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This paper provides an integrated planning model for container shipping liners. For a shipping network with multiple routes connected by transshipment hubs, the model can simultaneously decide ship deployment along routes, a service schedule including visit times and speed on legs, and cargo allocation to routes for each origin-destination pair. The model considers realistic factors, such as container handling and holding costs at the transshipment hubs, shipping time for each origin-destination pair, penalties for late delivery, ship capacity and speed-dependent fuel costs. Three efficient solution methods are suggested to solve this complex mixed-integer programming model under different scales of problem instances. Computational results based on real data show that the proposed methods cannot only yield solutions with optimality gaps about 0.3% on instances with four routes, but can also solve cases with ten routes and 59 ports in about one and a half hour. This study provides shipping liners with a comprehensive decision tool to make some long-term decisions.

Introduction

Ocean shipping liners fulfill an essential role in today's global economy development because the production and operations have become more global, and more operations are being outsourced and moved offshore [START_REF] Zhen | Tactical berth allocation under uncertainty[END_REF][START_REF] Zhen | Modeling of yard congestion and optimization of yard template in container ports[END_REF]. Liner shipping is a major maritime transportation mode, where a vessel owner sails the vessel following a fixed schedule to visit a set of ports of call [START_REF] Li | Disruption recovery for a vessel in liner shipping[END_REF]. Each liner company operates its own shipping network covering a set of routes and ports. The decision maker of a liner company needs to determine a suitable plan for its shipping network. Here the plans include (1) a ship deployment decision: how many ships should be deployed on each route; (2) a service schedule decision: on which day of every week should ships arrive at each port of call on each route and how fast should ships travel on each leg of the routes; (3) a container routing decision: how should containers be routed through the liner's services from their origin to their destination. These plans influence a liner company's operation cost. For example, the ship deployment decision determines the number of ships deployed on each route, which further yields the fixed operation cost of ships in the shipping network; the service schedule decision determines the sailing speed on each leg of the routes, which further influences the fuel consumption cost of ships; the container routing decision determines the specific routes for each origin-destination (OD) pair for container demands, which further impacts the transshipment handling cost, the storage holding cost at some intermediate ports, and the potential penalty cost for late delivery of containers. This study investigates this integrated optimization problem for the liner ship deployment, service schedule, and container routing decisions with the aim of minimizing the sum of the above-mentioned five types of cost, i.e., (1) fixed operation cost, (2) fuel consumption cost, (3) handling cost for transshipped containers, (4) holding cost for transshipped containers, and (5) penalty cost of delay delivery.

The purpose of this integrated planning problem is to fulfill the numerous OD pair transportation demands on a liner's global shipping network in which the weekly patterns of ship flows and the containers flows (including transshipments) are taken into account. This problem is complex and challenging because of the large number of decisions that must be considered and optimized simultaneously. In addition, these decisions are usually intertwined. For example, the ship operation cost partially depends on the number of deployed ships, while the number of ships deployed on a route is highly related to the ships' sailing speed on that route, which is further related to the fuel consumption cost. For a given route, the ships' sailing speeds on each leg may not be identical. The planning on the ships' sailing speed on different legs will affect their arrival dates at the ports. Because of the ship capacities, containers with the same OD pair may be transported through different routes, which may involve transshipments. Under the objective of minimizing the transshipment cost, the container routing decision may be influenced by the service scheduling decision, which affects the waiting time of the transshipped containers at some ports. Moreover, when minimizing the penalty cost associated with delayed deliveries, the container routing decision is also intertwined with the ship deployment and service scheduling decisions, which determine the ship sailing speed on each leg. All these interactions further complicate this integrated planning problem.

This paper constitutes a comprehensive study on the integrated optimization problem for the liner ship deployment, service schedule, and container routing decisions with the aim of minimizing total cost. It proposes a non-linear mixed-integer programming (MIP) model. Methods are suggested to linearize the non-linear parts of the model. Three heuristics are designed to solve largescale instances of the problems. Experiments based on real-world data are conducted to validate the effectiveness of the proposed model and the efficiency of the heuristics.

The main contribution of this study lies in the integrated model formulation which considers several important and complex intertwined decisions in liner shipping, e.g., deploying capacitated ships, determining voyage speed on legs, routing containers through the shipping network for each OD pair, and timetabling for each port of call on all routes. In addition, the model also takes account some realistic factors such as the transshipment activities, a delivery time requirement for each OD pair, and a comprehensive set of fixed and variable costs. Moreover, we develop algorithms to solve this complex problem efficiently.

The remainder of this paper is organized as follows. Section 2 reviews the related literature.

Section 3 describes the components of the problem, while Section 4 contains a mathematical model.

Three heuristics are developed in Section 5. Section 6 reports the computational results. The paper closes with conclusions in Section 7.

Related Literature

We review two streams of related literature on ship deployment and scheduling problems. Readers interested in broader surveys can refer to [START_REF] Ronen | Ship scheduling: The last decade[END_REF], [START_REF] Christiansen | Ship routing and scheduling: Status and perspectives[END_REF][START_REF] Christiansen | Ship routing and scheduling in the new millennium[END_REF], [START_REF] Meng | Containership routing and scheduling in liner shipping: overview and future research directions[END_REF], [START_REF] Tran | Literature survey of network optimization in container liner shipping[END_REF], [START_REF] Fransoo | The critical role of ocean container transport in global supply chain performance[END_REF], and [START_REF] Lee | Ocean container transport in global supply chains: Overview and research opportunities[END_REF].

The first topic of interest concerns the fleet deployment problem (FDP). A number of MIP models have been proposed for this problem, most of which are based on the known (or deterministic) container shipment demand and direct shipping mode without considering the transshipment activities [START_REF] Perakis | Fleet deployment optimization for liner shipping part 1. background, problem formulation and solution approaches[END_REF], Jaramillo and Perakis 1991[START_REF] Cho | Optimal liner fleet routeing strategies[END_REF][START_REF] Powell | Fleet deployment optimization for liner shipping: An integer programming model[END_REF][START_REF] Gelareh | A novel modeling approach for the fleet deployment problem within a short-term planning horizon[END_REF], Meng and Wang 2011b, Lee et al. 2012). Their models may be inapplicable to a realistic shipping network where containers can be transshipped at any port. [START_REF] Mourão | Ship assignment with hub and spoke constraints[END_REF] modeled the container transshipment in the FDP as a hub-and-spoke network with one OD port pair and two ship routes. [START_REF] Wang | Liner ship fleet deployment with container transshipment operations[END_REF] proposed an MIP model for the FDP considering general transshipment activities. [START_REF] Meng | A chance constrained programming model for short-term liner ship fleet planning problems[END_REF] designed a chance-constrained programming model for the ship deployment problem under uncertain container shipment demand, but this model did not consider container transshipment. [START_REF] Zheng | Network design and capacity exchange for liner alliances with fixed and variable container demands[END_REF] studied a shipping network design problem for liner alliances, and developed a model that accounted for the decisions on ship fleet deployment, allocation of the variable demands, capacities exchanged among liner carriers, and container routing. [START_REF] Ng | Distribution-free vessel deployment for liner shipping[END_REF][START_REF] Ng | Container vessel fleet deployment for liner shipping with stochastic dependencies in shipping demand[END_REF] investigated the fleet deployment problem with uncertain demand. [START_REF] Kim | A lagrangian heuristic for determining the speed and bunkering port of a ship[END_REF] proposed a heuristic to determine the optimal speed in each leg and the ports for refueling. [START_REF] Andersson | Integrated maritime fleet deployment and speed optimization: Case study from roro shipping[END_REF] designed an integrated model on fleet deployment and speed optimization for RoRo shipping. [START_REF] Thun | Analyzing complex service structures in liner shipping network design[END_REF] analyzed the complex nature of liner shipping networks.

