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Abstract

This paper deals with the estimation of pressure at collisions times during

the movement of a dense crowd. Through the non-smooth contact dynamics

approach for rigid and deformable solids, proposed by Frémond and his collab-

orators, the value of pressure and contact forces at collisions points, generated

through congestion or panic situation are estimated. Firstly, we propose a

second-order microscopic model, in which the crowd is treated as a system of

rigid solids. Contact forces are rigorously defined by taking into account multiple

simultaneous contacts and the non-overlapping condition between pedestrians.

We show that for a dense crowd, percussions can be seen as contact forces.

Secondly, in order to overcome the restrictive hypothesis related to the geomet-

ric form adapted to model the pedestrian, a continuous equivalent approach

is proposed where the crowd is modeled as a deformable solid, the pressure is

then defined by the divergence of the stress tensor and calculated according to

volume and surface constraints. This approach makes it possible to retain an

admissible right-velocity, including both the non-local interactions between non-

neighbor pedestrians and the choice of displacement strategy of each pedestrian.
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Finally, the comparison between the two proposed approaches and some other

existing approaches are presented on several illustrative examples to estimate

the contact forces between pedestrians.

Keywords: Crowd modeling, contact forces, non-smooth contact

dynamics, non-local interactions, simultaneous collisions

1. Introduction

The modeling of crowd dynamics has been deeply studied in the 25 past

years. Particularly, approaches drawn from granular modeling [1, 2, 3] offer both

a rich mathematical and physical framework to simulate and comprehend the

dynamics of a dense crowd. Predicting and anticipating the different scenarios,

that can occur when a crowd moves, is a challenge, which must be taken into

account for infrastructure planning (airport, concert hall, train station ...), it

becomes necessary to avoid past tragic dramas of a dense crowd in panic, and

an essential tool to achieve this goal is the prediction of the pressure and the

contact forces generated during collisions of pedestrians in a moving crowd. Two

major existing approaches that have dealt with this issue can be distinguished:

• A microscopic approach proposed in [4, 3], where pedestrians are identified

with rigid disks that must obey the non-overlapping constraint. The right-

velocity after collision is the projection of the left-velocity, corresponding

to the desired velocity, over the set of admissible velocities with regard to

the non-overlapping constraint. This constrained optimization problem is

rewritten in a saddle-point form, and the corresponding Lagrange multi-

pliers are interpreted as the pressure between pedestrians in contact. In

this first-order microscopic model, pedestrian mass is not taken into ac-

count and the dimension of the Lagrange multipliers is incompatible with

that of a pressure. To overcome these problems, we propose a second-order

model mainly developed by Frémond[5, 6] for modeling granular media.

The application of this approach for a crowd has been the subject of our

previous work [2, 7]. By adopting this approach, we will rigorously define
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the contact forces from the notion of percussion. A comparison with the

first-order microscopic model will be presented. We cite also the social

force model [8, 9, 10], in which repulsive forces can be considered as con-

tact forces. This force is introduced primarily as a penalty term to keep

a certain distance and, consequently, prevent inter-penetration between

pedestrians.

• Macroscopic approaches: Macroscopic models have been developed, to

describe the evolution of the crowd as a continuum medium, it can be

mentioned among them, a classical fluid approach [11] where the motion

of a crowd and the generated pressure are described by Navier-Stokes

equations. Important approaches are developed in [12], [13] and [14], which

the pressure is described by constitutive laws, which involves the speed

and density of the crowd. A first order macroscopic model is developed

by authors in [3], this approach makes it possible to take into account

the non-local character of the pressure, however, it has been shown [15]

that this model in its current version, reproduces a contradictory effect

to that observed experimentally; congestion accelerates the evacuation of

a convex room through a single door. Note also that several recently

developed approaches like [16] are using kinetic model [17] did not yet

deal with the pressure issue.

