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Abstract

Controlling the minimum size (or length scale) of the geometric features in
topology optimisation analyses is of paramount importance. Particularly,
the minimum length scale must always be considered according to the small-
est manufacturable size. The goal of this work is to provide an intuitive
methodology for controlling the minimum length scale in a NURBS density-
based algorithm for topology optimisation. In this framework, the minimum
length scale can be properly tailored by acting on some parameters tuning
the shape of the NURBS geometric entity, i.e. degrees, number of control
points and knot vectors components. The main consequence is that the pro-
posed method does not need the introduction of an explicit optimisation
constraint into the problem formulation to take into account for the mini-
mum length scale requirement. The effectiveness of the proposed method is
proven on meaningful benchmarks for both 2D and 3D applications. The
results show that the minimum length scale requirement is properly met on
the reassembled geometry at the end of the optimisation process.
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1. Introduction

Software for Topology Optimisation (TO) have become well-established
tools in the preliminary design phase of engineering products. However, one
of the most basic needs for engineers is the integration of manufacturing re-
quirements into the TO problem formulation in order to achieve optimised
as well as manufacturable solutions, see [1] and references therein. Man-
ufacturing requirements are, in general, strongly dependent on the chosen
technology: nevertheless, the minimum admissible size of structural elements
constitutes a fundamental aspect, regardless the considered process.

More specifically, each technology has an intrinsic minimum achievable
size. Therefore, controlling the minimum length scale of topological features
in the structure to be optimised is of outstanding importance, in order to
avoid obtaining an extremely performing but absolutely non-manufacturable
component. One of the first methods to take into account the minimum
length scale in a standard density-based strategy is described in [2] and it
is implemented in the commercial software Altair OptiStructR© [3] for TO:
the minimum length scale is imposed through a control on the slope of the
pseudo-density function on the whole design domain. Such a method turns
out to be computationally efficient and can replace the perimeter penalisation
or the density filtering operation for mesh independence [4]. However, an im-
portant lack of consistence between the imposed minimum member size and
the actually measured minimum member size at the end of the optimisation
process can be remarked.

An alternative method has been proposed by Poulsen [5] and it relies on
the monotonicity control of the pseudo-density function along nd preferential
directions depending on the problem dimension: nd = 4 or nd = 13 for 2D
and 3D problems, respectively. Although this method is sound, it provides
solutions with a jagged boundary; moreover, its efficiency is limited only to
regular mapped meshes (the extension of the method to whatever free mesh
is anything but trivial). As projection methods have been included in TO
approaches, also a filter-based minimum member size control has been im-
plemented [6]. Projection methods have been further developed by making
use of the concept of “eroded”, “intermediate” and “dilated” design [7, 8].
These techniques guarantee a strict control on the minimum member size
but they are computationally burdensome because they need three Finite
Elements (FE) analyses (one for each density phase). The technique dis-
cussed in [7, 8] is referred as “robust formulation”, but the robustness must
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be interpreted as a consistence of the length scale of the optimised configu-
rations with respect to manufacturing imprecisions. Anyway, the minimum
length scale must be a posteriori checked on the final (CAD reassembled)
geometry. Other strategies have been developed in the framework of the very
general and versatile Level Set Method (LSM) [9] applied to structural TO
problems [10]. The LSM is an alternative to the density-based methods for
TO: the reader is addressed to [11] for a general overview on different LSM
variants and their comparison to density-based methods. Authors in [12]
have developed a smart strategy to get an explicit and local control of the
minimum length scale in the context of LSM, based on the mathematical con-
cept of “structural skeleton”. Furthermore, they have extended this strategy
to the Solid Isotropic Material with Penalisation (SIMP) method [13]. How-
ever, these works neglect the possible change of the skeleton in the sensitivity
analysis. The drawbacks related to this aspect are discussed in [14] and a
suitable solution is proposed in [15], where it is shown that a mathematically
exact definition of member size does not exist. The difficulty related to the
sensitivity analysis appearing in the method described in [13] has been re-
cently overcome by authors in [16]: they combine the skeleton method with
the three-phases projection method and, finally, the minimum length scale
control is performed thanks to two structural indicator functions and two ad

hoc constraints.
A further method for including the minimum length scale requirement in

a B-Spline density-based algorithm for TO has been suggested in [17]: the
proposed strategy is based on the combination of the approach presented
in [18] and the three-phases projection methods [8]. However, from a theo-
retical viewpoint, it seems inconsistent to choose a method requiring three
FE analyses in order to control a purely geometric feature.

To overcome the restrictions related to the previous approaches, a first
attempt of implementation of the minimum member size constraint has been
carried out in the NURBS-based SIMP method for TO developed by the
present authors in [19]. In particular, the Poulsen’s minimum length scale
constraint [5] was opportunely reformulated in the NURBS framework for 2D
TO problems. Although results presented in [19] are consistent in terms of
reassembled geometry, the method is not general enough because it is too de-
pendent on the element size and mesh quality. In order to go beyond the first
encouraging results discussed in [19], the objective of this paper is to provide
an useful and meaningful formulation, which allows for handling the mini-
mum length scale requirement in a very smart and effective way. The main
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idea is to propose a method (based on a set of precise rules and relationships)
able to relate the minimum member size to the characteristic parameters of
the NURBS geometric entity. Particularly, the minimum length scale can
be imposed by simplifying the TO problem formulation and by avoiding an
explicit optimisation constraint. In the case of B-Spline entities, the mini-
mum length scale requirement can be systematically fulfilled by tuning the
number of control points and the degrees of the blending functions along
each parametric direction, for both 2D and 3D TO problems. Indeed, it will
be shown through numerical results that this procedure is still possible in
the case of NURBS as well. However the presence of additional continuous
parameters (i.e. the NURBS weights) does not allow for a rigorous justifica-
tion when NURBS are used to represent the pseudo-density field. Although
this approach may be too conservative in some cases, the value of the true
minimum length scale (i.e. that measured on the actual optimised topology)
is consistently and systematically higher than that forecast by means of the
proposed procedure.

The paper is outlined as follows. The theoretical background is briefly
described in section 2. The method for implicitly set a suitable minimum
member size is presented and widely discussed in section 3. The effectiveness
of the proposed method is proven through meaningful 2D and 3D benchmarks
in section 4. Finally, section 5 ends the paper with some conclusions and
perspectives.

2. Theoretical Background

2.1. The NURBS hyper-surfaces theory

The fundamentals of NURBS hyper-surfaces are briefly recalled here be-
low. Curves and surfaces formulae, widely discussed in [20], can be easily de-
duced from the following relations. A NURBS hyper-surface is a polynomial-
based function, defined over a parametric space (domain), taking values in
the NURBS space (codomain). Therefore, if N is the dimension of the para-
metric space and M is the dimension of the NURBS space, a NURBS entity
is defined as H : RN −→ R

M . For example, one scalar parameter (N = 1)
can describe both a plane curve (M = 2) and a 3D curve (M = 3). In the
case of a surface, two scalar parameters are needed (N = 2) together with,
of course, three physical coordinates M = 3. The mathematical formula of
a generic NURBS hyper-surface is
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H(u1, . . . , uN) =

n1∑

i1=0

· · ·

nN∑

iN=0

Ri1,...,iN (u1, . . . , uN)Pi1,...,iN , (1)

where Ri1,...,iN (u1, . . . , uN) are the piecewise rational basis functions, which
are related to the standard NURBS blending functionsNik,pk(uk), k = 1, . . . , N
by means of the relationship

Ri1,...,iN (u1, . . . , uN) =
ωi1,...,iN

∏N

k=1Nik,pk(uk)
∑n1

j1=0 · · ·
∑nN

jN=0

[
ωj1,...,jN

∏N

k=1Njk,pk(uk)
] . (2)

In Eqs. (1) and (2) , H(u1, . . . , uN) is a M-dimension vector-valued ra-
tional function, (u1, . . . , uN) are scalar dimensionless parameters defined in
the interval [0, 1], whilst Pi1,...,iN are the so called control points. The j-th

control point coordinate (X
(j)
i1,...,iN

) is stored in the array X(j), whose dimen-
sions are (n1 + 1)× · · · × (nN + 1). The explicit expression of control points
coordinates in R

M is:

Pi1,...,iN = {X
(1)
i1,...,iN

, . . . , X
(M)
i1,...,iN

},

X(j) ∈ R
(n1+1)×···×(nN+1), j = 1, . . . ,M.