The second research stream is related to ship scheduling in the context of container routing between OD pairs. [START_REF] Yan | Ship scheduling and container shipment planning for liners in short-term operations[END_REF] investigated the container flow only at the operational level. [START_REF] Agarwal | Ship scheduling and network design for cargo routing in liner shipping[END_REF] and [START_REF] Huang | Liner services network design and fleet deployment with empty container repositioning[END_REF] studied container flow optimization problems, which considered the container transshipment but not the transit time requirement. [START_REF] Wang | Schedule design and container routing in liner shipping[END_REF] examined the container flow on a predetermined set of paths from an origin port to a destination port. [START_REF] Zheng | Network design and capacity exchange for liner alliances with fixed and variable container demands[END_REF] considered the coordination among shipping liners, and proposed a two-stage decision model on empty container flows. It should be noted that the above studies did not take into account fuel cost or port capacity constraints. However, [START_REF] Yao | A study on bunker fuel management for the shipping liner services[END_REF] considered the factor of bunker fuel management in shipping liner service design. [START_REF] Zhen | Models on ship scheduling in transshipment hubs with considering bunker cost[END_REF] included fuel cost in ship scheduling but not the berth and yard capacity limitations. [START_REF] Du | Budgeting fuel consumption of container ship over round-trip voyage through robust optimization[END_REF] proposed a method to determine a group of fuel budget values for a liner ship over a round-trip voyage under uncertainty. [START_REF] Xia | Joint planning of fleet deployment, speed optimization, and cargo allocation for liner shipping[END_REF] designed a comprehensive and advanced model on deciding ship fleet deployment, speed optimization, and cargo allocation. Some specific factors such as the impact of load on fuel consumption as well as the decision of frequency were considered in their model. They implemented a new way of linearizing their non-linear model and then solved it by column generation.

In sum, many studies on the FDP did not allow transshipment. Although many ship scheduling and container routing problem have considered transshipment, they did not include some factors such as fuel cost and port capacity. Other factors that are often ignored are the shipping time and possible penalties for delayed delivery, which are very important in maritime transportation [START_REF] Lu | Carrier portfolio management for shipping seasonal products[END_REF].

This paper provides a comprehensive study of a liner ship deployment decision problem considering transshipment, fuel cost, and allocation of cargos among the shipping network. In comparison to the existing literature, it includes more comprehensive and realistic features.

Components of the problem

We use a relatively simple shipping network as an example to explain the problem background of this study. We assume a liner shipping company operates three ship routes (the route set is denoted by R), which cover seven ports (the port set is denoted by P). We denote by I r the set of legs (or the set of ports of call) on ship route r ; ship route r has |I r | ports of call as well as |I r | legs. The voyage from port p ri to port p r,i+1 is called leg i, with p r,|Ir|+1 = p r1 . The shipping network is illustrated in Figure 1. Each ship route r ∈ R is described as (p r1 , • • •, p r|Ir| , p r1 ). Because the majority of the services follow a weekly pattern, this study also makes this assumption.

The number of ships deployed on route r is denoted by β r , and the total fixed ship operation cost can be calculated as r∈R c o r β r , where c o r is the unit weekly operation cost for deploying one ship on route r.

Fuel cost depending on service schedule decision

The total time needed for a ship to complete its route is

i∈Ir (d ri + γ ri ) = 7β r
, where d ri is the dwell time of ships at port p ri , and γ ri is the sailing time (days) on the i th leg on ship route r. In reality, the port dwell time d ri is usually predetermined according to a contract between the shipping company and port operators, but the sailing time γ ri of each leg can be a decision variable for the shipping company, which can be adjusted by setting the speed. Moreover, the setting of the sailing time for each leg on a route is also related to the decision of the ship deployment on the route.

When a shipping company plans its ship fleet deployment on a network as well as the schedule of each route, the key decisions are the suitable number of ships deployed on each route and the suitable arrival time at each port of call on each ship route (denoted by θ ri in this study). The decision on arrival time depends on the sailing speed of each leg. The decisions on ship deployment (β r ) and service schedule (θ ri and γ ri ) need to reach a balance between the fleet size and the fuel cost, which go in opposite directions. As in [START_REF] Fagerholt | Maritime routing and speed optimization with emission control areas[END_REF], we assume that the unit fuel consumption function on sailing speed is known. More specifically, we define the unit fuel cost function as f = c F ri (x) c F ri for the i th leg of ship route r (USD per nautical mile); here x is the sailing speed on the leg (knots), and c F ri , c F ri are coefficients that can be estimated using the historical data. If the length of the i th leg of ship route r is defined as l ri (nautical miles), the total weekly fuel cost is calculated as

r∈R i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri
, where 24 transforms γ ri days into 24γ ri hours.

The expression is non-linear and will be linearized later. The weekly fuel cost is equal to the sum over all routes of the individual costs of the ships traveling these routes.

Transshipment handling cost depending on container routing decision

We handle the container routing decision by defining some transportation plans. More specifically, for each OD pair (p,q), we define a set of transportation plans y ∈ Y pq . The set of transportation plans for each OD pair can be defined in advance according to the planners' experience. For example, some transportation plans of the shipping network of Figure 1 can be defined as in Table 1. Based on the defined set of transportation plans Y pq for each OD pair (p,q), the container routing decision is to distribute the n pq containers of the OD pair among all the transportation plans in the set Y pq . We define the number of containers transported by plan y as π y ; we have

y∈Ypq π y = n pq .
Direct shipping is the most efficient way to transport containers from their origin to their destination. However, a direct shipping route for an OD pair does not always exist, and due to ship capacities, some containers within an OD pair for which a direct shipping route exists may be delivered through transshipment [START_REF] Bell | A cost-based maritime container assignment model[END_REF]. The transshipment cost is made up of the handling cost and the storage holding cost. Since the routes of transportation plans are given, the number of transshipment activities for each container in the plan is also known. We define c T y as the unit handling cost (USD per twenty-foot equivalent unit, USD/TEU) in transportation plan y. Then the total handling cost for transshipped containers is calculated as p∈P q∈P y∈Ypq c T y π y . We mention that in a weekly service based shipping network, the total weekly cost is equal to the sum over all routes of the single container transshipment handling costs.

Transshipment holding cost depending on container routing and service schedule

The calculation of the transshipment storage holding cost is more involved because the storage time at a transshipment port is determined by decision variables on two ship arrival times at the port. We use the variable χ risj to denote the time difference in days from port of call (r, i) to port of call (s, j), i.e., the storage time of transshipped containers. We define (r, i, s, j) as a transshipment from the i th port of call on ship route r to the j th port of call on ship route s, which implies that the i th port of call on ship route r and the j th port of call on ship route s correspond to the same physical port in the network, i.e., p ri = p sj . We denote by Q the set of all quadruples (r, i, s, j), and we define a binary parameter k yrisj to indicate whether or not transshipment (r, i, s, j) is used by plan y. The total transshipment holding cost is then

p∈P q∈P y∈Ypq π y (r,i,s,j)∈Q c H p ri k yrisj χ risj ,
where c H p ri is the unit holding cost (USD per TEU per day) at transshipment port p ri , and χ risj is determined by the service schedules. Here the definition of χ risj will consider a specified free dwell time for the transshipped containers at ports.