Contribution and paper content:

In this work, our interest is devoted to the estimation of contact forces and

pressure, in a moving dense crowd, the theory is inspired from the non-smooth

approach developed by Frémond and his collaborators both for the evolution of

rigid and deformable bodies. To fix the ideas, we consider the configuration of

a dense crowd at a given moment (i.e. a stationary problem), and we ask how

to estimate the contact forces or the generated pressure. Therefore, two classes

of models will be developed: In section 2, a microscopic second-order model,

in which the crowd is identified with a system of rigid bodies is presented.
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In previous works [18, 1], we have evoked this question, and we have arrived

at an estimation of the percussion which is the integral of the contact force

during the collision. Now, we propose to define the contact forces rigorously

and with regard to physical proprieties. We start with a brief overview on the

mathematical and physical framework of the non-smooth dynamics approach,

particularly, the collision equation, then, we show that in the case of a dense

crowd where the contacts remain maintained that percussions (jumps of the

momentum) qualify as contact forces, ie, they will have the dimension of a

force. As a validation test, the analytical solution of the contact equation is

developed in the case of a constrained pedestrian chain to study the shock wave

effect. The contact forces obtained by the proposed approach are compared

with the results gived by a microscopic model of the first order, and also with

those obtained by models of the social force type. In order to overcome the

restrictive hypothesis related to the choice of the geometric form of a pedestrian

( rigid disk), and as we are interested in the case of a dense crowd, we model the

crowd as a continuous medium, which is the object of section 3. This approach

makes it possible to take into account the deformability property by modeling a

dense crowd as a deformable solid. Contact forces are deduced from the volume

and surface stress tensor which is defined by a constitutive laws. The proposed

approach is compared to three other macroscopic approaches.

2. A second-order microscopic approach: Crowd is modeled as a sys-

tem of rigid bodies

2.1. The contact equation

We consider a crowd as a system of rigid bodies, using the theory of non-

smooth contact dynamics by Frémond [5, 6], we obtain the contact equation

given by:

M
(
u+ − u−

)
+ ∂φ

(
D

(u+ + u−)

2

)
+ NUq (u

+) 3 0, (1)

where:

4



• M is the inertia matrix.

• u+ (resp u−) Right-velocity or so-called after impact velocity (resp left-

velocity).

• φ is a pseudo-potential of dissipation, φ = φi,j , φi,j(x) = k (x)
2
, k is a

coefficient of dissipation. This choice allows one to find the classical results

when the coefficient of restitution is used.

• Uq the set of admissible velocities defined by:

Uq =
{
u ∈ R2np , Di,j(u).ni,jq ≤ 0, 1 ≤ i < j ≤ np

}
, Di,j(u) is the velocity

of deformation corresponding to contact of two pedestrians pi and pj , it

is given by Di,j(u) = ui(A)−uj(A). In 2D representation, the velocity of

deformation at the the point A is Di,j(u) = ui(qi) +wi×GiA−uj(qj)−

wj × GjA, where wi is the rotation velocity of pedestrian pi. Finally,

D(u) =
{
Di,j(u), 1 ≤ i < j ≤ np

}
is a column vector of size nc, where nc

is the number of contact.

• NUq (u) the normal cone of Uq at point u.

Non local interactions are introduced by percussion pi,j , 1 ≤ i < j ≤ np, with:

pi,jreac ∈ ∂1R+

(
Di,j(u+).ni,jq

)
,

where ni,jq is the normal oriented from pi to pj , and 1R+(x) = 0 if x ≥ 0,+∞

otherwise.

Total percussion of reaction preac =
{
pi,jreac, 1 ≤ i < j ≤ np

}
has the form:

preac ∈ ∂1U
(
u+
)

= NU (u+)

This approach makes it possible to manage multiple and simultaneous con-

tact and to take into account the corresponding local and non-local (at a dis-

tance) interactions. Moreover, the capacity to use different constitutive laws

make it possible to account for diverse experimental results.
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After reformulation of the the contact equation in the saddle point form, the

solution u+ and the percussions of reaction are characterized by: M (u+ − u−) + kDTD (u+ + u−) + CTλ = 0

Cu+.λ = 0

where C the matrix defining the constraints on the normal deformation veloc-

ities, and λi,j the corresponding Lagrange multiplier to the contact between

pedestrians pi and pj . We note that pi,jreac = λi,jni,j .

