1)θ2

c
T∑
t=1

Dwct−1(S∗t−1)θ2

= 1 + jhθ2+j2θ1−j2θ1−jθ2h
c(jθ1+hθ2)

= 1 + hj(θ2−θ1)
c(jθ1+hθ2)

.

(25)

This finishes the proof, because r (Dwc (S∗) ,S∗)T = rBCSID.

We observe that rBCSID is independent of T .

Theorem 2. BCSID is an optimal online algorithm for the cash management
problem with opportunity costs h, borrowing costs j, transaction costs c and
demand change bounds θ1 and θ2.

Proof. Assume there exists an algorithm ALG’ which proposes to extract the
amount SALG

′
t = S∗t + εt in each period t. Using Equation (17) and (18), the

difference δt between the ratio of ON and OPT using S∗t and the one using
SALG

′
t is

δt =

hj(θ2−θ1)
jθ1+hθ2

−max

(
h

(
θ2

j+h
jθ1+hθ2

+
εt

Dwct−1θ1
−1
)
,j

(
1−θ1 j+h

jθ1+hθ2
− εt
Dwct−1θ2

))
c

=

hj(θ2−θ1)
jθ1+hθ2

+min

(
−h
(
θ2

j+h
jθ1+hθ2

+
εt

Dwct−1θ1
−1
)
,−j
(
1−θ1 j+h

jθ1+hθ2
− εt
Dwct−1θ2

))
c

=
min

(
hj(θ2−θ1)
jθ1+hθ2

−hθ2(j+h)
jθ1+hθ2

− hεt
Dwct−1θ1

+h,
hj(θ2−θ1)
jθ1+hθ2

−j+ jθ1(j+h)
jθ1+hθ2

+
jεt

Dwct−1θ2

)
c

=
min

(
− hεt
Dwct−1θ1

,
jεt

Dwct−1θ2

)
c

.

(26)

From the above equation we see that it is not possible to obtain a positive
(greater zero) value for any δt. This means that the ratio of ON, that deviates

15



from S∗t , and OPT in an arbitrary period t = 1, . . . , T is never lower than
the one incurred using S∗t . We conclude that if no algorithm comes relatively
closer to the costs incurred by OPT on a worst-case demand sequence than
BCSID for an arbitrary t = 1, . . . , T , then there exists no algorithm which
guarantees a lower competitive ratio than BCSID. Hence, BCSID is optimal.
This finishes the proof.

From Theorem 2 we see that BCSID is an optimal online algorithm which,
contrary to many algorithms in literature, does not need any information
about the distribution of future demands. We now consider the case in
which we do not know the values of the parameters θ1 and θ2. Especially, we
cannot exclude that θ1 → 0.

Proposition 1. BCSID proposes to not extract any cash supply in an arbi-
trary period t = 1, . . . , T for θ1 → 0 with arbitrary θ2.

Proof. We rewrite S∗t in the following way

S∗t = Dt−1θ1θ2
j+h

jθ1+hθ2

= Dt−1θ1
j+h

jθ1θ
−1
2 +h

.

(27)

For θ1 → 0, S∗t becomes

lim
θ1→0

S∗t = Dt−1 · 0 · j+h

j·0·θ−1
2 +h

= 0.

(28)

This concludes the proof.

Proposition 2. The competitive ratio of BCSID is 1 + jc−1 for θ1 → 0 with
arbitrary θ2.

Proof. This follows directly from Equation (25) w.r.t. θ1 → 0. Notably we
have

lim
θ1→0

rBCSID = 1 + hj(θ2−0)
c(0+hθ2)

= 1 + jc−1.

(29)

This finishes the proof.