(3)

For NURBS surfaces, Pi1,i2 = {X
(1)
i1,i2

, X
(2)
i1,i2

, X
(3)
i1,i2

} and each coordinate

is arranged in a matrix defined in R
(n1+1)×(n2+1). The control points layout

is referred as control polygon for NURBS curves, control net for surfaces and
control hyper-net otherwise [20]. The generic control point does not actually
belong to the NURBS entity but it affects the NURBS shape by means of its
coordinates. A suitable scalar quantity ωi1,...,iN (called weight) is related to
the respective control point Pi1,...,iN . The higher is the weight ωi1,...,iN , the
more the NURBS entity is attracted towards the control point Pi1,...,iN . For
each parametric direction uk, k = 1, . . . , N , the NURBS blending functions
are of degree pk; the blending function related to the parametric direction uk

can be defined in a recursive way as

Nik,0(uk) =

{
1 if U

(k)
ik

≤ uk < U
(k)
ik+1,

0 otherwise,
(4)
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Nik,q(uk) =
uk−U

(k)
ik

U
(k)
ik+q−U

(k)
ik

Nik,q−1(uk) +
U

(k)
ik+q+1−uk

U
(k)
ik+q+1−U

(k)
ik+1

Nik+1,q−1(uk),

q = 1, ..., pk,
(5)

where each constitutive blending function is defined on the knot vector

U(k) = {0, . . . , 0︸ ︷︷ ︸
pk+1

, U
(k)
pk+1, . . . , U

(k)
mk−pk−1, 1, . . . , 1︸ ︷︷ ︸

pk+1

}, (6)

whose dimension is mk + 1, with

mk = nk + pk + 1. (7)

Each knot vector U(k) is a non-decreasing sequence of real numbers that
can be interpreted as a discrete collection of values of the related dimen-
sionless parameter uk. The NURBS blending functions are characterised by
several interesting properties: the interested reader is addressed to [20] for
a deeper insight into the matter. Here, only the local support property is
recalled since it is of paramount importance for the NURBS-based SIMP
method for TO [18, 19, 21, 22, 23]:

Ri1,...,iN (u1, . . . , uN) 6= 0

if (u1, . . . , uN) ∈
[
U

(1)
i1

, U
(1)
i1+p1+1

[
× · · · ×

[
U

(N)
iN

, U
(N)
iN+pN+1

[
.

(8)

Eq. (8) means that each control point (and the respective weight) affects
only a precise zone of the parametric space, that is precisely referred as local
support or influence zone.

2.2. The Solid Isotropic Material with Penalization Method

The present work deals with both 2D and 3D TO problems, therefore the
mathematical statement of the classic SIMP method is briefly described in
the most general 3D case. Consider the compact Euclidean space D ⊂ R

3 in
a Cartesian orthogonal frame O(x1, x2, x3):

D = {x = {x1, x2, x3}
t ∈ R

3 : x1 ∈ [0, a1], x2 ∈ [0, a2], x3 ∈ [0, a3]}, (9)

where a1, a2 and a3 are three reference lengths of the domain (related to the
problem at hand), defined along x1, x2 and x3 axes, respectively. Without
loss of generality, the mathematical formulation is here limited, for the sake
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of clarity, to the problem of minimising the compliance of a structure, subject
to an equality constraint on the volume. This problem can be mathematically
well-posed through several techniques, widely discussed in literature [4]. In
this framework, the aim of TO is to search for the distribution of a given
isotropic “heterogeneous material” (i.e. the definition of void and material
zones) on the design domain D in order to minimise the virtual work of
external loads applied to the structure and, meanwhile, to meet a volume
equality constraint.

Let Ω ⊆ D be the material domain. In the SIMP approach, Ω is de-
termined by means of a fictitious density function ρ(x) ∈ [0, 1] defined over
the whole design domain D. Such a density field is related to the material
distribution: ρ(x) = 0 means absence of material, whilst ρ(x) = 1 implies
completely dense base material. The density field affects the stiffness tensor
Eijkl(x), which is variable over the domain D, according to

Eijkl(ρ(x)) = ρ(x)αE0
ijkl, i, j, k, l = 1, 2, 3, (10)

where E0
ijkl is the stiffness tensor of the bulk isotropic material and α ≥ 1

a suitable parameter that aims at penalising all the meaningless densities
between 0 and 1.

Considering the FE formulation of the equilibrium problem for a static
analysis, the relationship among the vector of applied generalised nodal forces
{f}, the vector of displacements {d}, and the global stiffness matrix of the
structure [K] is

[K] {d} = {f} . (11)

Being {d} the solution of the static problem, i.e. the vector of degrees
of freedom (DOFs) satisfying the equilibrium condition of Eq. (11), the
compliance of the structure is computed as

c = {d}T [K] {d} . (12)

The global stiffness matrix [K] can be expressed as

[K] =

Ne∑

e=1

ραe [Ke], (13)

where ρe is the fictitious density computed at the centroid of the generic
element e, Ne the total number of elements, whilst [Ke] is the non-penalised
element stiffness matrix expanded over the full set of DOFs of the structure.
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The problem of minimising the compliance of a structure subject to a
constraint on the overall volume can be stated as follows:

min
ρe

c(ρe),

subject to:




[K]{d} = {f},

V (ρe)

Vref

=

∑Ne

e=1 ρeVe

Vref

= γ,

ρmin ≤ ρe ≤ 1, e = 1, ..., Ne.

(14)

In Eq. (14), Vref is a reference volume, V (ρe) is the volume of the material
domain Ω, while γ is the fixed volume fraction; Ve is the volume of element
e and ρmin represents the lower bound, imposed to the density field in order
to prevent any singularity for the solution of the equilibrium problem. Of
course, the design variables of the TO problem in the classic SIMP framework
are the fictitious densities defined at the centroid of each element: therefore,
the overall number of design variables is equal to Ne.

Problem (14) can be solved through a suitable gradient-based algorithm:
to this purpose, the derivatives of both the objective and the constraint
functions with respect to the elements fictitious densities must be computed
and are reported here below for the sake of completeness (see [24] for more
details). The partial derivative of the compliance reads

∂c

∂ρe
= −αρα−1

e {d}T [Ke]{d} = −
α

ρe
ce, e = 1, ..., Ne, (15)

where ce = ραe {d}
T [Ke]{d} represents the compliance of the single mesh

element e.
The partial derivative of the volume can be trivially expressed as

∂V

∂ρe
= Ve, e = 1, ..., Ne. (16)

2.3. The NURBS-based SIMP method for Topology Optimisation

The formulation of the SIMP method in the B-Spline entities framework
has been firstly provided in [18] and [25]. The more general formulation in the
NURBS geometric entities framework, by deeply investigating the influence of
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both discrete and continuous parameters of the NURBS blending functions,
is given in [19, 21, 22, 23, 26]. The main features of the NURBS-based SIMP
method for TO are briefly recalled in the following because they are basic
for a fruitful understanding of this paper.