For a dense crowd, contacts are maintained,the constraint of non-interpenetration

is saturated, i.e. : Cu+ = 0, which means that contact is purely inelastic, and

there is no dissipation (k = 0). Consequently, λ is a solution of:

Wλ = Cu−, W = CM−1CT , (2)

W is the Delassus matrix.

According to the collision equation Eq.(1), the percussion has the dimension

of momentum, and hence it is perfectly for an instantaneous collision. For a

dense crowd which is the case we are interested in, it does not remain true,

indeed: the contact is maintained and the duration is important, because of

these considerations, the motion of the crowd is considered smooth and Eq.(1)

can be rewritten for a purely inelastic contact as a second-order spewing process

[19, 20]:

−Mdu

dt
∈ NŨq (u),

where Ũq is the moving set of admissible velocities. The contact forces fcontact

correspond to a selector in the outward normal cone, i.e. :

−Mdu

dt
= fcontact,wherefcontact ∈ NVad(u).

In this formalism the acceleration has a sens and consequently the contact force

fcontact which approached numerically by CTλ.

2.2. Shock wave and non-local interactions

We consider two examples: the first one corresponds to the crashing of a

moving disk with three aligned disks, having the same mass m = 75kg and at
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Figure 1: Simultaneous contact of four aligned disks. (a) The initial state, (b) The

state after impact for an inelastic contact (k=0), (c) the state after impact for an

elastic contact (k=10)

rest. Here, the pedestrians are modeled by rigid disks see Fig. 1 , generated

contact force between the blue and the neighbored red disks is given by the

formulate 3, this shows that the movement of each pedestrian is influenced by

the movement of others.

p1,2
reac = −m1m

2(u2,− − u1,−) +m3(u3,− − u1,−) +m4(u4,− − u1,−)

m1 +m2 +m3 +m4
, (3)

As one can see the percussion p1,2
reac involves u3,− and u4,− besides u1,− and

u2,−, we obtain the same for p2,3
reac and p3,4

reac. The effect of the shock wave is

responsible for the non-local interaction ( or the so-called indirect interactions

) between non-neighboring pedestrians [21].

The second example, see Fig. 2, it shows the displacement of 53 pedestrians of

the same mass m = 75kg, they are supposed initially at rest in a corridor after

being pushed by three moving pedestrians. Fig. 2c illustrates the transmission

of contact force by local and non-local interaction in a crowd.

2.3. Estimation of contact forces: Comparison of the proposed discrete approach

to other microscopic models

2.3.1. The proposed discrete approach versus the first-order microscopic model

In [4], contact forces are characterized by the following discrete Poisson

equation:

CCTλ = Cu−, (4)
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Figure 2: Effect of the shock wave for a group of 56 pedestrians in a corridor, blue

discs: pedestrians supposed to rest at the initial state while the three pedestrians

in red push with an initial velocity v = (2, 2). (a) initial stat, (b) final state, (c)

schematization of local and non-local interactions in the discrete model.

where CCT is considered as the discrete Laplacian matrix. According to this

equation Eq 4, we see clearly that the authors assumed that all pedestrians have

the same mass m = 1kg, this leads to the equilibrium situations and produces

undesirable scenarios like the complete congestion [4], which is specially related

to the geometry of pedestrians (disks) and their size (radius of disks). By

choosing the matrix inertia equals to the identity matrix, the equation Eq 4 is

a special case of the proposed approach given by Eq..

In order to show that the hypothesis ”Pedestrians have the same mass m = 1kg”

made by the authors is restrictive, we start by a one-dimensional case of a

pedestrian chain. Eqs.5 and 6 represent the analytical solution in the trivial

case of an aligned constrained pedestrian chain as illustrated in Fig.3a, they

show the dependence on the mass and the Lagrange multipliers (and hence the

contact forces). λ1,2 = −m1(u− u1,−),

λi,i+1 = λi−1,i −mi(u− ui,−), 2 ≤ i < np.
(5)

and

ui,+ = u =

∑np
i=1m

iui,−∑np
i=1m

i
, 1 ≤ i ≤ np, (6)

In addition, Fig.3b shows the difference in the percussion suffered by each

pedestrian, in the cases where pedestrians have identical and different masses.
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Figure 3: (a) Constrained pedestrian chain, (b) the generated percussion, red line:

pedestrians have the same masses, blue line: pedestrians have different masses.