We provide the approximation algorithm approximated balanced BCSID
(aBBCSID). The main idea of this algorithm is again the balancing of two
demand movements (just as in BCSID). The first movement is a demand
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increase min (Dt−1θ1, Dt−1θ2,M); the second one is a decrease in demand
max (Dt−1θ1, Dt−1θ2,m). The cash supply SaBBCSIDt equates the ratio of ON
and OPT (denoted as ρ) for these movements in period t, formally

jmax(0,min(Dt−1θ1,Dt−1θ2,M)−SaBBCSIDt )
cmin(Dt−1θ1,Dt−1θ2,M)

=
hmax(0,SaBBCSIDt −max(Dt−1θ1,Dt−1θ2,m))

cmax(Dt−1θ1,Dt−1θ2,m)
.

(30)
Thus, we have

SaBBCSIDt =
min (Dt−1θ1, Dt−1θ2,M)max (Dt−1θ1, Dt−1θ2,m) (j + h)

jmax (Dt−1θ1, Dt−1θ2,m) + hmin (Dt−1θ1, Dt−1θ2,M)
. (31)

Algorithm aBBCSID: In every period t, convert into cash until you have
the amount of SaBBCSIDt available.
We observe that SaBBCSIDt = SBCSIDt if θ1 ≥ mD−1t−1 and θ2 ≤ MD−1t−1. In
other words, the global demand bounds do not have any influence on the
supply St at that particular period t.

4. Numerical Testing

In this section we examine the actual performance of BCSID and aBBC-
SID. We further include LCS, the optimal online algorithm online strategy
(OS) of [11] for given global bounds m and M and the middle of the expected
demand range (MER) algorithm.
Algorithm OS: In every period t, convert into cash until you have the
amount of SOSt available, with

SOSt =
(j + h)mM

jm+ hM
. (32)

Algorithm MER: In every period t, convert into cash until you have the
amount of SMER

t available, with

SMER
t = Dt−1

(θ1 + θ2)

2
. (33)

We first need a random variable X ∼ U (0, 1) which originates from the
standard uniform distribution. The arithmetic mean E (X) is 0.5. The two
boundaries of X are 0 and 1. We now define the demand sequences based
on θ1, θ2,M,m,D0 and X. The demands in these sequences are generated in
the following way:

Dt (X) = Dt−1 (X) θ
1−2min(0.5,X)
1 θ

2max(0.5,X)−1
2 and D0 (X) = 1. (34)
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For X = 0.5, we have Dt (X) = Dt−1 (X). In other words, the demands
remain constant over time on average; this is highly beneficial for LCS.
The lower boundary of Dt (X) is Dt−1 (X) θ1 and the upper boundary is
Dt−1 (X) θ2. Globally, the demands are bounded from above (below) by M =
max
t=1,...,T

Dt (X) (m = min
t=1,...,T

Dt (X)). Using Equation (34), we generate arbi-

trary demand sequences D using X,T = 250 and various M,m, θ1,θ2, j and
h. We consider three performance measures, the arithmetic mean (mean),
the lowest (low) and the highest (high) costs. All three measures are applied
to 1, 000 experiments for every unique parameter combination. Formally, we
have

meanALG = 1
n

n∑
i=1

ON
(
D (Xi) ,S

ALG
)
,

lowALG = min
i=1,...,n

ON
(
D (Xi) ,S

ALG
)
,

highALG = max
i=1,...,n

ON
(
D (Xi) ,S

ALG
)
,

(35)

for n = 1, 000. Concerning the costs (i.e. ON (D (Xi) ,S)), we focus only on
the costs for failing to extract Dt in each t, formally

ON (D (X) ,S) =
T∑
t=1

jmax (0, Dt − St) + hmax (0, St −Dt) . (36)

Note that we do not need any information about c, because we are only
interested in the additional costs and there is no algorithm that needs c to
compute an output.
Note that we set j = h = 1 as a point of orientation; in cash management
practice these values are unrealistic. However, this setting does not ”overem-
phasize” one cost factor more than the other, i.e. one missing cash unit costs
as much as one excess cash unit.
We now consider the performance of the algorithms for various values of θ1
and θ2; as for the selected pairs of θ1 and θ2, we start with θ1 = θ2 = 1. For
θ1, we let it decrease by the following equation, where θi,1 denotes the new,
lower θ1 and θi−1,1 denotes the old, higher θ1, formally