In the context of the NURBS-based SIMP method, the pseudo-density
field is represented through a suitable NURBS entity [19, 21, 22, 23, 26].
Therefore, a NURBS surface is used for 2D problems

ρ(u1, u2) =

n1∑

i1=0

n2∑

i2=0

Ri1,i2(u1, u2)ρ̂i1,i2, (17)

whilst a NURBS hyper-surface is considered for 3D problems

ρ(u1, u2, u3) =

n1∑

i1=0

n2∑

i2=0

n3∑

i3=0

Ri1,i2,i3(u1, u2, u3)ρ̂i1,i2,i3 . (18)

In Eqs. (17) and (18), Ri1,i2(u1, u2) and Ri1,i2,i3(u1, u2, u3) are the NURBS
rational basis functions, defined according to Eq. (2). Of course, ρ(u1, u2)
in Eq. (17) represents only the third coordinate of the array H of Eq. (1)
in the special case N = 2 and M = 3 (the three coordinates in the NURBS

space are the two spatial coordinates and the pseudo-density). Similarly,
ρ(u1, u2, u3) (N = 3) in Eq. (18) constitutes the fourth coordinate of the
array H (M = 4). Hence, the dimensionless parameters u1, u2, and u3 are
directly related to the physical coordinates as follows:

uj =
xj

aj
, j = 1, 2, 3. (19)

As stated above, there are many parameters affecting the shape of NURBS
entities. Among them, the NURBS control points and the related weights
are identified as design variables. They are arranged in the arrays ξ2D1 ∈
R

[(n1+1)(n2+1)]×1 and ξ2D2 ∈ R
[(n1+1)(n2+1)]×1 for 2D problems

ξ2D1 = {ρ̂0,0, . . . , ρ̂n1,0, ρ̂0,1, . . . , ρ̂n1,1, . . . , ρ̂n1,n2},

ρ̂i1,i2 ∈ [ρ̂min, ρ̂max], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2,
(20)

ξ2D2 = {ω0,0, . . . , ωn1,0, ω0,1, . . . , ωn1,1, . . . , ωn1,n2},

ωi1,i2 ∈ [ωmin, ωmax], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2,
(21)
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whilst control points and weights are collected in the arrays ξ3D1 ∈
R

[(n1+1)(n2+1)(n3+1)]×1 and ξ3D2 ∈ R
[(n1+1)(n2+1)(n3+1)]×1 for 3D problems

ξ3D1 = {ρ̂0,0,0, . . . , ρ̂n1,0,0, ρ̂0,1,0, ρ̂n1,1,0, . . . , ρ̂n1,n2,0, . . . , ρ̂0,0,n3, . . . , ρ̂n1,n2,n3},

ρ̂i1,i2,i3 ∈ [ρ̂min, ρ̂max], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2, ∀i3 = 0, ..., n3,

(22)

ξ3D2 = {ω0,0,0, . . . , ωn1,0,0, ω0,1,0, ωn1,1,0, . . . , ωn1,n2,0, . . . , ω0,0,n3, . . . , ωn1,n2,n3},

ωi1,i2,i3 ∈ [ωmin, ωmax], ∀i1 = 0, ..., n1, ∀i2 = 0, ..., n2, ∀i3 = 0, ..., n3.

(23)
The other NURBS parameters can be identified as design parameters,

i.e. their value is set a priori at the beginning of the TO analysis and is
not optimised. A concise discussion on the effect of these parameters on the
final optimum topology is given here below. For more details, the interested
reader is addressed to [19, 23, 26].

• The blending functions degrees : increasing the degree implies broaden-
ing the local support size and the effect of this operation is twofold. On
the one hand, a smoother boundary for the optimised topology can be
got and, on the other hand, a worse convergence towards more efficient
configurations is observed.

• The control points number : enhancing the control points number im-
plies a smaller local support size. Thus, better performances, in terms
of objective function, can be achieved and thinner topological features
are allowed. Of course, this fact involves a higher number of design
variables and, consequently, an increased computational burden.

• The knot vector : the non-trivial knot vectors components appearing in
Eq. (6) have been uniformly distributed on the interval [0, 1] for both
2D and 3D problems.

For the sake of synthesis, the following arrays can be defined:

Ξ(l) =

{
ξ2Dl if N = 2,

ξ3Dl if N = 3,
l = 1, 2. (24)
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Moreover, the total number of control points is trivially ntot = (n1 +
1)(n2+1) in 2D and ntot = (n1+1)(n2+1)(n3+1) in 3D. Thus, the statement
of the classic TO problem of compliance minimisation subject to an equality
constraint on the volume is provided through an unified formulation:

min
Ξ(1),Ξ(2)

c(ρ(Ξ(1),Ξ(2)))

cref
,

subject to:




(
∑Ne

e=1 ρ
α
e [Ke]){d} = [K]{d} = {f},

V (ρ(Ξ(1),Ξ(2)))

Vref

=

∑Ne

e=1 ρeVe

Vref

= γ,

Ξ
(1)
k ∈ [ρ̂min, ρ̂max],

Ξ
(2)
k ∈ [ωmin, ωmax],
∀k = 1, ..., ntot.

(25)

In Eq. (25), ρe is the generic element pseudo-density, i.e.

ρe =





ρ(ue
1, u

e
2) = ρ

(
xe
1

a1
,
xe
2

a2

)
, if N = 2,

ρ(ue
1, u

e
2, u

e
3) = ρ

(
xe
1

a1
,
xe
2

a2
,
xe
3

a3

)
, if N = 3,

(26)

where xe
j is the j-th Cartesian coordinate of the element centroid. The ob-

jective function is divided by a reference compliance (cref), to obtain a di-
mensionless value.

The computation of the derivatives of both objective and constraint func-
tions with respect to the design variables are needed in order to efficiently
solve problem (25) through a gradient-based method. This task is achieved
by exploiting the NURBS local support property. Particularly, the local sup-
port related to a control point ρ̂I1,I2 in 2D or ρ̂I1,I2,I3 in 3D can be defined
as

Sτ =




SI1,I2 =
[
U

(1)
I1

, U
(1)
I1+p1+1

[
×

[
U

(2)
I2

, U
(2)
I2+p2+1

[
, if N = 2,

SI1,I2,I3 =
[
U

(1)
I1

, U
(1)
I1+p1+1

[
×
[
U

(2)
I2

, U
(2)
I2+p2+1

[
×

[
U

(3)
I3

, U
(3)
I3+p3+1

[
, if N = 3.

(27)
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In Eq. (27), the triplet of capital indices (I1, I2, I3) identifies a specific
control point or weight. For the sake of compactness, the linear index τ can
be defined according to the following relationships

τ =

{
I1 + (I2 − 1) (n1 + 1), if N = 2,

I1 + (I2 − 1) (n1 + 1) + (I3 − 1) (n1 + 1)(n2 + 1), if N = 3.
(28)

Then, the general expressions of the derivatives of both the compliance
and the volume read

∂c

∂Ξ
(1)
τ

= −α
∑

e∈Sτ

ce
ρe
Re

τ , (29)

∂c

∂Ξ
(2)
τ

= −
α

Ξ
(2)
τ

∑

e∈Sτ

ce
Ξ
(1)
τ − ρe
ρe

Re
τ , (30)

∂V

∂Ξ
(1)
τ

=
∑

e∈Sτ

VeR
e
τ , (31)

∂V

∂Ξ
(2)
τ

=
1

Ξ
(2)
τ

∑

e∈Sτ

(Ξ(1)
τ − ρe)VeR

e
τ . (32)

The scalar quantity Re
τ , appearing in Eqs. (29) - (32) is simply a suitable

NURBS rational basis function:

Re
τ =

{
RI1,I2(u

e
1, u

e
2), if N = 2,

RI1,I2,I3(u
e
1, u

e
2, u

e
3), if N = 3.