Penalty cost of delay delivery depending on container routing and service schedule

The service level associated with an OD pair is the actual delivery time of the containers. Given an OD pair (p, q), there exists a normal transportation time T pq in the maritime transportation market. A penalty cost is incurred if the actual delivery time τ of a container that needs to be transported from p to q is longer than T pq . We define the unit penalty cost as c D pq (USD per TEU per day). Then the penalty cost of the delay delivery for the container from p to q is calculated as 

c D pq (τ -T pq ) + ,
where k yri is a binary parameter equal to one if and only if plan y uses the i th leg on ship route r. k yrisj is a binary parameter equal to one if and only if plan y uses the transshipment (r, i, s, j ). It is accepted that in a weekly service based shipping network, the sum of all the routes' single container penalty costs due to delivery delays is equal to the sum of the container's weekly penalty costs for delays over all routes.

Summary of the modeling assumptions

Before formulating the mathematical model for this problem, we state its underlying assumptions:

(1) The shipping network of the ports and routes (voyages) are already determined.

(2) The ships are homogenous on each route in terms of capacity and cost structure.

(3) The volume (TEU per week) of container transportation demands for each OD is known in advance. These data can be estimated using historical records [START_REF] Fagerholt | Fleet deployment in liner shipping: a case study[END_REF][START_REF] Bell | A frequency-based maritime container assignment model[END_REF]).

(4) The ships' dwell time at each port of call is given.

(5) The fuel consumption on each leg depends on the ship speed (or sailing time of the leg).

Remark: If we further relax the second assumption to a more general context, the ships on a route could be different with respect to their capacity and cost structure. The model would then have to be modified significantly. For example, the decision variable about the number of ships deployed on a route should contain a subscript index denoting the ship size. Many other variables would also need to be extended in a similar way. In addition, some parameters would become variables. For example, the parameter of the weekly operation cost of one ship in a route becomes a variable since its value is influenced by the variable of the number of deployed ships.

Model formulation

Based on the above assumptions, we have developed a mathematical model to make four types of decisions: (1) ship deployment decisions (i.e., β r ), (2) arrival timing decisions (i.e., θ ri ), (3) ship speed decisions (i.e., γ ri ), and (4) container routing decisions (i.e., π y ). The objective is to minimize the sum of five types of cost, which have been elaborated in Sections 3.1-3.5.

Indices and sets

The indices and sets used in subscripts of the parameters and variables are listed as follows:

r(or s) index of ship route;
R set of all ship routes; i(or j) index of port of call or leg (i, i +1) on a ship route;

I r set of the port of calls (or legs) on ship route r;

(r, i, s, j)

a transshipment from the i th port of call on ship route r to the j th port of call on ship route s; r, s ∈ R; i ∈ I r , j ∈ I s ; the quadruple (r, i, s, j) means that the i th port of call on ship route r and the j th port of call on ship route s correspond to the same physical port in the network, i.e., p ri = p sj ;

Q set of quadruples (r, i, s, j); Q = {(r, i, s, j)|p ri = p sj };
p(or q) index of a port, p ∈ P ;

p ri index of the port that corresponds to the i th port of call on ship route r, p ri ∈ P ;

P set of all ports; y index of a transportation plan for fulfilling the transportation task of an OD pair;

Y pq set of transportation plans for shipping containers from port p to port q; p, q ∈ P ; Z set of integers;

Z + set of non-negative integers.

Parameters

The input data for this decision problem are listed as follows. They are assumed to be known (or can be estimated) before making the decisions:

c o r
weekly operation cost of one ship deployed on ship route r; n pq number of containers (TEUs) that need to be transported from port p to port q every week (estimated according to the historical data);

c F ri , c
T pq required number of days for containers to be transported from port p to port q; v r volume capacity (TEUs) of each ship deployed on ship route r; l ri voyage length (nautical miles) of the i th leg of ship route r;

d ri duration (days) when a ship dwells at the i th port of call on ship route r;

k yrisj equals one if and only if plan y uses transshipment (r, i, s, j); k yri equals one if and only if plan y uses the i th leg on ship route r;

hr , h r maximum and minimum numbers of ships that can be deployed on ship route r, respectively;

f risj maximum free dwell time (days) for the transshipped containers at transshipment port (r, i, s, j);

ēri , e ri maximum and minimum speeds of ships on the i th leg on ship route r, respectively.

Note that hr and h r can be determined as functions of ēri and e ri : hr = i∈Ir (d ri +l ri /e ri ) 7 and h r = i∈Ir (d ri +l ri /ē ri ) 7

, for all r ∈ R.

Variables

The decision variables are listed below. They are categorized as core decisions for this problem, which contain four main decisions, and the other part is about the auxiliary variables, which are not directly related to the decision of the problem but are necessary for the model formulation.

Core decision:

(1) Ship deployment decision :

β r number of ships deployed on ship route r (β r ∈ {h r , h r + 1, • • •, hr }).
(2) Timing decision (service schedule) :

θ ri
day on which a ship arrives at the i th port of call on ship route r,

where i = 1, • • •, |I r | + 1; without loss of generality, we require θ r1 ∈ {0,1,• • •, 6}; θ r,|Ir|+1
denotes the day on which the ship returns to the first port of call on ship route r, i.e., θ r,|Ir|+1 is equal to θ r1 plus the number of days required by a ship to complete a round trip journey.

(3) Ship speed decision :

γ ri sailing time (days) of the i th leg on ship route r; this variable reflects the ship sailing speed decision on each leg in the network.

(4) Container routing decision :

π y number of containers (TEUs) shipped through transportation plan y.

Auxiliary variables:

τ y duration (days) for fulfilling plan y, including the voyage time on sea (sailing and dwelling at berth), and the containers' waiting time at yard for transshipment;

δ risj arrival time difference (days) of a ship that visits (r,i ) and a ship that visits (s,j );

δ risj ∈ {0, 1, • • •, 6};
ξ risj an integer associated to variable δ risj and used to transfer the difference of arrival day θ ri and θ sj to a non-negative integer of the seven days, which is denoted by δ risj .

Objective:

To facilitate reading, we recall the five types of cost defined by using the above parameters and variables:

(1) fixed operation cost:

r∈R c o r β r ;
(2) fuel consumption cost:

r∈R i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri ;
(3) handling cost for transshipped containers:

p∈P q∈P y∈Ypq c T y π y ;

(4) holding cost for transshipped containers:

p∈P q∈P y∈Ypq π y (r,i,s,j)∈Q c H p ri k yrisj δ risj ;
(5) penalty cost of delay delivery:

p∈P q∈P y∈Ypq π y c D pq (τ y -T pq ) + .
Here τ y is the actual total time of fulfilling transportation plan y, including the ship sailing time, ship dwelling time at ports, and the waiting time when containers are transshipped at ports:

τ y = r∈R i∈Ir k yri γ ri + r∈R i∈Ir k yri d ri + (r,i,s,j)∈Q k yrisj δ risj . (2) 
For τ y , its lower bound (τ y ) and its upper bound (τ y ) are calculated as

τ y = r∈R i∈Ir k yri ( l ri ēri + d ri ) (3) and τy = r∈R i∈Ir k yri ( l ri e ri + d ri ) + 6 (r,i,s,j)∈Q k yrisj .
(4)

Mathematical model

A non-linear mathematical model can then be formulated as follows: 

[M 1] minimize Z = r∈R c o r β r f ixed cost of ships + r∈R i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri f uel cost
k yri γ ri + r∈R i∈Ir k yri d ri + (r,i,s,j)∈Q k yrisj δ risj p ∈ P, q ∈ P, y ∈ Y pq (6) h r ≤ β r ≤ hr r ∈ R (7) 0 ≤ θ r1 ≤ 6 r ∈ R (8) l ri /ē ri ≤ γ ri ≤ l ri /e ri r ∈ R, i ∈ I r (9) θ r,i+1 = θ ri + d ri + γ ri r ∈ R, i ∈ I r (10) θ r,|Ir|+1 = θ r1 + 7β r r ∈ R (11) θ sj -θ ri + 7ξ risj = δ risj (r, i, s, j) ∈ Q (12) 0 ≤ δ risj ≤ 6 (r, i, s, j) ∈ Q (13) -β s ≤ ξ risj ≤ β r (r, i, s, j) ∈ Q (14) y∈Ypq π y = n pq p ∈ P, q ∈ P (15) p∈P q∈P y∈Ypq k yri π y ≤ v r r ∈ R, i ∈ I r (16) β r ∈ Z + r ∈ R (17) γ ri , θ ri ∈ Z + r ∈ R, i ∈ I r (18) ξ risj ∈ Z; δ risj ∈ Z + (r, i, s, j) ∈ Q (19) π y ≥ 0 p ∈ P, q ∈ P, y ∈ Y pq . ( 20 
)
The objective (5) minimizes the sum of the five types of the cost described in Section 4.4.