θi,1 =
(
(θi−1,1)

−1 + 0.05
)−1

, (37)

for i = 2, . . . , 181 and θ1,1 = 1. This continues until θ181,1 = 0.10; this yields
181 different values for θ1. We let θ2 absolutely increase by 0.05 until θ2 = 10.
Formally, the i-th value θi,2 of θ2 is θi,2 = θi−1,2 + 0.05 for i = 2, . . . , 181 and
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θ1,2 = 1. This yields again 181 different values for θ2 (overall there are 32, 761
combinations). BCSID and MER have information about θ1, θ2 and D0 (X);
OS has information about m and M of each demand sequence. aBBCSID
knows θ1, θ2,m,M and D0 (X). All values for θ1 and θ2 are shown in Figure
3.

Figure 3: Considered values of θ1 and θ2 for the numerical testing

We first consider the performance of the algorithms BCSID, OS and MER
in terms of mean performance for various values of θ1 and θ2 as depicted in
Figure 4. While the left part of the figure illustrates ON (D (X) ,S), the
right part states which algorithm is best for each combination of θ1 and θ2.
We observe that MER incurs the highest costs whenever θ2 ≥ 3.5 regardless
of θ1. Apparently, MER suffers from extracting to much cash compared to
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Figure 4: Influence of θ1 and θ2 on the mean performance of BCSID, MER and OS

all other algorithms in this area. There are some combinations for which
OS performs worse; however, these occasional peaks of OS are due to the
number of experiments being limited to 1, 000. An increase might eliminate
them. For θ2 < 3.5, we see that OS incurs the highest costs; OS extracts too
little cash and incurs very high shortage costs. Interestingly, BCSID is never
worst. Looking at the best algorithm, we observe that MER is best, as long
as θ−11 >> θ2. In other words, MER is best whenever the possible relative
increase is a lot smaller than the possible relative decrease. Apparently, all
other algorithms tend to extract less and thus incur higher shortage costs.
For all other parameter combinations we find that BCSID is best. We further
observe that there are again some occasional combinations for which MER
is best. Again this is due to n = 1, 000. These findings are also confirmed in
Figure 5 where BCSID, MER and OS are compared in terms of highest costs
incurred.
We now turn to the performance of BCSID, MER and OS in terms of lowest
costs incurred as depicted in Figure 6.
We observe again that MER is clearly outperformed by all other algorithms.
OS is worst whenever θ2 is small and θ1 is high. MER is best whenever OS
is worst; for all other combinations, we find BCSID outperforming MER and
OS in terms of lowest costs incurred.
We now turn to the performance of BCSID, aBBCSID and LCS in terms of
mean performance as depicted in Figure 7. Looking at the left part of the
figure, we observe that aBBCSID incurs higher costs than BCSID and LCS
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Figure 5: Influence of θ1 and θ2 on the highest costs incurred of BCSID, MER and OS

Figure 6: Influence of θ1 and θ2 on the lowest costs incurred of BCSID, MER and OS

as soon as θ−11 >> θ2. BCSID is worst whenever θ2 >> θ−11 . The remain-
ing large area shows that there is no clear worst performing algorithm. We
observe peaks of every algorithm; however, there is a tendency of LCS being
the algorithm which incurs the highest costs more often then its competitors
do. Looking at the right part of the figure, we observe that aBBCSID tends
to be best whenever θ2 >> θ−11 ; still in that area, we observe that there are
some parameter combinations of θ1 and θ2 for which LCS or BCSID is best.
Clearly, for θ−11 >> θ2 we find that LCS dominates all other algorithms.
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Figure 7: Influence of θ1 and θ2 on the mean performance of BCSID, LCS and aBBCSID