(33)

Some consequences of outstanding importance result from the NURBS-
based SIMP approach.

• The number of design variables is unrelated to the number of elements.

• The filtering effect deriving from the local support property: each con-
trol point (with the related weight) affects only those elements whose
centroid falls in local support Sτ within the domain D. This fact is
equivalent to the definition of an explicit filter in classic SIMP ap-
proaches, which is introduced in order to avoid numerical artefacts
(such as the “checkerboard effect”).

For further details on the NURBS-based SIMP method, the reader is
addressed to [19, 23].
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3. Minimum length scale in the NURBS-based SIMP approach

3.1. Minimum length scale resulting from B-Spline entities

The minimum length scale is defined as the minimum thickness that can
be identified within a structure. Consider a 2D problem: as previously speci-
fied, the pseudo-density function defines the amount of material density to be
distributed in the design domain by means of control points coordinates af-
fecting a NURBS surface. In order to retrieve the 2D optimised structure, an
intersection between the surface and a suitable threshold plane is performed,
as shown in Fig. 1 (see [19] for more details).
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(b) The final optimised topology of the 2D
structure.

Figure 1: An example of 2D optimised topology provided by the NURBS-based SIMP
method taken from [19].

Analogously, for 3D problems, the final shape can be recovered by per-
forming the intersection between the corresponding 4D hyper-surface with
the threshold density hyper-plane, as it is illustrated in Fig. 2 [23].

As the minimum length scale requirement must be satisfied on the final
topology, the NURBS parameters listed in section 2 are supposed to have
a strong impact on this topological feature. For the sake of clarity, only
B-Spline entities are considered in a first time. In this background, some
peculiar requirements need to be introduced in order to implicitly ensure a
given minimum length scale, without introducing en explicit constraint into
the problem formulation.

Requirement 1: The spatial coordinates of control points defining the B-
Spline surface and hyper-surface are distributed according to the Greville’s

abscissae [27], i.e.
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(a) NURBS hyper-surface. (b) The final optimised topology of the 3D
structure after the intersection with a suit-
able hyper-plane.

Figure 2: An example of 3D optimised topology provided by the NURBS-based SIMP
method taken from [23].
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p1

∑p1−1
k=0 U

(1)
I1+k+1, I1 = 0, ..., n1,

X
(2)
∗,I2,∗

= a2
p2

∑p2−1
k=0 U

(2)
I2+k+1, I2 = 0, ..., n2,

X
(3)
∗,∗,I3

= a3
p3

∑p3−1
k=0 U

(3)
I3+k+1, I3 = 0, ..., n3,

(34)

wherein the symbol ∗, replacing two of the three indices, aims at pointing out
that the considered Greville’s abscissa depends only upon the corresponding
knot vector. Eq. (34) holds for 3D problems (for 2D problems, only the first
two equations must be considered and index I3 must be disregarded). Gre-
ville’s abscissae guarantee that the Cartesian coordinates of the hyper-surface
control points are distributed in such a way that the B-Spline evaluation at
the xj coordinate coincides exactly with xj .

Requirement 2: the condition of minimum length scale must be emulated.
As far as 2D problems are concerned, the minimum member size condition
is reproduced by assigning the value ρ̂min = 10−3 to each control point co-
ordinate ρ̂i1,i2, apart from either a column or a row of control points, which
are set to ρ̂max = 1, as shown in Fig. 3a and Fig. 3c. Thanks to the strong

convex-hull property of NURBS entities [20, 27], the pseudo-density function
takes values in the interval [10−3, 1]. The result of the intersection between
the B-Spline surface and a suitable plane (representing the pseudo-density
threshold value) is a strip of material phase (Fig. 3b and Fig. 3d). Of course,
the thickness of this strip represents the minimum length scale, that can
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be obtained along x2 or x1 axes if control points coordinates are set to 1
column-wise or row-wise, respectively.
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Figure 3: Emulation of 2D minimum length scale

Since control points coordinates are arranged in 3D arrays for B-Spline
hyper-surfaces, a similar procedure can be repeated in 3D by setting ρ̂min for
all control point coordinates ρ̂i1,i2,i3 , except for those points belonging to a
suitable “page” of the 3D array: e.g. the minimum member size that can
be identified along the x1 direction is detected by setting ρ̂I1,i2,i3 = 1, ∀i2 =
0, . . . , n2, ∀i3 = 0, . . . , n3, with an assigned I1. Similarly, ρ̂i1,I2,i3 = 1, ∀i1 =
0, . . . , n1, ∀i3 = 0, . . . , n3 and ρ̂i1,i2,I3 = 1, ∀i1 = 0, . . . , n1, ∀i2 = 0, . . . , n2

define the minimum length scale along x2 and x3 axes, respectively (see
Fig. 4).
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(a) (b)

(c) (d)

Figure 4: Emulation of 3D minimum length scale.

Requirement 3: the threshold value used for the pseudo-density field (ρth)
has an impact on the minimum length scale for the problem at hand, as it can
be easily inferred from Fig. 3. As observed in all the TO analyses performed
in the present as well as in the previous works [19, 23], the threshold density
can be set as ρth ∈ [ρth−LB, ρth−UB], with ρth−LB = 0.35 and ρth−UB = 0.6.
A deeper insight into the choice of a suitable value of ρth is provided in
Section 3.2.

Requirement 4: the NURBS-based SIMP method for TO has been out-
lined in section 2 in its most general form. Particularly, the same method-
ology can be applied regardless the knot vectors components. Moreover, the
Greville’s abscissae formula applies for whatever knot vector distribution. In
this work, knot vectors components have been chosen uniformly spanned in
the interval [0, 1], unless otherwise stated, i.e.
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U(j) = {0, . . . , 0︸ ︷︷ ︸
pj+1

,
1

nj − pj + 1
, . . . ,

kj
nj − pj + 1

, . . . ,
nj − pj

nj − pj + 1
, 1, . . . , 1︸ ︷︷ ︸

pj+1

},

kj = 1, . . . , nj − pj, j = 1, 2, 3.
(35)

Thus, the distance between two non-trivial components of the knot-
vector, i.e. ∆U (j), is

∆U (j) =
1

nj − pj + 1
, j = 1, 2, 3. (36)

Furthermore, it is easy to verify the following relationship among control
points coordinates and the respective knot vectors components:

∆X(j) =
aj

nj − pj + 1
= aj∆U (j), j = 1, 2, 3. (37)

The minimum length scale along a specific direction j, evaluated as de-
tailed at Requirement 2, is referred as d

(j)
min. Considering the previous as-

pects, a sensitivity analysis of d
(j)
min with respect to the number of control

points and blending functions degree is presented in the following. For this
preliminary analysis, the blending functions degrees along each parametric
direction, i.e. pj , j = 1, 2, 3, are kept constant and the knot-vectors compo-
nents are equispaced in the range [0, 1] according to Eq. (35). The logical
steps of Algorithm 1 (devoted to the derivation of the minimum length scale
curves) are reported here below.
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Algorithm 1 Minimum length scale requirement.

1: Set aj and pj (j = 1, 2, 3). Set the initial value of the number of control
points along each direction, i.e. n0j . Initialise the slack variable k = 1
and set its upper bound kmax.

2: Update the control points number in each parametric direction according
to

nj = n0j +∆nj(k), j = 1, 2, 3 (38)

3: Evaluate the uniform knot-vector according to Eq. (35).
4: Calulate Greville’s abscissae according to Eq. (34).
5: Determine ∆X(j)(k), j = 1, 2, 3, according to Eq. (37).
6: For 2D applications, two B-Spline surfaces denoted as ρ1(k) and ρ2(k)

are created, while, for 3D problems, three hyper-surfaces ρ1(k), ρ2(k) and
ρ3(k) are defined as described in Requirement 2.