In the 2D simulation case, we are interested in estimating the contact forces

generated during the evacuation of a room, we choose the instant correspond to

the formation of the ark around the exit, see Fig.4a. The number of pedestrians

considered is 594 with the same mass m = 75Kg and a maximum density of 9

pedestrians per square meter. The contacts are assumed purely inelastic (i.e. k

= 0), and pedestrians have a desired velocity towards the exit of a norm equals

to 2m.s−1. Right-velocity and the contact forces are given by:

u+ = u− + CTλ, (7)

where Wλ = Cu−. (8)

Obtained results are given in Fig.4: We notice that the force is maximum in the

neighborhood of the exit Fig. 4b, where the movement of the crowd is rallied

Fig.4c. As we mentioned, the proposed approach is general, in a way that we

can take different masses, to produce a realistic and different behavior according

to the calibration of the coefficient of dissipation k.

Fig. 5 shows the obtained results in the case where pedestrians have different

masses, the left-velocity is chosen uniformly, and yet, we notice that neither the

speed on the right nor the pressure are uniform with respect to the distance to

the exit.
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Figure 4: Estimation of contact forces in the situation of an arch formation with

pedestrians of the same masses. (a) Initial configuration as an arch, (b) Right-velocity,

(c) Norm of the corresponding contact force applied on each pedestrian, (d)Influence

of the dissipation coefficient k on the contact force.
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Figure 5: Estimation of contact forces in the situation of an arch formation with

pedestrians of different masses. (a) Initial configuration as an arch, (b) Right-velocity,

(c) Norm of the corresponding contact force applied on each pedestrian.

10



2.3.2. The proposed approach versus social force model

In [9], the authors have defined contact force fij between two pedestrians i

and j by:

fij = {Aiexp[(rij − dij)/Bi] + %g(rij − dij)}nij + ς, g(rij − dij)∆vtijtij (9)

where:

• Ai and Bi are constants, Ai = 2.103N and Bi = 0.08m.[9].

• rij := ri + rj the sum of radius ri and rjof pedestrians i and j.

• dij denotes the distance between the pedestrians’ mass center.

• nij is the normalized vector pointing from pedestrian j to pedestrian i,

and tij the tangential direction.

• The function g(x) is zero if the pedestrians are not in contact (dij ≥ rij),

and is otherwise equal to the argument x.

• The parameters % = 1.2× 105kg.s−2 and ς = 2.4× 105kg.m−1.s−1 deter-

mine the obstruction effects in case of physical interactions.

Let us take again the one-dimensional example of the constrained pedestrian

chain Fig.3a, according to the formula (9), if pedestrians are considered as

rigid disks / spheres, than the contact force between each pair of pedestrians i

and j is constant throughout the chain of equal intensity ||fi,j || = Ai (because

di,j = ri,j), which of course is not realistic. Else if the pedestrians are modeled

as a deformable disk, the contact forces should be calculated over the entire

contact surface and not at a single point of a contact, as in formula (9).

In the two-dimensional case, we consider the same evacuation simulation of a

room made by the authors in [9]. Fig.6 clearly shows that there is no overlap

between the pedestrians, which is, to say, still according to the formula (9), that

the contact forces are constant independently of the masses, positions, desired

velocities and also the density of the crowd. Therefore, the main difference

between the proposed approach and the social force model, at the level of the
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estimate of the contact force, is due to the physical basis of each approach.

