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Introduction

Software for Topology Optimisation (TO) have become well-established tools in the preliminary design phase of engineering products. However, one of the most basic needs for engineers is the integration of manufacturing requirements into the TO problem formulation in order to achieve optimised as well as manufacturable solutions, see [START_REF] Lazarov | Length scale and manufacturability in density-based topology optimization[END_REF] and references therein. Manufacturing requirements are, in general, strongly dependent on the chosen technology: nevertheless, the minimum admissible size of structural elements constitutes a fundamental aspect, regardless the considered process.

More specifically, each technology has an intrinsic minimum achievable size. Therefore, controlling the minimum length scale of topological features in the structure to be optimised is of outstanding importance, in order to avoid obtaining an extremely performing but absolutely non-manufacturable component. One of the first methods to take into account the minimum length scale in a standard density-based strategy is described in [START_REF] Zhou | Checkerboard and minimum member size control in topology optimization[END_REF] and it is implemented in the commercial software Altair OptiStruct R [START_REF]HyperWorks 13.0, OptiStruct User`s Guide[END_REF] for TO: the minimum length scale is imposed through a control on the slope of the pseudo-density function on the whole design domain. Such a method turns out to be computationally efficient and can replace the perimeter penalisation or the density filtering operation for mesh independence [START_REF] Bendsoe | Topology Optimization -Theory, Methods and Applications[END_REF]. However, an important lack of consistence between the imposed minimum member size and the actually measured minimum member size at the end of the optimisation process can be remarked.

An alternative method has been proposed by Poulsen [5] and it relies on the monotonicity control of the pseudo-density function along n d preferential directions depending on the problem dimension: n d = 4 or n d = 13 for 2D and 3D problems, respectively. Although this method is sound, it provides solutions with a jagged boundary; moreover, its efficiency is limited only to regular mapped meshes (the extension of the method to whatever free mesh is anything but trivial). As projection methods have been included in TO approaches, also a filter-based minimum member size control has been implemented [START_REF] Guest | Achieving minimum length scale in topology optimization using nodal design variables and projection functions[END_REF]. Projection methods have been further developed by making use of the concept of "eroded", "intermediate" and "dilated" design [START_REF] Sigmund | Manufacturing tolerant topology optimization[END_REF][START_REF] Wang | On projection methods, convergence and robust formulations in topology optimization[END_REF]. These techniques guarantee a strict control on the minimum member size but they are computationally burdensome because they need three Finite Elements (FE) analyses (one for each density phase). The technique discussed in [START_REF] Sigmund | Manufacturing tolerant topology optimization[END_REF][START_REF] Wang | On projection methods, convergence and robust formulations in topology optimization[END_REF] is referred as "robust formulation", but the robustness must be interpreted as a consistence of the length scale of the optimised configurations with respect to manufacturing imprecisions. Anyway, the minimum length scale must be a posteriori checked on the final (CAD reassembled) geometry. Other strategies have been developed in the framework of the very general and versatile Level Set Method (LSM) [START_REF] Sethian | Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry[END_REF] applied to structural TO problems [START_REF] Allaire | Structural optimization using sensitivity analysis and a level-set method[END_REF]. The LSM is an alternative to the density-based methods for TO: the reader is addressed to [START_REF] Van Dijk | Levelset methods for structural topology optimization: a review[END_REF] for a general overview on different LSM variants and their comparison to density-based methods. Authors in [START_REF] Guo | Explicit feature control in structural topology optimization via level set method[END_REF] have developed a smart strategy to get an explicit and local control of the minimum length scale in the context of LSM, based on the mathematical concept of "structural skeleton". Furthermore, they have extended this strategy to the Solid Isotropic Material with Penalisation (SIMP) method [START_REF] Zhang | An explicit length scale control approach in simp-based topology optimization[END_REF]. However, these works neglect the possible change of the skeleton in the sensitivity analysis. The drawbacks related to this aspect are discussed in [START_REF] Michailidis | Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set Method[END_REF] and a suitable solution is proposed in [START_REF] Allaire | Thickness control in structural optimization via a level set method[END_REF], where it is shown that a mathematically exact definition of member size does not exist. The difficulty related to the sensitivity analysis appearing in the method described in [START_REF] Zhang | An explicit length scale control approach in simp-based topology optimization[END_REF] has been recently overcome by authors in [START_REF] Zhou | Minimum length scale in topology optimization by geometric constraints[END_REF]: they combine the skeleton method with the three-phases projection method and, finally, the minimum length scale control is performed thanks to two structural indicator functions and two ad hoc constraints.