7: The minimum member size djmin(k) is evaluated by performing a suit-
able intersection between the two B-Spline surfaces and the thresh-
old plane in 2D or between the three B-Spline hyper-surfaces and the
threshold hyper-plane in 3D. In order to provide a general design tool,
djmin(k) is computed for each of the following values of threshold density:
[0.35, 0.40, 0.45, 0.50, 0.55, 0.60].

8: k = k + 1. If k < kmax, go to point 2, otherwise go to point 9.
9: The trend of djmin vs. ∆X(j) is plotted.

18



The trend of djmin vs. ∆X(j) is illustrated in Figs. 5 - 9 for pj = 3 and for
both 2D and 3D problems.
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Figure 5: dmin trends in 2D, pj = 3.
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Figure 6: dmin trends in 3D, pj = 3.

If the curves of Fig. 5, related to 2D problems, are represented on the same
graph, the result is an almost perfect superposition, as shown in Fig. 7a. The
same procedure is carried out for the 3D case, as shown in Fig. 6, and the
result is analogous, see Fig. 7b.

As it can be deduced by the complete superposition of the curves d
(j)
min vs.

∆X(j) for each density threshold value, there is no need to use a specific graph
for each parametric direction / physical coordinate j: thus, the superscript
j can be removed and, accordingly, the minimum length scale evaluated
according to Requirement 2 (in whatever direction) is referred as dmin. Fig. 7
illustrates synthetic graphs on the plane dmin vs. ∆X for both 2D and
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Figure 7: dmin vs. ∆X , pj = 3.

3D problems. Of course, these graphs depend also upon the degree of the
blending functions: the cases pj = 2 and pj = 4 are given in Figs. 8 and 9 for
both 2D and 3D problems, respectively. It is highlighted that the minimum
length scale corresponding to the ρth = 0.6 is equal to 0 when the degree of
the NURBS blending functions is 4 for both 2D and 3D problems (as shown in
Fig. 9). This fact simply means that there is not any intersection between the
NURBS entity and the plane/hyper-plane representing the threshold density.
This behaviour is due to the local support of NURBS that act as a filter
zone in TO problems and it is perfectly consistent with results obtained in
bibliography [19, 23].
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Figure 8: dmin vs. ∆X , pj = 2.
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Figure 9: dmin vs. ∆X , pj = 4.

The curves dmin vs. ∆X can be used as a design tool to forecast the
minimum length scale for different combinations of nj and pj . In particular,
given a certain value of dmin (e.g. imposed by technological requirements),
the designer can choose the B-Spline degree and, through the corresponding
abaci of Figs. 7-9, can select the related ∆X to be used along each physical
direction xj , j = 1, 2, 3 (this fact asks the designer to forecast a suitable
value for the final threshold density). Through the knowledge of ∆X from
Eq. (37), the designer can easily determine a suitable number of control
points along each parametric direction, i.e. nj (j = 1, 2, 3). Furthermore,
since the knot vectors are uniform, the previous graphs can be converted in
dmin vs. n/a curves, that is the minimum member size as a function of the
control points density, as shown in Figs. 10-12. Therefore, the TO analysis is
performed by setting the right number of control points: once convergence is
achieved, the minimum length scale is measured on the reassembled geometry
(after the cutting operation through the threshold density plane/hyperplane)
and it should be verified that the minimum member size measured on the
CAD model is always greater than or equal to the minimum length scale
forecast by means of Figs. 7-9. This methodology does not depend on the
shape of the computational domain. Whatever domain can be embedded
in a rectangle in 2D and in a regular prism in 3D: the TO analysis can be
carried out by simply disregarding those control points that do not affect any
element of the mesh, as widely discussed in previous works [19, 23]. As the
estimated minimum length scale is independent of the physical direction, the
design abaci constitute very versatile tools for both academic benchmarks
and industrial problems.
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Figure 10: dmin vs. n/a, pj = 2.
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Figure 11: dmin vs. n/a, pj = 3.

The previous procedure for determining suitable abaci to take into ac-
count for the minimum length scale must be slightly modified for those re-
gions which are close to the boundary of the computational domain. This
fact is perfectly logic, since the previously discussed algorithm holds for a
constant ∆X(j). Indeed, as control points are distributed on the reference
domain by means of the Greville’s abscissae formula of Eq. (34), ∆X(j) is
not constant and strongly varies within the regions adjacent to the boundary
of the computation domain, wherein Eq. (37) should be replaced by

∆X
(j)
0 =

aj
pj
∆U (j), j = 1, 2, 3. (39)
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Figure 12: dmin vs. n/a, pj = 4.

In Eq. (39), ∆X
(j)
0 indicates the value of ∆X(j) at the boundary. Therefore,

the idea is to provide design abaci similar to those of Figs. 7-9 by using
Eq. (39) at point 5 of Algorithm 1. The abaci related to the minimum
member size near the boundary of the computation domain, which is denoted
dBmin, are illustrated in Figs. 13 - 15. These abaci show the same trend of the
previous ones and they can be used as a design tool in order to forecast the
minimum member size at the boundary of the design domain.
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Figure 13: dBmin vs. ∆X0, pj = 2.

It is noteworthy that the minimum member size next to the computational
domain boundary constitutes a special condition that deserves a particular
attention. To understand this point, let consider a 2D TO problem: the
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Figure 14: dBmin vs. ∆X0, pj = 3.
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Figure 15: dBmin vs. ∆X0, pj = 4.

B-Spline degrees are set to p1 = p2 = 3 and the domain characteristic dimen-
sions are a1 = 320 mm and a2 = 200 mm. Suppose that the demanded mini-
mum member size is dmin = 5 mm. The corresponding graph of Fig. 7 is ex-
amined and it can be retrieved that ∆X = 5.5 mm for an estimated threshold
value ρth = 0.5. Accordingly, the graph of Fig. 11a provides a control points
density n/a = 0.191. Therefore, n1 + 1 = 62 and n2 + 1 = 39 are enough to
obtain a final design meeting the imposed minimum member size constraint.
However, this control points distribution implies ∆X0 = ∆X/3 = 1.83 mm
according to Eq. (39), thus an expected minimum member size dBmin = 1.35
mm, as it can be inferred from the graph of Fig. 14a. This result does not
mean that the design will surely provide a minimum member size of 1.35
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mm, but it rather warns the designer that the minimum member size could
decrease up to 1.35 mm near the boundary. Under these circumstances, the
designer has two choices: on the one hand, the demanded minimum member
size condition can be forced on the design domain boundary, i.e. a greater
∆X0 is chosen, and, accordingly, a smaller number of control points; on the
other hand, the designer can try to run the TO computation and then anal-
yse the resulting configuration. In any case, the method allows the designer
to be aware about the effects of his choices: reducing too much the number
of control points could lead to a poor description of the final topology and,
consequently, to inefficient configurations. Contrariwise, launching the TO
analysis with n1 + 1 = 62 and n2 + 1 = 39 could produce too thin features
in the neighbourhood of the domain boundary, that could be unsatisfactory
from a technological/mechanical viewpoint.

A smart way to overcome this dichotomy is the utilisation of a non-
uniform knot vector, i.e. a knot vector which is not characterised by equally
spaced components. In this case, design abaci similar to those of Figs. 7 - 9
can be provided. However these graphs are not reported here for sake of
brevity. Rather, the beneficial effect of the use of a non-uniform knot vector
on the final optimised topology and on the related minimum length scale is
directly illustrated on a meaningful benchmark in section 4.