In the social force model, which is inspired by the smooth dynamics theory,

contact forces are introduced as a penalty term in order to avoid the overlapping

of individuals, Conversely to the proposed approach based on the non-smooth

theory of contact dynamics, and rely on the notion of percussion which is the

integral of the contact force during the collision. When the duration of the

contact becomes important, the percussion converges towards the contact force

[19]. An alternative contact force is proposed by the authors in [10], where the

Figure 6: Evacuation of a room by authors in [9], where there is no overlap between

pedestrians, which gives a constant contact force between all pedestrians in contact

contact force fi is applied to a pedestrian i by another pedestrian j, their model

is given by:

fi =


−fmax
1+d2

i
if di,j ≤ ri,j ,

−2fmax
1+d2

i
if di,j > ri,j ,

(10)

where: di,j the distance between pedestrian i and pedestrian j, di =
di,j
ri

, fmax

is a maximum force such that fmax
mi

= O(max(αi, αj), with mi the mass of the

pedestrian i, and αi its acceleration. The formula shows that the force depends

on the distance between the pedestrians, and that the contact force can be non-

zero even if no contact takes place, contrary to the proposed approach where

the contact force is active only at the instant of contact.
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To conclude, the proposed approach based on the theory of rigid solid dynamics

allows to manage the simultaneous contact in a crowd of pedestrians with differ-

ent masses, and to estimate the corresponding contact forces which is rigorously

defined from both a mathematical and physical point of view. It is also possi-

ble to show the effect of the shock wave responsible for non-local interactions.

Managing and treating multiple and simultaneous collisions (including the non

interpenetration condition) in a dense crowd, where panic situations are very

common, is the key point of the approach developed above. However, to model

a pedestrian as a rigid disk stays a restrictive hypothesis. It is because of this

problem, that we are focusing to treat in the following section by identifying

the entire crowd as a deformable solid.

3. A macroscopic approach: Crowd is modeled as a deformable solid

The proposed continuous approach is also inspired by the non-smooth view

of contact dynamics for deformable solids developed by Frémond [6]. As pre-

viously pointed out, we are interested in the problem of contact in a dense

crowd, i.e. calculating the right-velocity and the generated pressure. Gener-

ally, macroscopic models consist on transporting the density, which represents

the evolution of the crowd, by an admissible velocity, this latter can depend

on several quantities such as the desired direction, overpopulated zones, flow

direction, etc. We assume that all these considerations are taken into account

by the left-velocity (velocity before the impact). We take inspiration from the

basic approach established by Frémond to model the collision of a deformable

solid with a rigid plane, the contact forces between pedestrians are given by

the stress tensor, and pedestrians-obstacles contact forces are deduced from the

constraints of non interpenetration.

3.1. The model: Mathematical and physical framework

We consider a dense moving crowd, whose density is denoted at instant t and

point x by ρ(t,x), the left-velocity is u−(tc,x), where tc is a collision instant.

13



Applying the principle of virtual work on the crowd, we obtain at collision

instant the motion equations given by:

ρ(tc,x)
(
u+(tc,x)− u−(tc,x)

)
= divσ(tc,x),x ∈ Ω,

σ(tc,x)n(tc,x) = −rint(tc,x),x ∈ Γw,

σ(tc,x)n(tc,x) = rext(tc,x),x ∈ Γf ,

σ(tc,x)n(tc,x) = 0,x ∈ Γe,

where Ω is the area occupied by the crowd, whose border ∂Ω is defined by:

∂Ω = Γw ∪ Γf ∪ Γe, where Γw are the contact points with obstacles (walls, ...),

Γe the exits, and Γf the free border that has no contact with any obstacle,

see Fig.7. Constitutive laws are needed to define the contact percussions rint

Figure 7: 2D domain of evolution.

, and the percussion stresses σ. They are defined respectively by a surface

pseudo-potential of dissipation φs? that takes into account the impenetrability

condition, and a volume pseudo-potential of dissipation φv that defines the

volumetric constraints:

φs

(
D

(
u+(tc,x) + u−(tc,x)

2

))
= ks

(
u+(tc,x) + u−(tc,x)

2

)2

...

+I−
(
u+(tc,x).n(tc,x)

)
,

φv

(
D

(
u+(tc,x) + u−(tc,x)

2

))
= kv

{
D

(
u+(tc,x) + u−(tc,x)

2

)}2

,
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with D(u) = 1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

rint (respectively σ) is the sub-differential of φs (respectively of φv) at point

u+(tc,x)+u−(tc,x)
2 :

rint(tc,x) = ks
(
u+(tc,x) + u−(tc,x)

)
...

+∂I−
(
u+(tc,x).n(tc,x)

)
.n(tc,x),

σ(tc,x) = kv
(
D
(
u+(tc,x) + u−(tc,x)

))
.