Constraints (6) compute τ y , i.e., the actual time of fulfilling transportation plan y; τ y includes the voyage time on sea (sailing and dwelling at berth), and the transshipment handling time.

Constraints ( 7) limit the number of ships deployed on each route. Constraints (8) ensure that the first ship deployed on each route visits the first port in the route within the first week of the planning horizon, which actually implies that all the liner services (routes) follow the weekly pattern. Constraints (9) define the range of the sailing time on each leg of the route, which actually sets the limitation on the sailing speed during each leg. Constraints (10) connect the arrival time of ship at a port and the arrival time at the next port in a route. Constraints (11) state that the total time (days) needed for a ship travelling around a route equals the number of ships deployed on the route multiplied by seven days. Constraints ( 12)-( 14) calculate the arrival time difference between the ports of call (r, i) and (s, j) at a transshipment port (r, i, s, j). Constraints (15) compute the number of containers with the same OD pair. Constraints ( 16) ensure that the number of containers carried by each ship on a route does not exceed the ship capacity. Constraints ( 17)-( 20) define the domains of the decision variables.

Proposition 1: The problem is NP-hard.

Proof: The knapsack problem is NP-hard. We prove that if the shipping problem can be solved in polynomial time, then the knapsack problem can also be solved in polynomial time. Suppose that there are |R| routes, all of which visit port o, port p and port q in a sequential manner. There are n pq containers to transport from p to q and n oq containers from o to port q. We further suppose that n pq +n oq = r∈R v r , where v r is the capacity of route r. The number of sailing days from p to q can be 2 or 3 for all of the |R| routes. T pq = 2 and T oq = ∞. Hence, we should prioritize containers from p to q on routes with two days' sailing on the leg. Suppose that the cost of operating route r (ship operating cost plus fuel cost) with two days' sailing from p to q is higher than that with three days' sailing by ∆ r (∆ r depends on the type of ship deployed on the route). Suppose further that c D pq is much larger than ∆ r and hence all of the n pq containers must be delivered in two days.

Therefore, the shipping problem is to identify which of the |R| routes should have a two-day sailing from p to q such that the total extra cost ∆ r is minimized, subject to the constraint that the total capacity of these routes is at least n pq . By exchanging the objective and the constraint, this shipping problem is equivalent to the knapsack problem that aims to find which of the |R| items, each with a weight ∆ r and a value v r , should be packed into a knapsack of a given weight capacity ∆, in order to maximize the total value.

Linearizing the fuel cost function in the objective

The objective (5) contains a non-linear part r∈R i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri , which can be rewritten as

r∈R i∈Ir l ri c F ri (l ri /24) c F ri (γ ri ) -c F ri .
Our aim is to transform (γ ri ) -c F ri into a linear form. To this end, we define a binary variable σ rit equal to one if and only if γ ri = t. The set of possible values of t can be easily calculated as

T LEG ri ={ l ri /ē ri , l ri /ē ri +1,• • •, l ri /e ri }. Therefore, (γ ri ) -c F ri is replaced with t∈T LEG ri t -c F ri σ rit
, where σ rit is a binary variable, which equals one if and only if γ ri = t.

In order to implement the above linearization, some newly defined variables and constraints are needed.

Newly defined index and sets: t index of the number of days, which represent the duration of a leg;

T LEG ri set of possible values of t; T LEG ri ={ l ri /ē ri , l ri /ē ri +1,• • •, l ri /e ri }.
Newly defined variable:

σ rit a binary variable, which equals one if and only if γ ri = t.

Newly defined constraints:

t∈T LEG ri σ rit = 1 r ∈ R, i ∈ I r (21) t∈T LEG ri tσ rit = γ ri r ∈ R, i ∈ I r (22) σ rit ∈ {0, 1} r ∈ R, i ∈ I r , t ∈ T LEG ri . ( 23 
)
The non-linear fuel cost function

r∈R i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri in Objective (5) is replaced with a linearized form r∈R i∈Ir c F ri (l ri ) c F ri +1 24 -c F ri t∈T LEG ri t -c F ri σ rit .

Linearizing the products of two variables in the objective

In the objective, the holding cost contains the form of product of variable π y and variable δ risj . To linearize this form, some more variables and constraints are added as follows:

Newly defined index and sets:

w index of a day in a week, or the number of days;

W set of days in a week, W = {0, 1, • • •, 6}.
Newly defined variables: δ risjw binary variable, which equals one if and only if δ risj =w ;

η yrisjw equal to the product of π y and δ risj if k yrisj = 1 and δ risj = w and 0 otherwise.

Newly defined big-M's:

M pq Big-M for linearization.
Newly defined constraints:

η yrisjw ≥ wπ y + M pq (δ risjw + k yrisj -2) (r, i, s, j) ∈ Q, w ∈ W, p ∈ P, q ∈ P, y ∈ Y pq ( 24 
)
δ risj = w∈W wδ risjw (r, i, s, j) ∈ Q (25) w∈W δ risjw = 1 (r, i, s, j) ∈ Q (26) 
η yrisjw ≥ 0 (r, i, s, j) ∈ Q, w ∈ W, p ∈ P, q ∈ P, y ∈ Y pq (27)

δ risjw ∈ {0, 1} (r, i, s, j) ∈ Q, w ∈ W. ( 28 
)
In addition, the penalty cost in the objective p∈P q∈P y∈Ypq π y c D pq (τ y -T pq ) + also contains the product of variable π y and variable (τ y -T pq ) + , which is also non-linear. To linearize the penalty cost, some more variables and constraints are added as follows.

Newly defined index and sets: t index of the number of days, which represent the delay of an OD delivery;

T DEL pqy set of possible values of t for the transportation plan y of OD(p,q); T DEL pqy ={(τ y - T pq ) + , (τ y -T pq ) + +1, • • •,( τy -T pq ) + }. The parameters τ y and τy are calculated by Eqs. ( 3)-( 4).

Newly defined big-M's:

M pqy

Big-M for linearization.

Newly defined variables:

ϕ ypq , φypq non-negative variables to represent the value of (τ y -T pq ) + ; more specifically, if τ y -T pq ≥0, we have ϕ ypq = τ y -T pq and φypq = 0; if τ y -T pq < 0, we have ϕ ypq = 0 and φypq = T pq -τ y ; φ ypqt binary variable, which equals one if and only if ϕ ypq = t; ψ ypqt it equals the product of π y and (τ y -T pq ) + if (τ y -T pq ) + = t and 0 otherwise.