3.2. Some remarks about the proposed approach

The approach making use of the previous abaci presents different aspects
of outstanding importance.

The method is simple and intuitive to the designer and does not need the
introduction of a further constraint in the TO problem formulation. This
fact is of paramount importance because constraints involving the minimum
member size are often burdensome from a computational viewpoint. Fur-
thermore, these constraints are not met on the reassembled geometry at the
end of the optimisation process in the most of the cases. Contrariwise, the
proposed approach allows for setting a pertinent combination of number of
control points and degrees of the NURBS blending functions that automati-
cally satisfy the imposed minimum member size. The aim of the design abaci
is to forecast dmin on the reassembled geometry without any explicit optimi-
sation constraint. This method has been conceived in order to promote the
consistence between estimated and actual minimum length scale. As a side
effect, the methodology could under-estimate the minimum length scale for
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some combinations of NURBS degrees and number of control points: there-
fore, the actual minimum length scale measured on final configurations could
be higher than the estimated one. A thoughtful discussion on this aspect is
provided in Section 4.

Even if the advantages of the NURBS-based SIMP approach have been
already shown in previous works [18, 19, 23, 25], the choice of the NURBS
discrete parameters (i.e. the number of control points and/or the degree)
was not unique and it was left to the designer experience. By means of the
abaci of Figs. 7-9, it is possible to choose a suitable number of control points
by setting the desired minimum member size.

Nevertheless, the proposed method is not free of drawbacks. There are
two most evident issues to be discussed. Firstly, the designer must arbitrarily
set the degree of the blending functions and, a priori, he should try several
degrees in order to understand the influence of this parameters on the final
optimum topology. Secondly, the designer is obliged to set a threshold den-
sity. However, the actual value of this quantity is provided at the end of the
optimisation in order to meet the imposed constraints [19, 23]; this means
that ρth is unknown before performing the TO analysis. Anyway, these are
only minor issues that can be easily overcome.

The range of degrees to be used for the TO analysis is limited because,
as widely explained in [19, 23], high degrees hamper the correct convergence
of the algorithm towards an efficient solution, especially when the number
of control points is low. Therefore, there is no interest in using high degrees
and the designer can try just the values pj = 2, 3, 4.

Accounting for the gained experience on solving TO problems through
the NURBS-based SIMP approach, a likely value for the threshold density is
0.5 and 0.45 for 2D and 3D applications, respectively. Then, if the problem at
hand presents particular constraints, which could lead to a poor convergence
rate, the previous values can be reduced. If the designer is uncertain among
two values for ρth, the highest value should be set in order to make the most
conservative choice.

3.3. The effects of the NURBS weights on the minimum length scale

Including the NURBS weights among the design variables leads to some
advantages. As discussed in [19, 23], better performances can be achieved
when weights and control points are optimised at the same time and final
geometries exhibit a smoother boundary. However, their use should be care-
fully assessed because choosing a NURBS rather than a B-Spline implies
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doubling the number of design variables if the same number of control points
is used.

The minimum member size should be forecast in the case of NURBS as
well. The main difficulty raised by considering the weights as design variables
consists of the lack of a simple relationship between physical coordinates and
the respective knot vector. In other words, the Greville’s abscissae formula
in the form of Eq. (34) does no longer apply, so it is not possible to easily
calculate the physical coordinates xj , j = 1, 2, 3 of the control points within
the design domain. Moreover, it should be remarked that weights are now
design variables and that their value is not a priori known. Since the previ-
ously depicted method seemed to be sound enough for B-Splines entities, it
is sought to exploit the methodology also in the case of NURBS entities.

To this purpose, the simple benchmark of Fig. 1 has been considered: it is
the solution of the TO problem (25) for a 2D aluminium plate clamped on the
left side and subject to a shear load applied to the right-bottom corner taken
from [19]. The NURBS discrete parameters were set as n1 = 47, n2 = 29
and p1 = p2 = 3. The idea is to observe the behaviour of the pseudo-density
and weights along horizontal lines related to specific control points rows.
Particularly, it is sought to identify some minimum length scale condition,
corresponding, for instance, to the thin topological element appearing in the
middle-bottom zone of the domain represented in Fig. 1b. In order to have
a clearer picture of the situation, Fig. 16 reports the optimised topology
observed in Fig. 1b together with the trends of pseudo-density and weights
at control points evaluated along the green lines.

Graphs of Fig. 16 confirm that the dmin condition occurs when a single
control point takes the value 1 whilst its neighbours take the value 0. In
this particular condition, the attention is focused on the trend of the cor-
responding weights: the weight related to the peak control point is always
grater than 1, whilst the weights related to the two closest control points
at the two sides of the peak are lower than 1. In practice, when the min-
imum length scale condition is emulated, the pseudo-density field is more
attracted towards the material phase when it is represented by means of a
NURBS entity rather than a B-Spline one. Thus, the most critical condition
(i.e. the lowest value of member size) is obtained with B-Spline surfaces and
not with NURBS surfaces. The natural conclusion of this study is that the
design graphs of section 3.1 can be used for B-Spline and NURBS entities as
well, since in any case they will constitute a conservative estimation of the
minimum length scale.
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(b) Pseudo-density and weights along the
9th control points row.
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(c) Pseudo-density and weights along the
11th control points row.
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(d) Pseudo-density and weights along the
13th control points row.

Figure 16: Weights and Control Points trends for a NURBS solution.

Of course, when NURBS entities are considered, the aforementioned abaci
should be used with caution. The use of the design graphs, that is sound for
B-Spline entities, can be only partially justified for NURBS entities. Indeed,
the graphs of section 3.1 are referred to ∆X and n/a. In the case of NURBS
entities, these quantities must be interpreted as average quantities, since it
is not possible to locate control points according to the Greville’s abscissae
formula.

Finally, even if the validity of the proposed method cannot be rigorously
justified in the case of NURBS entities, its effectiveness is empirically shown
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on some meaningful benchmarks in section 4.

4. Results

4.1. Minimum length scale in 2D

The effectiveness of the abaci presented in section 3 is proven here in
the case of 2D problems through the simple benchmark of Fig. 17 (refer to
related caption for details about the geometry and the FE analysis). The

Figure 17: 2D benchmark - Geometric parameters: a1 = 320 mm, a2 = 200 mm, thickness
t = 2 mm - Material parameters: E = 72000 MPa, ν = 0.33 - Mesh: 96× 60 PLANE182
elements (plane stress formulation) - Load: P = 1000 N.

TO problem is formulated according to Eq. (25), where Vref = a1a2t and
γ = 0.4. Furthermore, a symmetry condition is imposed with respect to
the plane x2 = a2/2. The TO problem is solved by means of the NURBS-
based SIMP method described in Section 2.3. Details about the architecture
of the corresponding algorithm for TO, called SANTO (SIMP And NURBS
for Topology Optimisation) and developed at the I2M Laboratory, can be
found in [23, 26]. When the solution is achieved, the result is exported in
Initial Graphics Exchange Specification (IGES) format and the 2D solution
is retrieved by means of the threshold operations described in [19, 21]. This
operation is performed in the CAD environment of CATIAR©, as shown in
Fig. 18a. Once the 2D structure is obtained, the actual minimum thickness
of structural elements is identified and measured. The concept of minimum
length scale is pretty clear but a mathematically exact definition does not
exist. Accordingly, the measured minimum length scale can be conventionally
defined as the diameter of the smallest circle inscribed within the structure
such that a slight increment of its diameter would exceed the boundary of
the structure itself (an example is given in Fig. 18b).

29



(a) Threshold operation on the NURBS
surface.

(b) 2D final structure: highlight of the min-
imum member size.

Figure 18: Procedure to measure the actual minimum member size.