Finally, the problem describing the crowd at the instant of collision is:

ρ(tc,x) [u(tc,x)] = kvdiv (D (u+(tc,x) + u−(tc,x))) ,x ∈ Ω,

σ(tc,x)n(tc,x) + ks (u+(tc,x) + u−(tc,x)) ...

+∂I− (u+(tc,x).n(tc,x)) .n(tc,x) 3 0,x ∈ Γw,

σ(tc,x)n(tc,x) = rext(tc,x),x ∈ Γf ,

σ(tc,x)n(tc,x) = 0,x ∈ Γe.

. (11)

[u(tc,x)] := (u+(tc,x)− u−(tc,x)) the jump of velocity discontinuity. For the

existence and uniqueness of the solution of the problem described by Eqs.(11),

it is shown in [5] that at the collision instant, if the domain Ω is regular, with

mes(Γw) > 0, and ρ(tc,x) ≥ ρ0 > 0, if u−(tc, .) ∈ H1(Ω), rext(tc, .) ∈ L2(Ω)

then there is an unique right-velocity u+(tc, .) ∈ H1(Ω) solution of the problem

(11).

3.2. Numerical simulations and comparisons

3.2.1. Validation tests: Jostling in a pedestrians chain.

We take the one-dimensional example of the pedestrians chain introduced

previously. For a constrained pedestrian chain, i.e. a fixed obstacle is placed in

front of pedestrians at the point x = l, see Fig.3a. The problem (11) becomes :
ρ(tc, x) (u+(tc, x)− u−(tc, x)) = kv

∂2(u+(tc,x)+u−(tc,x)
∂x2 , x ∈]0, l[,

−kv ∂(u+(tc,l)+u−(tc,l))
∂x + ks (u+(tc, l) + u−(tc, l)) + ∂I−(u+(l)) 3 0.

∂(u+(tc,0)+u−(tc,0))
∂x = 0.

(12)
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For a constant left-velocity and an uniform density, under the following assump-

tion: {
k̃ ≥ e−2l/h − 1(

e−2l/h + 1
) , k̃ =

ks
kv
,

1

h2
=

ρ

kv

}
, (13)

the solution of the unidimensional problem (12) is:

u+(tc, x) = u−(tc, x)(1− ex/h + e−x/h

el/h + e−l/h
,with h =

√
k̃

ρ
,

and internal percussion is given by (14), it becomes maximal as x goes to l.

rint(tc, x) = u−(tc, x)
ex/h − e−x/h

h
(
el/h + e−l/h

) (14)

The condition 13 implies that u+(l) = 0, i.e., the right pedestrian remains

crushed against the obstacle. However, the other pedestrians stay glued to

each other after the impact . If the condition (13) is not verified, rebounds

will appear and the solution must be changed. Note that for an unconstrained

pedestrians chain with a constant left-velocity, the right-velocity after collision

is constant and the pressure is equal to zero. However, for an unconstrained

pedestrian chain with a decreasing left-velocity, we get the same result as in the

rigid case.

By analogy to the constrained pedestrian chain in the second-order microscopic

model, we evaluate the pressure for a uniform density and a variable density.

For this, it is quite enough to mark that the percussion given by equation 14 is

an increasing function, with respect to the density ρ. This is exactly the same

result as in microscopic case.

3.2.2. The proposed macroscopic approach versus continuous approach for mod-

eling crowd turbulence

In [10], inter-pedestrians stress is given by a symmetric 2 × 2 tensor field

representing the internal forces in the crowd:

σ = pI + S (15)
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where the normal component p represents the normal or repulsive forces, while

the deviatoric stress S represents the frictional forces. The pressure p is defined

by an increasing density function g :

g(ρ) =


0 ifρ ≤ ρc
c1

ρ√
ρy−ρ+ε

− c2 ifρc < ρ < ρy

c3ρ− c2 ifρ ≥ ρy.

(16)

where the values of the parameters ρc, ρy, c1, c2, c3 and ε are given in the table 1.