Newly defined constraints:

τ y -T pq = ϕ ypq -φypq p ∈ P, q ∈ P, y ∈ Y pq (29)

ϕ ypq =
t∈T DEL pqy tφ ypqt p ∈ P, q ∈ P, y ∈ Y pq (30)

t∈T DEL pqy φ ypqt = 1 p ∈ P, q ∈ P, y ∈ Y pq (31)

ψ ypqt ≥ tπ y + (φ ypqt -1) • M pqy p ∈ P, q ∈ P, y ∈ Y pq , t ∈ T DEL pqy (32)
ψ ypqt , ϕ ypq , φypq ≥ 0 p ∈ P, q ∈ P, y ∈ Y pq (33)

φ ypqt ∈ {0, 1} p ∈ P, q ∈ P, y ∈ Y pq , t ∈ T DEL pqy . ( 34 
)
The Big-M in Eq. ( 32) can be set at M pqy = ( τy -T pq ) + • n pq as t ≤ ( τy -T pq ) + and π y ≤ n pq . Then the non-linear form of the penalty cost 

Model extension

In reality, some ports may offer 'free time' for transshipped containers. Then the holding cost for a transshipped container is only incurred when the container dwells at the port for a time period which is longer than a prespecified maximum 'free time'. It should be noted that our model can be extended in the following way so as to consider the above issue.

We can first define a new parameter f risj to denote the maximum dwell time (days) with free charge for the transshipped containers at transshipment port r, i, s, j . Then the 'c H p ri k yrisj δ risj ' in the objective turns to 'c H p ri k yrisj (δ risj -f risj ) + '. Moreover, the nonlinear part '(δ risj -f risj ) + ' could be linearized in the similar way explained in Section 4.7. Due to the limitation of space, the extensive model is not elaborated here.

The above MIP model can be solved directly by some commercial solvers such as CPLEX for small-scale problem instances. However, large-scale instances are intractable for CPLEX and heuristics are then needed.

Heuristics

In this section, we propose three simple but efficient heuristics to solve the model under different scales of the problem instances. These are described in Sections 5.1, 5.2 and 5.3, respectively.

Heuristic 1: A local branching method for medium-scale instances

The CPLEX solver can solve some small-scale instances directly but may not handle the mediumor large-scale instances. In this paper, a local branching algorithm is proposed for solving the mixed-integer model [M 2]. As the name suggests, the local branching algorithm is to branch a core variable in the solution space. For the integrated planning problem on ship deployment, service schedule and container routing, the core decision variable is γ ri , which actually constructs the solution space for the problem. Therefore, our method is to branch on that variable. The γ ri reflects the sailing time of each leg, and further determines the fuel cost and the number of ships deployed on each route. The variable δ risj reflects the time gap between two ports of call at a transshipment port, which connects two or more routes in the network, and further determines the transshipment cost and penalty cost of delay delivery. Based on the value of γ ri , other variables (except for the variable π y , i.e., the number of containers allocated in each transportation plan) can be determined accordingly.

Local branching is a heuristic strategy that makes use of a MIP solver to search for solution subspaces effectively. Actually, it has been designed to support heuristic solutions of high quality and use a MIP solver as a black box. Although this technique is inherently exact, it becomes a heuristic by redefining some control parameters. As an efficient way to improving a given solution, it alternates between higher-level strategic branching in order to define the solution neighborhoods, and lower-level tactical branching to explore them [START_REF] Fischetti | Local branching[END_REF]. The main procedure of the local branching is described in Algorithm 1. to whether or not the solution has improved, and to whether or not the time limit for solving each node has been reached. The followings are the general four case of processing local branching and their relative handing strategies:

Case 1 : The node is solved within a given time, and the current optimal solution is better than the incumbent solution. This case is the most common and represents the general process of exploring solution.

Case 2 : The node is solved within a given time, and the current optimal solution is not better than the incumbent solution. We should then enlarge the size of the neighborhood.

Case 3 : The node cannot be solved within a given time, and the current non-optimal solution is better than the incumbent solution. We should backtrack to the father node and create a new left-node linking with an incumber solution rather than modify the value of the neighborhood.

Case 4 : The node cannot be solved within a given time, and the current non-optimal solution is not better than the incumbent solution. This means that the neighborhood size should be reduced to increase the speed in order to either obtain a solution better than the incumbent solution or to obtain an optimal solution at the node.

In our paper, the neighborhoods are obtained by defining linear inequalities (or branching cuts)

involving the integer variables γ ri . The local branching procedure terminates when the total number of iterations has reached a predefined limit or when the incumbent solution has not improved for a given number of consecutive iterations.

Initialization: Local branching requires a reference solution γri . The integer variables γri should be generated by solving the following model [M 3] for |R| times, and each iteration of the model solving is executed for one route.

[M 3] minimize Z r = c o r β r + i∈Ir l ri c F ri (l ri /(24γ ri )) c F ri (36) subject to i∈Ir (d ri + γ ri ) = 7β r (37) β r ∈ {h r , h r + 1, • • •, hr } (38) γ ri ∈ { l ri /ē ri , l ri /ē ri + 1, • • •, l ri /e ri } i ∈ I r . ( 39 
)
Proposition 2: [M 3] can be solved in pseudo-polynomial time.

Proof: To solve [M 3], we can first enumerate all possible values of β r , the number of which is bounded by hr . Given a β r , the total sailing days is 7β r - 

Heuristic 2: A Particle Swarm Optimization (PSO) algorithm for large-scale instances

When solving some large-scale instances, local branching may be time-consuming, and it may be preferable to apply a heuristic. Here we use particle swarm optimization (PSO), which iteratively attempts to improve a candidate solution with regard to a given measure of quality. This heuristic scheme is attributed to [START_REF] Eberhart | A new optimizer using particle swarm theory[END_REF]. It was first intended to simulate social behavior, and was then used to optimize continuous non-linear functions. In the past few years, PSO has been used to solve port operations problems such as berth allocation [START_REF] Ting | Particle swarm optimization algorithm for the berth allocation problem[END_REF], yard allocation (Zhen et al. 2016a) and terminal crane scheduling [START_REF] Tang | Modeling and solution of the joint quay crane and truck scheduling problem[END_REF].

Solution representation and velocity updating strategy

PSO is a population-based heuristic, which is similar to genetic search. Each solution of PSO is represented by a particle, whose status contains its position and velocity. The movement of the particles is guided by their position, according to their own best position and a swarm's best position (a swarm is the set of all particles). The position of a particle determines the quality of solution associated with it, while its velocity indicates the direction along which it will move.

In the proposed model [M 1], the decision variables β r and γ ri are obviously related to each other. When γ ri is fixed, β r is also known, but in contrast we cannot derive γ ri from β r . We therefore choose the γ ri variable to define particles in the PSO. Furthermore, given a particle m in its n th iteration, its position can be defined as p n m ={P n mri }, and its velocity can be defined as

v n m = {V n mri }, r ∈ R, i ∈ I r .
We define P Best n mri as the best position of the particle m in dimensions r and i until iteration n, and GBest n ri as the best position of the whole swarm in dimensions r and i until iteration n. The updating formulae of the particles are as follows:

υ n+1 mri = w n υ n mri + c 1 r 1 (P Best n mri -P n mri ) + c 2 r 2 (GBest n ri -P n mri ) (40) 
P n+1 mri = P n mri + υ n mri . (41) 
In equation ( 40), w n is the inertia weight and is calculated by the equation w n = N -n N (w iniw end ) + w end , in which N is the number of swarm iterations; w ini and w end are the initial inertia weight and the final inertia weight; w n determines the degree of influence of the particle's previous velocity on the current velocity, and plays the role of the global search and local search ability of the equilibrium algorithm. A larger value of the inertia coefficient w n yields a stronger global exploration ability. At the beginning of an iteration, a large inertia weight contributes to achieve good convergence towards the global optimal solution. As the procedure evolves, the inertia weight tends to be smaller, which helps achieve convergence towards a local optimal solution. The coefficients c 1 and c 2 are acceleration weights, while r 1 and r 2 are random numbers generated between zero and one.