The method presented in section 3 is tested by comparing the minimum
length scale predicted by graphs of Figs. 10-12 and Figs. 13-15 to the mea-
sured minimum member size on the actual reassembled structure. To this
purpose, the benchmark problem has been solved by making use of both B-
Spline and NURBS surfaces (polynomials degrees pj = 3, j = 1, 2, 3) and the
TO analysis has been repeated several times in order to change the number
of control points. This campaign of results has been carried out by means of
uniform knot vectors.

Solutions are shown in Fig. 19 and numeric results are collected in Tables 1
and 2, wherein the compliance is divided by a reference quantity cref = 2625
Nmm, that is the compliance of the structure with an uniform initial density
ρ(u1, u2) = γ. The measured minimum length scale is referred as dMmin, whilst
the forecast value of the minimum length scale is referred as dmin on the
internal zones and dBmin on the boundary of the design domain, respectively.
The two values dmin and dBmin are evaluated for an estimated threshold value
of the density ρth = 0.5.

In the following Tables, the (B) symbol appears next to the values of
dMmin when the minimum member size is measured in the neighbourhood of
the boundary; otherwise, the critical zone, wherein dMmin is measured, occurs
within the design domain.

As it can be retained from Tables 1 and 2, the minimum length scale
is correctly forecast for both B-Spline and NURBS solutions. The previ-
ous statement must be interpreted in the sense that the minimum length
scale that is forecast through the proposed methodology is always lower than
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(a) B-Spline - 16× 10 CP.
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(b) B-Spline - 32× 20 CP.
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(c) B-Spline - 48× 30 CP.
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(d) B-Spline - 64× 40 CP.
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(e) B-Spline - 80× 50 CP.
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(f) B-Spline - 96× 60 CP.

0 50 100 150 200 250 300

x
1
 [mm]

0

50

100

150

200

x 2
 [m

m
]

(g) NURBS - 16× 10 CP.
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(h) NURBS - 32× 20 CP.
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(i) NURBS - 48× 30 CP.
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(j) NURBS - 64× 40 CP.
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(l) NURBS - 96× 60 CP.

Figure 19: 2D solutions - minimum length scale, pj = 3.

the actual minimum length scale that is measured on the CAD-reassembled
geometry. In this sense the method is conservative.

4.2. Minimum length scale in 3D

Because of the complexity of 3D topologies, the minimum length scale
condition is checked in a different way with respect to the case of 2D struc-
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ntot c/cref [Nmm] dMmin [mm] dmin [mm] dBmin [mm]

16× 10 0.263 19.705 (B) 26.650 5.14

32× 20 0.178 16.340 12.010 2.34

48× 30 0.151 16.170 6.765 1.59

64× 40 0.146 5.173 4.937 1.32

80× 50 0.144 6.470 3.575 1.16

96× 60 0.145 4.960 2.910 1.08

Table 1: Minimum length scale for 2D B-Spline solutions

ntot c/cref [Nmm] dMmin [mm] dmin [mm] dBmin [mm]

16× 10 0.210 18.905 (B) 26.650 5.14

32× 20 0.154 14.470 12.010 2.34

48× 30 0.142 17.159 6.765 1.59

64× 40 0.142 6.586 4.937 1.32

80× 50 0.143 6.946 3.575 1.16

96× 60 0.145 7.301 2.910 1.08

Table 2: Minimum length scale for 2D NURBS solutions

tures. The problem of Eq. (25) is solved for the benchmark of Fig. 20. Two
symmetry conditions, with respect to the planes x2 = a2/2 and x3 = a3/2,
are added. Solutions are provided in the following for different control points
numbers and by setting the B-Spline/NURBS hyper-surfaces degrees equal
to 3.

For 3D problems, the optimised configurations can be handled, at the
end of the optimisation process, via suitable Standard Tessellation Language
(STL) files. The graphs of section 3 can be used in order to forecast the
minimum member size within the domain and on its boundary. The STL file
collects the nTR triangles composing the boundary of the optimised volume,
thus the local outward normal vector n can be identified on each boundary
surface. This information can be exploited to measure the actual minimum
member size at the end of the optimisation, in order to check the effectiveness
and the robustness of the approach based on the abaci illustrated in section
3.1.
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Figure 20: 3D benchmark - Geometric parameters: a1 = 400 mm, a2 = 100 mm, a3 = 200
mm - Material parameters: E = 72000 MPa, ν = 0.33 - Mesh: 64 × 16 × 32 SOLID185
elements - Load: P = 2000 N.

It is noteworthy that the boundary of the 3D continuum is retrieved
from the knowledge of the iso-surface ρ = ρth of the fictitious density field.
Considering the normal vector, the fourth coordinate of the NURBS hyper-
surface (which describes the pseudo-density field) takes values ρ < ρth (no
material phase) along the outward direction and ρ > ρth along the inward
direction (material phase). Therefore, the idea is to move from the iso-surface
towards the material phase at least for a distance equal to the minimum
member size and to check if the opposite side of the boundary is still in the
material phase. The main steps realising such operations are described in
Algorithm 2, which is carried out in Matlab environment.
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Algorithm 2 Minimum length scale check for 3D problems.

1: Retrieve the total number of triangles nTR from the STL file. Two coun-
ters are set nF = 0 (number of feasible triangles) and nUF = 0 (number
of infeasible triangles). Set j = 0.

2: j = j + 1.
3: Determine the Cartesian coordinates of the center of gravity of the j-th

triangle, i.e. OGj.
4: If the topology boundary is inside the computation domain, move along

the local inward direction according to OG
′

j = OGj−dminn; if the topol-
ogy boundary is located on the boundary of the computation domain
move along the local inward direction according to OG

′

j = OGj −dBminn

5: The B-Spline/NURBS is evaluated in OG′
j : if ρOG′

j
> ρth, nF = nF +1;

otherwise, if ρOG′
j
< ρth, nUF = nUF + 1.

6: If j < nTR go to point 2, else go to point 7.
7: Evaluate the fraction of triangles satisfying the minimum length scale,

i.e. fF = nF/nTR. The fraction of triangles violating such a constraints
is denoted as fUF = 1− fF

Numerical results are collected in Tables 3 and 4: the objective function
value is highlighted together with the forecast minimum length scale within
the domain dmin and on the boundary dBmin for each solution. The fractions
fF and fB

F of “feasible” triangles are reported as well.

ntot c/cref [Nmm] dmin [mm] dBmin [mm] fF fB
F

24× 6× 12 0.0873 15.000 5.000 0.978 0.958

30× 12× 18 0.0700 10.295 2.356 0.936 0.974

36× 18× 24 0.0620 6.136 1.522 0.982 0.999

Table 3: Minimum length scale for 3D B-Spline solutions

The topologies corresponding to the configurations appearing in Tables 3
and 4 are shown in Figs. 21-23 for B-Spline solutions and in Figs. 24-26
for NURBS solutions. In particular, the red boundary highlights the do-
main regions where the minimum length scale is correctly forecast, whilst
the blue boundary is constituted of “infeasible” triangles, i.e. those zones
characterised by a thickness smaller than that forecast by means of the abaci
presented in section 3.
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ntot c/cref [Nmm] dmin [mm] dBmin [mm] fF fB
F

24× 6× 12 0.0706 15.000 5.000 1.000 0.880

30× 12× 18 0.0653 10.295 2.356 0.924 0.971

36× 18× 24 0.0608 6.136 1.522 1.000 0.998

Table 4: Minimum length scale for 3D NURBS solutions

(a) Front view. (b) Rear view.

Figure 21: Highlight of the minimum length scale in 3D, B-Spline solution, pj = 3,
24× 6× 12 control points.

(a) Front view. (b) Rear view.

Figure 22: Highlight of the minimum length scale in 3D, B-Spline solution, pj = 3,
30× 12× 18 control points.