Besides these aforementioned areas, there is no clear best algorithm. Every
algorithm has a number of parameter combinations for which it is performing
best. Finally, putting the right and left part of the figure together, we observe
that BCSID and aBBCSID are often the best-performing algorithms when-
ever θ2 >> θ−11 and θ2 << θ−11 does not hold. This is due to the observation
of LCS often being the worst-performing algorithm in that area. Hence, BC-
SID and aBBCSID are clearly preferable to LCS in that area. If θ−11 >> θ2,
then LCS is best and BCSID is better than aBBCSID. If θ2 >> θ−11 , then
aBBCSID tends to be best and LCS tends to be better than BCSID.
These findings are also confirmed in Figure 8 where BCSID, LCS and aB-
BCSID are compared to one another in terms of highest costs incurred.
We now turn to the performance of BCSID, LCS and aBBCSID in terms of
lowest costs incurred as depicted in Figure 9. Interestingly, we observe that
LCS is worst unless θ2 >> θ−11 . Only if θ1 and θ2 are high, we find that
LCS is best and BCSID is worst. When LCS is worst, aBBCSID tends to be
better than BCSID for many combinations of θ1 and θ2. This is particularly
true when θ1 ≤ θ−12 .
Table 2 compares all five algorithms to one another in terms of mean, highest
and lowest cost incurred for n = 10, 000 experiments, D0 = j = h = 1, T =
250 and all parameter combinations of θ1 = 0.5, 0.25, 0.1 and θ2 = 2, 4, 10.
The lowest values are given in bold, the highest ones are given in italic. From
the table we see that LCS and BCSID are better than the other algorithms
in terms of mean performance for the most combinations of θ1 and θ2. In
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Figure 8: Influence of θ1 and θ2 in terms of highest cost incurred of BCSID, LCS and
aBBCSID

Figure 9: Influence of θ1 and θ2 on the lowest cost incurred of BCSID, LCS and aBBCSID

terms of low performance we observe that aBBCSID is better than all other
algorithms in the majority of cases. In terms of high performance LCS and
BCSID are again best; however, aBBCSID is best for θ1 = 0.1, θ2 = 4 and
MER is best for θ1 = 0.5, θ2 = 4. MER and OS are performing worst across
all performance measures. However, we note that there is no algorithm which
clearly outperforms all the other ones.
We now turn to the performance of all algorithms for various values of h.
We fix j = 1, θ1 = 0.5 and θ2 = 2. For the sake of interpretability, we now
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(θ1, θ2) BCSID aBBCSID LCS OS MER
m
ea
n
A
L
G

(0.5, 2) 2.81E + 7 2.82E + 7 2.76E + 7 8.40E+7 3.36E + 7
(0.5, 4) 3.13E + 30 3.15E + 30 3.11E + 30 6.05E+30 4.27E + 30

(0.5, 10) 6.09E + 62 7.26E + 62 6.08E + 62 1.50E + 63 4.09E+63
(0.25, 2) 20.26 26.02 20.28 43.69 20.91
(0.25, 4) 5.63E + 17 4.26E + 17 3.92E + 17 6.93E + 17 8.5E+17

(0.25, 10) 5.56E + 50 5.71E + 50 6.77E + 50 9.13E + 50 3.81E+51
(0.1, 2) 6.34 7.66 5.53 9.48 5.55
(0.1, 4) 2.99E + 5 2.93E + 5 3.40E + 5 3.42E + 5 5.05E+5

(0.1, 10) 3.70E + 32 3.70E + 32 4.15E + 32 4.43E + 32 1.83E+33

lo
w

A
L
G

(0.5, 2) 0.54 0.52 1.03 2.23 1.83
(0.5, 4) 2.24E + 4 2.08E + 4 2.30E + 4 4.83E + 4 5.85E+4

(0.5, 10) 9.68E + 22 9.41E + 22 1.03E + 23 1.89E + 23 6.91E+23
(0.25, 2) 0.86 0.04 1.00 0.42 1.18
(0.25, 4) 0.33 0.15 1.00 0.64 2.85