Equation ( 40), which updates velocity, needs to be modified as follows to prevent the PSO procedure from being trapped into a local optimum:

υ n+1 mri = w n υ n mri + c 1 r 1 (P Best n mri -P n mri ) + c 2 r 2 (GBest n ri -P n mri ) + c 3 r 3 (a n ri -b n ri ). ( 42 
)
Here a n ri and b n ri are the positions of two randomly chosen particles in dimensions r and i at iteration n. The coefficients c 3 is acceleration weight, while r 3 is random number generated between zero and one. Therefore, all swarm particles not only move in the direction of the best positions for both the whole swarm and the particles, but may also fly to two randomly chosen particles. The equation guarantees that particles will be more likely to fly away from local optima and search for better solutions.

The basic flow of particle swarm optimization method

According to the basic principles of the solution representation and velocity updating strategy described above, the general procedure of the PSO can be described as in Algorithm 2.

Heuristic 3: A bidirectional tuning heuristic for very large-scale instances

For very large-scale instances, we propose an even faster bidirectional tuning heuristic. The problem essentially contains two types of decisions: one is to design route schedules (i.e., variables β r , γ ri and δ risj ), and the other is to route the container (i.e., variables π y ). Given γ and δ value settings (β r can be determined directly by γ), we solve a simplified submodel [M 4] with only the π y variables:

[M 4] minimize Z γ&δ = p∈P q∈P y∈Ypq
A y π y ; subject to Constraints (15), ( 16), ( 20),

where

A y = c T y + (r,i,s,j)∈Q c H p ri k yrisj δ risj + c D pq (τ y -T pq ) + . (43) 
The main idea of this heuristic is to determine the route schedules first, and then optimize the container routing decision given the fixed route schedules. We then move in the opposite direction by fixing the container routing decision obtained in the previous iteration, and optimize the route schedules. This bidirectional tuning process is repeated so as to improve the two decisions iteration by iteration. The solving procedure is repeated until no improvement can be achieved. The detailed procedure is shown in Algorithm 3.

Algorithm 2 General procedure of PSO Output: the objective value 1: Define GBest n ri , P Best n mri , P n mri , v n mri , P min ri , P max ri , w n , a n ri , b n ri //GBest n ri is the best position of the whole swarm in dimensions r and i until iteration n; P Best n mri is best position of the particle m in dimensions r and i until iteration n; P n mri , v n mri are the position and velocity of particle m in dimensions r and i at iteration n; P min ri , P max ri are the minimum and maximum position of particle m in dimension r and i; w n is the inertia weight; a n ri , b n ri are the positions of two randomly chosen particles in dimensions r and i at iteration n 2: for m ∈ M //M (i.e., the set of particles) 3:

Input: n, |M |, D, c 1 , c 2 , c 3 , r 1 , r 2 , r 3 //n
for all r ∈ R //R (i.e., the set of routes) 4:

for all i ∈ I r //Ir (i.e., the set of ports of call on route r ) 5: n ← 0 6: The setting of the parameters used in the model is as follows. The average of c o r (weekly operation cost of one ship deployed on ship route r) was set to 200,000 [START_REF] Alharbi | Schedule design for sustainable container supply chain networks with port time windows[END_REF]. The average of c F ri was set to 0.15 and the average of c F ri was set to two (c F ri and c F ri are coefficients used to calculate the unit fuel cost for travelling per nautical mile), which follows the setting of similar parameters used in related works [START_REF] Yao | A study on bunker fuel management for the shipping liner services[END_REF][START_REF] Du | Berth allocation considering fuel consumption and vessel emissions[END_REF][START_REF] Meng | Shipping log data based container ship fuel efficiency modeling[END_REF]. The average of c H p (unit inventory holding cost (USD per TEU per day) of the containers transshipped at port p) was set to 30 USD per TEU per day [START_REF] Wen | A multiple ship routing and speed optimization problem under time, cost and environmental objectives[END_REF]. The average of c T y (unit handling cost (USD per TEU) of the containers transshipped in the transportation plan y) was set to either 130 or 150 USD per TEU according to the literature (Meng and Wang 2011a, Liu et al. 2014[START_REF] Wang | Sailing speed optimization in voyage chartering ship considering different carbon emissions taxation[END_REF]. The average of c D pq (unit penalty cost (USD per TEU per day) for the delay incurred in delivering containers from port p to port q) was set to 30 USD per TEU per day [START_REF] Liu | Global intermodal liner shipping network design[END_REF][START_REF] Wen | A multiple ship routing and speed optimization problem under time, cost and environmental objectives[END_REF]. The average of v r (volume capacity (TEUs) of each ship deployed on ship route r) was set to 17,000 TEU, which corresponds to the ship configurations in reality [START_REF] Notteboom | The effect of high fuel costs on liner service configuration in container shipping[END_REF], Meng and Wang 2012[START_REF] Psaraftis | Ship speed optimization: Concepts, models and combined speed-routing scenarios[END_REF]. The averages of hr and h r (the maximum and minimum numbers of ships that can be deployed on ship route r, respectively)

P n mri is
were set to 15 and one, respectively (Yao et al. 2012, Wang andXu 2015). The averages of ēri and e ri (the maximum and minimum speeds of ships on the i th leg on ship route r, respectively) were set to 26 and eight knots, respectively, which also follows the setting of related works [START_REF] Notteboom | The effect of high fuel costs on liner service configuration in container shipping[END_REF][START_REF] Yao | A study on bunker fuel management for the shipping liner services[END_REF][START_REF] Psaraftis | Ship speed optimization: Concepts, models and combined speed-routing scenarios[END_REF][START_REF] Aydin | Speed optimization and bunkering in liner shipping in the presence of uncertain service times and time windows at ports[END_REF][START_REF] Wen | A multiple ship routing and speed optimization problem under time, cost and environmental objectives[END_REF]. In this section of numerical experiments, the number of routes is four, five and seven to 10. We generated several instances according to specific rules. For the four-route example, there are four, 10, seven, and seven ports of call on routes 1, 2, 3, 4, respectively, we can then generate three cases, which differ from each other only with respect to the ports of call on route 1; in each one of the three cases, route 1 contains three ports of call among the four ports of call on the original route 1 as shown in Figure 2. Similarly, more sets of cases can be generated according to the different settings of ports of call on other routes. Thus for the small-scale experiments with four routes (as shown in Table 2), there are four sets of cases as well as a complete case with all the ports of call shown in Figure 2. Similarly, for the large-scale five-route experiments (as shown in Table 3), there are five sets of cases as well as a complete case with all the ports of call shown in Figure 2.

Investigating the efficiency of the proposed methods

Experiments were conducted to investigate performance of the local branching-based metaheuristic by comparing the solution values with the optimal results obtained by CPLEX. Table 2 shows that the average optimality gap is 0.37% for the 15 cases, while the average ratio of the local branching based method's computation time to the CPLEX's computation time is about 0.57, which confirms the efficiency of this method. The two rightmost columns of Table 2 provide the lower bound (LB), which is obtained by relaxing the capacity constraints ( 16), and the gap value. These LBs and gap values will be used in the experiments of large-scale instances.