The value of frictional stress S is determined by minimizing the kinetic energy

E :

E =
1

ρy

∫
||ρ(v −∇p) + δt∇.S||2dV (17)

subjected to the following constraint:

||S||F ≤
√

3βg(ρ) (18)

with ||.||F is the Frobenius norm, and α the coefficient of friction.

The contact forces are given by:

∇.σ = ∇p+∇.S (19)

To compare this approach with our proposed macroscopic model, we consider

the example of an arch formation during an emergency evacuation of a room,

previously introduced in the discrete case. The room is a square with exit side of

1m. Desired velocity ud is defined by: ud = uded, where ud is the free speed and

ed the desired direction, ed(x) =
x−PΓe (x)
||x−PΓe (x)|| , where PΓe(x) is the projection of

point x on the exit.

Fig.8 shows the error corresponding to the difference between the contact force

intensity, found by the authors in [10], and our proposed approach. We note

the following remarks:

• We obtained similar results for kv >= 4 and a time step δt = 0.01s (error

of the order of 10−2). As in the discrete case, the dissipation coefficient

reflects the aggressive nature of pedestrians [2].
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Figure 8: The norm of the difference between the contact force modulus calculated

by the authors [10] and that by the proposed approach.(a) Error corresponding to

a random desired velocity of an average 1.7m/s, standard deviation 0.5m/s and an

uniform density equals to 7 pedestrians per square meter.(b) Error for an uniform

desired velocity equals to 1.23 m : s and density equals to 7 pedestrians per square

meter

• In both approaches, the estimation of contact forces is inspired by the mod-

eling of granular media. Authors in [10] proposed a constitutive law allow-

ing to define the density-pressure dependence, and frictional forces mini-

mizing kinetic energy over a short period. In the proposed approach, all

these considerations have been taken into account by the pseudo-potential

of dissipation that defines the percussions tensor.

• The contact forces must be calculated independently to the time discretiza-

tion step, this is not possible within the framework of the smooth dynamics

that is the basis of the approach in [10].

• The dependence of the kinetic energy by the step of discretization in time

gives different values of frictional force according to the time step.
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3.2.3. The proposed approach versus a first order macroscopic model

In [3], the authors proposed a first order continuous model based on the

mass conservation, in which the pressure is characterized by the following place

equation: 
−∆p = −∇.ud in Ω

∂p
∂n = 0 on Γw

p = 0 on Γe ∪ Γf

(20)

Fig.9 shows the results obtained by the proposed approach and the first order

model for a uniform desired velocity ud = 1.7m/s and a uniform density ρ = 7

pedestrians per square meter. The proposed approach gives a Gaussian form of

pressure concentrated around the exit, this result reflects the accumulation of

forces near the exit. However, in the case of the first order macroscopic model,

the pressure is minimal around the exit. Consequently, as the authors in [3]

confirm, the velocity is maximum at these zones, which is contradictory with

reality.
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Figure 9: pressure estimation in the case of arch formation, (a) the proposed ap-

proach, (b) the first order macroscopic model, (c) the relative error.

3.2.4. The proposed approach versus constitutive laws

In this part, we will compare the variation of pressure and the right-velocity

with respect to the density in the case of our approach, with constitutive laws
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describing the density-pressure and the density-speed dependence, Fig.10.

Fig. 10a shows pressure as a function of the right-velocity.

We are interested in tracing the behavior of the density-pressure and density-

right-velocity, then compare it with others models. For the dependence density-

pressure, we compare our result with two models. The first one is proposed in

[10] and it is also restrained by the authors in [12]. Pressure-density relation is

given by:

(M1) p(x, t) = ρ(x, t)V ar(V )

where ρ(x, t) indicates the density at location x, Var(V) is the current velocity

variance, and V (x, t) =
∑
i ||u

+
i ||f(di,x), di,x is the distance of location x and

pedestrian i, and f(di,x) = 1
πR2 exp(− d2

R2 ), where R is a measurement parameter.

In the second model [13], the density-pressure relation is defined by the following

constitutive law:

(M2) p(ρ) = p0ρ
γ , p0 > 0, γ > 1.

where p0 is the pressure coefficient and γ the adiabatic exponent.