(0.25, 10) 2.39E + 3 2.55E + 3 2.12E + 3 4.23E + 3 1.78E+4
(0.1, 2) 0.10 0.01 1.00 0.12 1.06
(0.1, 4) 0.11 0.01 1.00 0.13 2.18

(0.1, 10) 0.01 0.02 1.00 0.14 5.62

h
ig
h
A
L
G

(0.5, 2) 1.25E + 11 1.27E + 11 1.23E + 11 3.83E + 11 1.49E+12
(0.5, 4) 1.88E + 34 1.96E + 34 1.83E + 34 3.37E+34 1.47E + 34

(0.5, 10) 5.60E + 66 6.77E + 66 5.58E + 66 1.42E + 67 3.93E+67
(0.25, 2) 2.24E + 4 2.68E + 4 2.25E + 4 4.44E+4 2.31E + 4
(0.25, 4) 4.86E + 21 3.68E + 21 3.37E + 21 5.99E + 21 7.35E+21

(0.25, 10) 5.42E + 54 5.57E + 54 6.60E + 54 8.92E + 54 3.75E+55
(0.1, 2) 8.36E + 2 9.65E + 2 6.29E + 2 1.16E+3 6.21E + 2
(0.1, 4) 2.26E + 9 2.12E + 9 2.62E + 9 2.44E + 9 3.73E+9

(0.1, 10) 3.48E + 36 3.49E + 36 3.91E + 36 4.16E + 36 1.72E+37

Table 2: Performance of online algorithms for various combinations of θ1 and θ2 with
D0 = j = h = 1 and n = 10, 000

compare all algorithms directly to BCSID; formally, we derive the logarith-

mic difference log
ON(D(X),SBCSID)
ON(D(X),SALG)

with ALG containing all algorithms except

BCSID. Clearly, we have log
ON(D(X),SBCSID)
ON(D(X),SBCSID)

= 0. Hence, an algorithm per-

forms better (worse) than BCSID whenever its logarithmic difference is below
(above) zero. The results are depicted in Figure 10. Starting with OS we
observe that it performs worse and worse as h declines for all three perfor-
mance measures. Apparently, BCSID and aBBCSID tend to extract more
cash than all other algorithms in order to avoid paying shortage costs. In
terms of MER and mean and high performance, we state that as h→ 1, the
logarithmic difference approaches zero; when h ≈ j we find that BCSID is
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Figure 10: Logarithmic difference between all algorithms and BCSID for various values of
h for all three performance measures

often outperformed by MER. However, if j >> h we observe that BCSID
tends to perform better. Looking at MER and the lowest costs incurred, we
find that MER outperforms BCSID if h < 0.25. Considering LCS, we find
the same observation regarding MER for all three performance measures. In
addition, LCS tends to be better than all other algorithms (including BCSID
and aBBCSID) whenever h < 0.25 for the low performance measure. Regard-
ing aBBCSID in terms of mean and high performance measure, we observe
that the logarithmic difference to BCSID is around zero when h > j. When
j < h, we observe that results tend to fluctuate more around zero. aBBCSID
is not capable to systematically outperform BCSID and vice versa. In terms
of low performance however, we observe that aBBCSID outperforms BCSID;
this is particularly true when h < j.
We now turn to the performance of all algorithms for variousM = 2, . . . , 10, 000
and fix m = j = h = 1. We modify the generated demands such that they
are merely dependent on m and M , formally

Dt (X) = MXm1−X∀t. (38)

In many instances, we now find that θ1 → m
M
← θ−12 .

We consider the logarithmic distance between an online algorithm ALG and
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aBBCSID, i.e. log
ON(D(X),SALG)

ON(D(X),SaBBCSID)
. Concerning MER, BCSID and aBBC-

SID, we note that they have hindsight information about θ1, θ2 and D0 (X)
(and m and M in case of aBBCSID). The results for all three performance
measures are depicted in Figure 11.