Table 3 presents the result of the three cases and the detail information of these cases which are same as the three cases in the first group of Table 2. We should mention that route 1 contains four ports of call, and therefore, in this study, the four ports of call can yield various scenarios. The bold number 3 means that we choose three ports of call on route 1, so we can obtain C 3 5 different scenarios, where the number five indicates the original number of ports of call on route 1. It is unnecessary for the study to enumerate all scenarios due to the limited space; therefore, we only choose three scenarios. Here, we elaborate the difference among the three cases. Take the case 1 for example, the first, third and fourth ports of call on route 1 are selected. When it comes to the case 2, the first, second, and forth ports of call on the route 1 are selected. Accordingly, the same method can be applied to the remaining case 3, in which the scenario contains the first, second, and third ports of call on the route 1. When we analyse one scenario, the other port of call on the original route is removed, so the speed on a certain leg is also discarded. Moveover, Table 3 shows Although a network with five routes is not a small problem instance in reality, some large shipping of these very large-scale instances is to test the performance of the solution methods, the detailed 612 configuration of the 10 routes is not shown in Figure 2. For these instances, PSO may not be applicable, but one could resort to our third heuristic, the bidirectional tuning solution method.

The results of Table 5 validate the capability of the bidirectional tuning method for solving these very large-scale instances, some of which cannot be solved by PSO within a reasonable time.

For some instances that can be solved by both methods, the comparative results show that the bidirectional tuning method uses just 62% of the PSO method's computation time on average, but obtains satisfactory solutions, whose gap from the PSO objective value is only 0.70% on average, which could be acceptable in practice. Again, our results validate the efficiency of the bidirectional tuning method. 

Conclusions

We have developed three powerful heuristics for shipping liners' managers to plan the long-term deployment of ships along routes and the corresponding timetable. We have proposed a mathe-matical model to optimize the number of ships deployed on each routes, the ship visit time at each port of call on each route, the ship speed on each leg of each route, and the allocation of containers for each OD pair. Although there exist numerous studies on liner shipping optimization, we have made three main contributions with respect to the related literature.

(1) The proposed model is comprehensive. First, the problem context is general. The model applies to a generic shipping network with multiple routes connected by transshipment hubs. Also, a comprehensive set of costs is considered in the objective value including the operation cost, fuel cost, transshipped containers' handling and holding cost, and the penalty cost for delay delivery, all of which could cover the main concerns of shipping liners' decision makers.

(2) The container routing decision is part of the widely studied ship fleet deployment and service schedule problems. Few studies have considered these decision variables simultaneously. These decisions are highly intertwined, which makes the proposed MIP model very complex and nonlinear. Some methods were suggested to linearize the model and some properties of this model were also investigated so as to pave the way for the development of the heuristics.

(3) Our three heuristics are also comprehensive yet relatively simple. Based on the real-world instance data, our experimental results have shown that the proposed methods can not only obtain a solution with an optimality gap about 0.3% for the instances with four routes, but can also solve cases with 10 routes and 59 ports in about one and a half hour.

This study also contains some limitations. For example, it does not consider freight rate. According to the current literature, the freight rate is affected by many factors, such as the direction of travel [START_REF] Cheaitou | Liner shipping service optimisation with reefer containers capacity: an application to northern europe-south america trade[END_REF] and the transportation demand, including inelastic demand as well as semi-elastic demand [START_REF] Giovannini | The profit maximizing liner shipping problem with flexible frequencies: logistical and environmental considerations[END_REF]. [START_REF] Xia | Joint planning of fleet deployment, speed optimization, and cargo allocation for liner shipping[END_REF] noted that in the aggregated service network (ASN), the freight rate is determined by the original region and the destination region rather than the OD pair, because ports in a specific maritime range could be grouped as regional clusters. Extensions to our model could consider these factors, which will be more realistic.

Figure 1 A

 1 Figure1A shipping network with three routes and seven ports

  where (x) + = max{0, x}. The total penalty cost for all the transported containers is then calculated as p∈P q∈P y∈Ypq π y c D pq (τ y -T pq ) + . Here τ y is the actual total time of fulfilling transportation plan y, including the ship sailing time, ship dwelling time at ports, and the waiting time when containers are transshipped at ports. It can be calculated as i,s,j)∈Q k yrisj χ risj waiting time f or transshipment ,

  calculate the unit fuel cost for travelling per nautical mile, which mainly depends on the speed x during the i th leg of ship route r; the unit fuel cost of the i th leg on ship route r is c F ri (x) c F ri (USD per nautical mile); c H p unit inventory holding cost (USD per TEU per day) of the containers transshipped at port p; c T y unit handling cost (USD per TEU) of the containers transported in the transportation plan y; c D pq unit penalty cost (USD per TEU per day) for the delay incurred in delivering containers from port p to port q;

  i,s,j)∈Q c H p ri k yrisj δ risj holding cost during transshipment + p∈P q∈P y∈Ypq π y c D pq (τ y -T pq ) + service-level related penalty

  p∈P q∈P y∈Ypq π y c D pq (τ y -T pq ) + in Objective (5linearized model for the original problem After the above linearization, the original non-linear model has been transformed into a mixed integer programming model as follows:

  i∈Ir d ri and we can identify the optimal value γ ri by dynamic programming as follows: the number of stages is |I r | and each stage i represents decision of γ ri at port of call i. The state at stage i represents the number of sailing days that have passed when the vessel arrives at port of call i, i.e., j∈Ir,j<i γ rj . The number of states at stage i is thus bounded by 7β r -i∈Ir d ri , or 7 hr . The set of decisions at stage i is the possible choices of γ ri in Eq. (39). The cardinality of the set is bounded by l ri /e ri , or max i∈Ir l ri /e ri . Therefore, the dynamic programming algorithm for a given β r terminates in O(|I r | • 7 hr •max i∈Ir l ri /e ri ) time, and [M 3] can be solved in O( hr • |I r | • 7 hr •max i∈Ir l ri /e ri ) = O(7( hr ) 2 • |I r |•max i∈Ir l ri /e ri ) time.

Figure 2 A

 2 Figure 2A shipping network with five routes for the numerical experiments

Notes: ( 1 )

 1 The optimal results are obtained by using the CPLEX solver. The optimal objective values and the CPU time are denoted by ZC and TC , respectively. (2) The objective values and the CPU time of the local branching algorithm are denoted by ZL and TL, respectively. GAPC = (ZL -ZC )/ZC . (3) GAPLB = (ZC -LB)/ZC .
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  liners may need to optimize very large-scale shipping networks. Therefore, we have conducted 609 some numerical experiments on some very large-scale instances with 10 routes and ports. The 610 newly added routes were generated artificially on the basis of Figure2. Since the main purpose 611

  General procedure of local branching Input: rhs, nodetime, dv max , BestLB, unc max // rhs is the neighborhood size; nodetime is the limited time of exploring a node; dvmax is the maximum number of iterations; BestLB is the best low bound, uncmax is the limited times for which the objective has not been improved in consecutive iterations BestLB ←f ( γri ), γ * ri ← γri // f ( γri) is the objective value of solution γri 4: while dv ≤dv max and unc ≤ unc max do