Concerning the variation of the speed as a function of the density, we compare

our result with two constitutive laws, the first is adapted by authors in [13],

which is given by:

(L1) ρ(u) = umaxe
−α( ρ

ρmax
)2

,

the second is the Kladek formula introduced by Weidmann [22], it is adopted

in the revisited version proposed in [14]:

(L2) ρ(u) = umax
(
1− e−γ( 1

ρ−
1

ρmax
)
)
,

where ρmax is the congestion density, umax is the maximum walking speed in

unconstrained conditions (also called free speed), and γ is an exponent.

The simulation data are given in the following table 1, note that we kept the

same values of the parameters appearing in the formulas (M1), (M2), (L1) and

(L2), that ae given in [12], [13] and [14].
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Parameter name Symbol Value Units

volume dissipation coefficient kv 9 N.s2.m−2

surface dissipation coefficient ks 1 N.s2.m−3

desired speed umax 2 m.s−1

maximal density ρmax 8.5 ped.m−2

density-speed coefficient α 7.5 -

adiabatic exponent γ 2 -

pressure coefficient p0 0.005 ped1−γ .m2+γ .s−2

measurement parameter R 0.7 m

yield density ρy 5.5 ped/m2

critical density ρc 3.5 ped/m2

epsilon ε 0.01 -

coefficient 1 c1 13.33 -

coefficient 2 c2 1.5 -

coefficient 3 c3
c1√
ε

-

frictional coefficient β 0.75 -

step time δt 0.01 s

Table 1: Parameter values used in the numerical simulations
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Figure 10: (a) Pressure versus density, Red line (M1), black line (M2) blue line

(proposed approach), (b) Density versus velocity, red line (L1), black line (L2) blue

line (proposed approach).

The complete congestion is undesirable, as it can be seen in actual emer-

gency evacuation situations, this is consistent with the result obtained by the

proposed approach Fig.10b (blue line), unlike the two constitutive laws Fig.10b

(black and red line).

Figs.11a and 11b represent respectively the right-velocity and the corresponding

pressure for a given uniform left-velocity and initial density. Figs. 11c and 11d

correspond respectively, to the right-velocity and the generated pressure for a

given random left-velocity.

According to Fig11, the right-velocity is canceled at the boundary of the do-

main which reflects the condition of non-interpenetration with the wall, and the

pressure is maximal around the exit, as for the microscopic case. Particularly,

the general form of the right-velocity depends on the left-velocity, for (a) and

(b) where the left-velocity is chosen uniformly with respect to the distance to

the exit, the right-velocity keeps the same form. For a random left-velocity, we

find a random right-velocity . We recall here for this example, the density is

chosen uniformly, the speed also depends on the density.
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Figure 11: Right-velocity (a) and the correspond pressure (b) for an uniform left-

velocity. (c) right-velocity and (d) pressure for a random left-velocity of average

1.34m/s and standard deviation of 0.26m/s.
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4. Conclusion

In this paper, we are interested in estimating contact forces generated in a

dense crowd from both discrete and continuous point of view. The mathematical

and physical framework is inspired by the non-smooth contact dynamics theory

developed by Frémond and his collaborators for rigid and deformable bodies

assemblies. Starting with the microscopic approach, it has been shown the

ability of this approach to manage multiple and simultaneous contacts, and to

estimate the corresponding contact force via the notion of percussion. The case

of arch formation is studied, the obtained results and the comparative study

with other contact force approximation techniques show the superiority of the

proposed approach. The pedestrian choice form remains the main criticism of

all discrete models, different values can be obtained depending on the pedestrian

representation and the type of contact. To overcome this challenge, a continuous

version of the discrete approach is introduced. It make it possible to keep

highlights of the discrete case and to estimate rigorously the contact forces by

the stress tensor. It has been shown also that, for a good choice of the values of

modeling parameters, we find results more significant and realistic than those

found in the literature. As perspectives, the performance of the continuous

approach is considered. In particular, taking into account the condition of non-

interpenetration between pedestrians as in the discrete case and the study of

the convergence of the microscopic approach towards the macroscopic approach.

Exploring the case where each pedestrian is modeled as a deformable solid also

holds our attention in future work.
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