Figure 11: Logarithmic difference between all algorithms and aBBCSID for various values
of M on all three performance measures

From the figure, we conclude that MER is worst in all three measures. LCS
is also performing worse than OS, aBBCID and BCSID. We further observe
that the logarithmic distance of MER and LCS to aBBCSID increases as
M increases. BCSID is worse than aBBCSID and OS, but better than LCS
and MER in all three performance measures. Morever, the logarithmic dif-
ference between BCSID and aBBCSID decreases as M increases. Finally,
OS performs better than all other algorithms except for aBBCSID. Like BC-
SID, OS logarithmic difference to aBBCSID declines as M increases. We
further note that for low and high performance, the results of OS show a
high fluctuation. This finishes the numerical testing. Since we considered
the separate influence of the variables θ1, θ2,

j
h
,m and M , we cannot state

which algorithm is best for a given parameter combination; however, we can
state how each algorithm profits from a change in an isolated parameter.
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Taking these insights together, a recommendation as to which algorithm to
use for an arbitrary parameter combination can be made. The findings of
this section are as follows:

1. For varying h
j

• for h
j
>> 1: BCSID and aBBCSID profit more than all other

algorithms (for the mean and high performance measure)

• for h
j
>> 1: aBBCSID profits more than all other algorithms (for

the low performance measure)

• for h
j
< 1: aBBCSID and LCS profit more than all other algo-

rithms (for the low performance measure)

• for h
j
>

1

5
: aBBCSID profits more than all other algorithms (for

the mean and high performance measure)

• for 1 ≥ h
j
≥ 1

5
: MER profits more than all other algorithms (for

the mean and high performance measure)

• for h ≈ j: LCS profits more than all other algorithms (for the
mean and high performance measure)

2. For Dt (D (X) ,S) = MXm1−X

• aBBCSID profits most in all three performance measures

• if mere information about m and M is available, then OS profits
most

• if mere information about θ1 and θ2 is available, then BCSID prof-
its most

• without any information, LCS profits most

• MER profits less in all three performance measures

3. For demand sequences generated as shown in Equation (34):

• for θ2 >> θ−11 : BCSID profits more than MER and OS (for the
mean and low performance measure)

• for 0 < θ1 ≤ 1 ≤ θ2 < ∞: OS never profits more than all other
algorithms (for all three performance measures)

• for θ2 << θ−11 : aBBCSID tends to profit less than BCSID and
LCS (for the mean and high performance measure)
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• for θ2 >> θ−11 : BCSID (aBBCSID) profits less (more) than LCS
and aBBCSID (BCSID) (for the mean and high performance mea-
sure)

• unless θ2 >> θ−11 : LCS profits less than aBBCSID and BCSID
(for the low performance measure)

5. Conclusion

In this paper we propose and solve the cash management problem with
uncertain, interrelated demands that are either globally bounded or not.
We first derive the algorithm BCSID which solves this problem optimally
online when demands are not globally bounded. Next we derive the heuristic
algorithm aBBCSID which solves the problem for bounded demands. We
then test these algorithms against the simple but in practice very efficient
strategy LCS, the optimal solution OS of [11] and MER. If the demand
sequences are derived as in Equation (34), then there is no algorithm which
outperforms all others across all parameter combinations and performance
measures. If the demand sequences are derived as in Equation (38), then
aBBCSID outperforms other algorithms for most parameter combinations
across all performance measures.
In terms of future research, we state that there exists merely a heuristic
solution for the cash management problem with given θ1, θ2, D0,m and M .
An optimal solution does not exist yet. In addition, we focused on the
competitive ratio of an online algorithm, i.e. the maximal relative difference
of an algorithm to the best solution for adverse demands. It would be of
interest to derive online algorithms which focus on the competitive difference
of an online algorithm, i.e. the maximal absolute difference between the
performance of an online algorithm and the one of the best solution. This
can be seen as minimizing max regret for the online problem setting.
One way of practical improvement for BCSID and aBBCSID would be to
adapt the extracted amount of cash to incorporate parameters which change
over time, e.g., θ1,t, ct and jt.
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