	Output: the objective value	
	1: Define γ * ri , γri , γri , d v , unc	// γ * ri is an optimal solution found; γri is a reference solution; γri is a
		feasible solution; dv is the number of iterations; unc is the times for which the objective has not been improved
		in consecutive iterations	
	2: Initialize γri	// The method of initializing γri will be explained later
	3: dv ← 1, unc← 0, 5: add the local branching constraint with ∆(γ ri , γri ) ≤rhs
	6:	time.start ← system.now	
	7:	obtain solution γri by solving model [M 2] with local branching constraints
	8:	time.end ← system.now	
	9:	elapsetime←(time.end -time.start)	//elapsetime is the time exploring a node
	10:	if elapsetime<nodetime then	
	11:	if f ( γri )<BestLB then	
	12:	BestLB ← f ( γri ), γ * ri ← γri	
	13:		
	14:	dv ←(dv +1), γri ← γri	
	15:	else	
	16:		
	18:	end if	
	19:	else	
	20:	if f ( γri )<BestLB then	
	21:	delete the last local branching constraint ∆(γ ri , γri ) ≤rhs
	22:	refine γri	
	23:	if f ( γri )<BestLB then	
	24:	dv ←(dv +1), BestLB ← f ( γri ), γ * ri ← γri , γri ← γri
	25:	end if	
	The local branching technique takes advantage of a MIP solver to explore solution spaces effec-26: else
	27:		
	29:	end if	
	30:	end if	

tively. The procedure can be treated as local search, but the neighborhoods are obtained by introducing linear inequalities called local branching cuts in the MIP model. More specifically, local branching explores a local optimum solution by limiting the number of variables from the feasible solution, and the feasible values can be changed. Algorithm 1 switch the last local branching constraint ∆(γ ri , γri ) ≥ rhs + 1 switch the last local branching constraint ∆(γ ri , γri ) ≥ rhs + 1 17: dv ←(dv +1), rhs← (rhs+ rhs/2 ), unc←(unc+1) delete the last local branching constraint ∆(γ ri , γri )≤rhs 28: dv ←(dv +1), rhs←(rhs-rhs/2 ), unc←(unc+1) 31: end while 32: Return the objective value For each node in local branching technique, CPLEX can yield four different cases with respect

  is the number of iterations; |M | is the number of particles; D is the maximum number of iterations; c1, c2 and c3 are the acceleration weights; r1, r2 and r3 are learning factors;

Table 2

 2 Performance of the local branching-based solution method (four routes)

	Cases		Optimal results		Local branching		Lower bound
	Num. of ports on four routes	ID	ZC	TC	ZL	TL	GAP C	T L T C	LB	GAP LB
	3-10-7-7	Case 1	11879547	3648	11887798	1837	0.07%	0.50	11816713	0.53%
	(Cases differ on the ports	Case 2	12054572	3129	11879896	1825	0.19%	0.58	11958359	0.80%
	on route 1)	Case 3	12185909	3129	12105013	2085	0.13%	0.67	12175013	0.09%
		Case 1	11883270	3648	11955493	2049	0.61%	0.56	11855493	0.23%
	4-9-7-7	Case 2	11957456	4648	12002593	2189	0.38%	0.47	11905010	0.44%
	(Cases differ on the ports	Case 3	11893673	3345	11923758	1852	0.25%	0.55	11825013	0.58%
	on route 2)	Case 4	12017499	3648	12095631	1819	0.65%	0.50	11949095	0.57%
		Case 5	12458400	4337	12466336	2738	0.06%	0.63	12395988	0.50%
	4-10-6-7	Case 1	12109087	4437	12131707	2671	0.19%	0.60	12083170	0.21%
	(Cases differ on the ports	Case 2	12353042	3339	12373771	2078	0.17%	0.62	12343771	0.08%
	on route 3)	Case 3	12007638	4371	12118439	2338	0.92%	0.53	11938439	0.58%
	4-10-7-6	Case 1	11931219	3769	12011220	1825	0.67%	0.48	11911220	0.17%
	(Cases differ on the ports	Case 2	12109095	3246	12165158	2154	0.46%	0.66	12070236	0.32%
	on route 4)	Case 3	12105458	4872	12139951	2344	0.28%	0.48	12089951	0.13%
	4-10-7-7	Case 1	12985222	5129	12993034	3228	0.06%	0.64	12945358	0.31%
			Average				0.37%	0.57		0.34%

Table 3

 3 Comparison of three cases for the first group of Table2method with respect to the lower bound are about 0.74% and 1.18%, respectively. Recall 603 that the average gap of the lower bound from the optimal result is about 0.34%. This means that 604 the optimality gap of the local branching based method and the PSO based method should be GAPL = (ZL -ZLB)/ZLB, GAPP = (ZP -ZLB)/ZLB. (2) TL and TP denote the CPU time of the local branching method and the PSO method, respectively.

	Cases		Number of ships on each route			Five types of cost		Total cost
	ID	1	2	3	4	C1	C2	C3	C4	C5	5 n=1 Cn
	Case 1	3	6	4	5	3600000	1726897	3485400	2902250	165000	11879547
	Case 2	3	6	4	5	3600000	1753922	3360000	3157050	183600	12054572
	Case 3	3	6	4	5	3600000	1791129	3394200	3205280	195300	12185909
	Cases				Sailing speed on each leg (knots/hour)				
	ID	1.1/1.2/1.3 1.4/2.1/2.2 2.3/2.4/2.5 2.6/2.7/2.8 2.9/2.10/3.1 3.2/3.3/3.4 3.5/3.6/3.7 4.1/4.2/4.3 4.4/4.5/4.6	4.7
	Case 1	-/-/12	16/8/14	8/14/20	11/20/8	14/10/8	19/22/11	8/18/18	8/17/17	17/9/26	16
	Case 2	21/-/-	16/8/14	8/19/20	11/20/8	14/16/8	17/22/22	8/18/18	8/15/17	17/8/26	16
	Case 3	20/21/-	-/9/14	8/19/22	17/20/8	15/16/8	19/17/22	9/20/21	8/17/24	17/10/26	20

Notes: C1, C2, C3, C4, C5 mean fixed operation cost, fuel consumption cost, handling cost for transshipped containers, holding cost for transshipped containers, and penalty cost of delay delivery, respectively. based

Table 6

 6 Performance of bidirectional tuning heuristic and PSO GAPB = (ZB -ZP )/ZP . (2) TB and TP denote the CPU time of the bidirectional tuning heuristic and the PSO method, respectively.

		Cases		bidirectional tuning	PSO		Comparison
	Num. of ports on six routes	ID	ZB	TB	ZP	TP	GAPB	T B T P
		4-10-7-7-8-5	Case 1	29223669	3060	29092994	4308	0.45%	0.71
		3-10-7-7-8-5	Case 1	27021125	2327	26797807	3897	0.83%	0.60
			Case 1	27356130	2444	27275413	4210	0.30%	0.58
		4-9-7-7-8-5	Case 2	28170522	1982	28069619	3324	0.36%	0.60
	Six		Case 3	27332224	2166	27084907	2768	0.91%	0.78
	routes		Case 1	27295868	2090	27108686	3424	0.69%	0.61
		4-10-6-7-8-5	Case 1	27112121	2589	26903732	3424	0.69%	0.61
		4-10-7-6-8-5	Case 1	27272269	2092	27035075	2746	0.88%	0.76
		4-10-7-7-7-5	Case 1	27539075	3799	27479568	4532	0.22%	0.84
		4-10-7-7-8-4	Case 1	26841559	2082	26608322	3324	0.88%	0.63
		Cases	Case 1	30841589	3652	N.A.	> 7200	
		generated	Case 2	33887453	4322	N.A.	> 7200	
	Seven,	randomly	Case 3	34844436	3895	N.A.	> 7200	
	eight, nine	(7 routes with 45 ports; 8	Case 4	31533361	3454	N.A.	> 7200	
	or 10	routes with 49	Case 5	30841554	3233	N.A.	> 7200	
	routes	ports; 9 routes with 54 ports;	Case 6	32539075	3947	N.A.	> 7200	
		and 10 routes	Case 7	32844806	4012	N.A.	> 7200	
		with 59 ports)	Case 8	33539075	3423	N.A.	> 7200	
				Average				0.62%	0.70
	Notes: (1)							
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the results on the number of ships deployed on each route, the five types of cost, and the speed of 591 each leg.

592

We increased the number of routes from four to five in the experiments. For the large-scale 593 instances with five routes, it is time consuming to obtain the optimal results by using CPLEX.

594

Therefore, the evaluation of the PSO based solution method's performance is conducted by com-595 paring it with the results obtained by local branching.