A further method for including the minimum length scale requirement in a B-Spline density-based algorithm for TO has been suggested in [START_REF] Gu | B-spline based robust topology optimization[END_REF]: the proposed strategy is based on the combination of the approach presented in [START_REF] Qian | Topology optimization in B-spline space[END_REF] and the three-phases projection methods [START_REF] Wang | On projection methods, convergence and robust formulations in topology optimization[END_REF]. However, from a theoretical viewpoint, it seems inconsistent to choose a method requiring three FE analyses in order to control a purely geometric feature.

To overcome the restrictions related to the previous approaches, a first attempt of implementation of the minimum member size constraint has been carried out in the NURBS-based SIMP method for TO developed by the present authors in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF]. In particular, the Poulsen's minimum length scale constraint [START_REF] Poulsen | A new scheme for imposing a minimum length scale in topology optimization[END_REF] was opportunely reformulated in the NURBS framework for 2D TO problems. Although results presented in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF] are consistent in terms of reassembled geometry, the method is not general enough because it is too dependent on the element size and mesh quality. In order to go beyond the first encouraging results discussed in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF], the objective of this paper is to provide an useful and meaningful formulation, which allows for handling the minimum length scale requirement in a very smart and effective way. The main idea is to propose a method (based on a set of precise rules and relationships) able to relate the minimum member size to the characteristic parameters of the NURBS geometric entity. Particularly, the minimum length scale can be imposed by simplifying the TO problem formulation and by avoiding an explicit optimisation constraint. In the case of B-Spline entities, the minimum length scale requirement can be systematically fulfilled by tuning the number of control points and the degrees of the blending functions along each parametric direction, for both 2D and 3D TO problems. Indeed, it will be shown through numerical results that this procedure is still possible in the case of NURBS as well. However the presence of additional continuous parameters (i.e. the NURBS weights) does not allow for a rigorous justification when NURBS are used to represent the pseudo-density field. Although this approach may be too conservative in some cases, the value of the true minimum length scale (i.e. that measured on the actual optimised topology) is consistently and systematically higher than that forecast by means of the proposed procedure.

The paper is outlined as follows. The theoretical background is briefly described in section 2. The method for implicitly set a suitable minimum member size is presented and widely discussed in section 3. The effectiveness of the proposed method is proven through meaningful 2D and 3D benchmarks in section 4. Finally, section 5 ends the paper with some conclusions and perspectives.

Theoretical Background

The NURBS hyper-surfaces theory

The fundamentals of NURBS hyper-surfaces are briefly recalled here below. Curves and surfaces formulae, widely discussed in [START_REF] Piegl | The NURBS book[END_REF], can be easily deduced from the following relations. A NURBS hyper-surface is a polynomialbased function, defined over a parametric space (domain), taking values in the NURBS space (codomain). Therefore, if N is the dimension of the parametric space and M is the dimension of the NURBS space, a NURBS entity is defined as H : R N -→ R M . For example, one scalar parameter (N = 1) can describe both a plane curve (M = 2) and a 3D curve (M = 3). In the case of a surface, two scalar parameters are needed (N = 2) together with, of course, three physical coordinates M = 3. The mathematical formula of a generic NURBS hyper-surface is

H(u 1 , . . . , u N ) = n 1 i 1 =0 • • • n N i N =0 R i 1 ,...,i N (u 1 , . . . , u N )P i 1 ,...,i N , (1) 
where R i 1 ,...,i N (u 1 , . . . , u N ) are the piecewise rational basis functions, which are related to the standard NURBS blending functions