Results clearly show that the minimum length scale is correctly forecast
in a wide zone of the domain. The minimum member size is smaller than the
predicted value only in very circumscribed regions. The fractions of Tables 3
and 4 are not exactly 1 because of several reasons. Firstly, the estimation of
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(a) Front view. (b) Rear view.

Figure 23: Highlight of the minimum length scale in 3D, B-Spline solution, pj = 3,
36× 18× 24 control points.

(a) Front view. (b) Rear view.

Figure 24: Highlight of the minimum length scale in 3D, NURBS solution, pj = 3, 24 ×
6× 12 control points.

the minimum member size is based on the assumptions described in section 3,
which could be not met in whatever circumstances. Secondly, while the
method seems quite intuitive in 2D, its extrapolation in 3D is not immediate.
In particular, for 3D problems the evaluation of the pseudo-density threshold
value is not unique and a trial-and-error approach is often required (at the
end of the optimisation process) before achieving a good compromise in terms
of performances and minimum length scale requirement.

However, it is noteworthy that the methodology based on the use of
abaci presented in section 3 is both simple and reliable enough to be used
in the NURBS-based SIMP algorithm. As far as the computational cost is
concerned, it varies depending on the problem at hand. The computational
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(a) Front view. (b) Rear view.

Figure 25: Highlight of the minimum length scale in 3D, NURBS solution, pj = 3, 30 ×
12× 18 control points.

(a) Front view. (b) Rear view.

Figure 26: Highlight of the minimum length scale in 3D, NURBS solution, pj = 3, 36 ×
18× 24 control points.

cost is, of course, mainly related to the FE analysis and to the number of
iterations needed to satisfy one of the convergence criteria at the basis of the
active-set algorithm of the fmincon tool. In particular, all the optimisation
calculations have been performed by using two cores of a work-station with
an Intel Xeon E5-2697v2 processor (2.703.50 GHz). The simulation time
varies from ten minutes for the solution illustrated in Fig. 19 (100 iterations)
to 20 hours (400 iterations) for the solution of Fig. 26.

4.3. The effects of a non-uniform knot vector on the minimum length scale

Since only uniform knot vectors have been considered until now, it seems
interesting to investigate the influence of a non-uniform knot vector on the
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optimised topology. At the same time, the robustness of the method for pre-
dicting the minimum length scale is tested. Here, only 2D TO problems are
considered, but the extension of results to the 3D case is straightforward. Let
us consider the 2D benchmark of section 4.1, and, in particular, the solution
corresponding to (n1 + 1) × (n2 + 1) = 48 × 30 (Figs. 19c and 19i illustrate
the B-Spline and the NURBS solutions, respectively). Let now focus on the
knot vectors distributions: in cases of Figs. 19c and 19i, the net constituted
by the knot vectors components is represented in Fig. 27a. Of course, there
is a strict analogy between the knot vectors components distribution in the
parametric domain and the control points distribution in the physical space.
Two non-uniform distribution of the knot-vector components are considered
for this example: they are shown in in Figs. 27b and 27c.
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(c) Clumping 2.

Figure 27: Knot vectors distributions.
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The same optimisation problem is run for the 2D cantilever plate by
applying these two different knot vectors and results are shown in Fig. 28 for
B-Spline surfaces and in Fig. 29 for NURBS ones.
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Figure 28: B-Spline solutions with different knot vector distributions.
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(a) Uniform knot vector -
c/cref = 0.142.
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0.148.
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Figure 29: NURBS solutions with different knot vector distributions.

The results of Figs. 28 and 29 highlight one strong potential of the
NURBS-based algorithm for TO: for the same mesh, the same number of
control points and the same polynomials degrees, the user can opportunely
set the knot vector components (which constitute further degrees of freedom
of the proposed method) to obtain different topologies. It is interesting to
check that the minimum member size forecast by means of the graphs of
section 3 is always conservative (the estimated threshold value is ρth = 0.5).
In fact, if the first knot vector clumping is considered, the most critical value
∆X = 4.756 mm is obtained along the X1 direction on the right side of
the domain: the corresponding minimum member size, forecast by using the
graph of Fig. 7, is dmin = 4.314 mm. The effective (measured) minimum
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member size is dMmin = 7.7 mm for the B-Spline solution (Fig. 28b) and
dMmin = 7.6 mm for the NURBS solution (Fig. 28c). As far as the second
knot vector clumping is considered, the critical value ∆X = 4.367 mm is
obtained along the X1 direction on the left side of the domain. In this case,
dmin = 3.986 mm and dMmin = 5.1 mm for the B-Spline solution (Fig. 29b)
while dMmin = 7.0 mm for the NURBS solution (Fig. 29c). Therefore, these
results put in evidence that, when the number of control points is kept con-
stant, the designer can distribute the knot vectors components in order to
have different dimensions of topological features on specified domain zones.
Moreover, the generality of the method of section 3 is proven, since the ∆X
must be interpreted as a local information, regardless the considered knot
vector components distribution.

5. Conclusions

In this work, an innovative method to effectively handle the minimum
member size in TO problems has been presented in the framework of the
NURBS-based SIMP approach.

The most relevant contribution of the proposed strategy relies on the
fact that, thanks to NURBS entities properties, it is possible to forecast the
minimum length scale by simply choosing the NURBS discrete parameters
(number of control points and degrees) and some of their continuous param-
eters, like knot vectors components, by making use of very general design
abaci. No further optimisation constraints need to be added to the problem
formulation. Three main consequences immediately follow: firstly, the pro-
posed method is completely geometry-based and does not depend upon the
underlying mesh. In this sense, the definition of the minimum length scale
becomes totally independent from the mesh size. Secondly, the minimum
length scale can be controlled not only on the FE model of the structure
but also on the reassembled geometry at the end of the optimisation process.
Thirdly, it has been shown that the designer can decide to set knot vector
according an ad hoc criterion and, consequently, to perform TO with a dif-
ferent minimum length scale in different regions of the domain. Of course, all
these aspects can be controlled by properly tuning the NURBS parameters.

Two evident perspectives can be identified.
Firstly, the derived abaci can be used, in a conservative sense, in the

framework of NURBS entities but their utilisation is rigorously justified only
in the case of B-Spline entities. Indeed, for NURBS entities, the current
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formulation of the minimum length scale could be considered valuable only
from a practical viewpoint, as it provides a sort of rule of thumb for fore-
casting the minimum member size in TO problems. In this background,
closed-form solution for Greville’s abscissae for NURBS entities must be de-
rived and integrated within the algorithm proposed in this work in order to
obtain pertinent abaci.

Secondly, some promising results can be obtained by varying the knot vec-
tor components in the NURBS-based SIMP method for TO. In particular,
ad hoc knot vector distributions could be proposed to accomplish extremely
specific tasks. In particular, the difference between the predicted and mea-
sured minimum member size can be minimised by acting on the non-trivial
components of the knot-vectors of Eq. (6) which should not be set as uni-
formly distributed in the interval ]0, 1[. Rather, these quantities should be
integrated into the vector of design variables in order to reduce the differ-
ence between measured and forecast minimum scale length and to improve
the quality of results by exactly meeting the constraint on the minimum
length scale on the overall computation domain.

Moreover, these aspects go beyond the minimum length scale require-
ment. The knot vector components together with the number of control
points and blending functions degree along each parametric direction could
be simultaneously optimised in order to satisfy both minimum and maximum
scale requirements. One could act, on the one hand, on the number of control
points and degrees to smartly tune the number of knot vector components
and, on the other hand, on the value of the non-trivial components of each
knot vector to locally satisfy the minimum and maximum scale requirements.
Research is ongoing on these aspects.
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