N i k ,p k (u k ), k = 1, . . . , N by means of the relationship R i 1 ,...,i N (u 1 , . . . , u N ) = ω i 1 ,...,i N N k=1 N i k ,p k (u k ) n 1 j 1 =0 • • • n N j N =0 ω j 1 ,...,j N N k=1 N j k ,p k (u k ) . (2) 
In Eqs. ( 1) and ( 2) , H(u 1 , . . . , u N ) is a M-dimension vector-valued rational function, (u 1 , . . . , u N ) are scalar dimensionless parameters defined in the interval [0, 1], whilst P i 1 ,...,i N are the so called control points. The j-th control point coordinate (X

(j) i 1 ,...,i N ) is stored in the array X (j) , whose dimen- sions are (n 1 + 1) × • • • × (n N + 1)
. The explicit expression of control points coordinates in R M is:

P i 1 ,...,i N = {X (1) i 1 ,...,i N , . . . , X (M ) i 1 ,...,i N }, X (j) ∈ R (n 1 +1)ו••×(n N +1) , j = 1, . . . , M. (3) 
For NURBS surfaces,

P i 1 ,i 2 = {X (1) i 1 ,i 2 , X (2) 
i 1 ,i 2 , X (3) 
i 1 ,i 2 } and each coordinate is arranged in a matrix defined in R (n 1 +1)×(n 2 +1) . The control points layout is referred as control polygon for NURBS curves, control net for surfaces and control hyper-net otherwise [START_REF] Piegl | The NURBS book[END_REF]. The generic control point does not actually belong to the NURBS entity but it affects the NURBS shape by means of its coordinates. A suitable scalar quantity ω i 1 ,...,i N (called weight) is related to the respective control point P i 1 ,...,i N . The higher is the weight ω i 1 ,...,i N , the more the NURBS entity is attracted towards the control point P i 1 ,...,i N . For each parametric direction u k , k = 1, . . . , N, the NURBS blending functions are of degree p k ; the blending function related to the parametric direction u k can be defined in a recursive way as

N i k ,0 (u k ) = 1 if U (k) i k ≤ u k < U (k) i k +1 , 0 otherwise, (4) 
N i k ,q (u k ) = u k -U (k) i k U (k) i k +q -U (k) i k N i k ,q-1 (u k ) + U (k) i k +q+1 -u k U (k) i k +q+1 -U (k) i k +1 N i k +1,q-1 (u k ), q = 1, ..., p k , (5) 
where each constitutive blending function is defined on the knot vector

U (k) = {0, . . . , 0 p k +1 , U (k) 
p k +1 , . . . , U (k) 
m k -p k -1 , 1, . . . , 1 p k +1 }, (6) 
whose dimension is m k + 1, with

m k = n k + p k + 1. ( 7 
)
Each knot vector U (k) is a non-decreasing sequence of real numbers that can be interpreted as a discrete collection of values of the related dimensionless parameter u k . The NURBS blending functions are characterised by several interesting properties: the interested reader is addressed to [START_REF] Piegl | The NURBS book[END_REF] for a deeper insight into the matter. Here, only the local support property is recalled since it is of paramount importance for the NURBS-based SIMP method for TO [START_REF] Qian | Topology optimization in B-spline space[END_REF][START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | A NURBS-based Topology Optimisation method including additive manufacturing constraints[END_REF][START_REF] Costa | A Geometry-based Method for 3D Topology Optimization[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF]:

R i 1 ,...,i N (u 1 , . . . , u N ) = 0 if (u 1 , . . . , u N ) ∈ U (1) i 1 , U (1) 
i 1 +p 1 +1 × • • • × U (N ) i N , U (N ) i N +p N +1 . (8) 
Eq. ( 8) means that each control point (and the respective weight) affects only a precise zone of the parametric space, that is precisely referred as local support or influence zone.

The Solid Isotropic Material with Penalization Method

The present work deals with both 2D and 3D TO problems, therefore the mathematical statement of the classic SIMP method is briefly described in the most general 3D case. Consider the compact Euclidean space D ⊂ R 3 in a Cartesian orthogonal frame O(x 1 , x 2 , x 3 ):

D = {x = {x 1 , x 2 , x 3 } t ∈ R 3 : x 1 ∈ [0, a 1 ], x 2 ∈ [0, a 2 ], x 3 ∈ [0, a 3 ]}, (9) 
where a 1 , a 2 and a 3 are three reference lengths of the domain (related to the problem at hand), defined along x 1 , x 2 and x 3 axes, respectively. Without loss of generality, the mathematical formulation is here limited, for the sake of clarity, to the problem of minimising the compliance of a structure, subject to an equality constraint on the volume. This problem can be mathematically well-posed through several techniques, widely discussed in literature [START_REF] Bendsoe | Topology Optimization -Theory, Methods and Applications[END_REF]. In this framework, the aim of TO is to search for the distribution of a given isotropic "heterogeneous material" (i.e. the definition of void and material zones) on the design domain D in order to minimise the virtual work of external loads applied to the structure and, meanwhile, to meet a volume equality constraint.

Let Ω ⊆ D be the material domain. In the SIMP approach, Ω is determined by means of a fictitious density function ρ(x) ∈ [0, 1] defined over the whole design domain D. Such a density field is related to the material distribution: ρ(x) = 0 means absence of material, whilst ρ(x) = 1 implies completely dense base material. The density field affects the stiffness tensor E ijkl (x), which is variable over the domain D, according to

E ijkl (ρ(x)) = ρ(x) α E 0 ijkl , i, j, k, l = 1, 2, 3, (10) 
where E 0 ijkl is the stiffness tensor of the bulk isotropic material and α ≥ 1 a suitable parameter that aims at penalising all the meaningless densities between 0 and 1.

Considering the FE formulation of the equilibrium problem for a static analysis, the relationship among the vector of applied generalised nodal forces {f}, the vector of displacements {d}, and the global stiffness matrix of the structure

[K] is [K] {d} = {f} . (11) 
Being {d} the solution of the static problem, i.e. the vector of degrees of freedom (DOFs) satisfying the equilibrium condition of Eq. ( 11), the compliance of the structure is computed as

c = {d} T [K] {d} . ( 12 
)
The global stiffness matrix [K] can be expressed as

[K] = Ne e=1 ρ α e [K e ], (13) 
where ρ e is the fictitious density computed at the centroid of the generic element e, N e the total number of elements, whilst [K e ] is the non-penalised element stiffness matrix expanded over the full set of DOFs of the structure.

The problem of minimising the compliance of a structure subject to a constraint on the overall volume can be stated as follows:

min ρe c(ρ e ), subject to:            [K]{d} = {f}, V (ρ e ) V ref = Ne e=1 ρ e V e V ref = γ, ρ min ≤ ρ e ≤ 1, e = 1, ..., N e . (14) 
In Eq. ( 14), V ref is a reference volume, V (ρ e ) is the volume of the material domain Ω, while γ is the fixed volume fraction; V e is the volume of element e and ρ min represents the lower bound, imposed to the density field in order to prevent any singularity for the solution of the equilibrium problem. Of course, the design variables of the TO problem in the classic SIMP framework are the fictitious densities defined at the centroid of each element: therefore, the overall number of design variables is equal to N e .

Problem [START_REF] Michailidis | Manufacturing Constraints and Multi-Phase Shape and Topology Optimization via a Level-Set Method[END_REF] can be solved through a suitable gradient-based algorithm: to this purpose, the derivatives of both the objective and the constraint functions with respect to the elements fictitious densities must be computed and are reported here below for the sake of completeness (see [START_REF] Bendsoe | Generating optimal topologies in structural design using a homogenization method[END_REF] for more details). The partial derivative of the compliance reads

∂c ∂ρ e = -αρ α-1 e {d} T [K e ]{d} = - α ρ e c e , e = 1, ..., N e , (15) 
where c e = ρ α e {d} T [K e ]{d} represents the compliance of the single mesh element e.

The partial derivative of the volume can be trivially expressed as

∂V ∂ρ e = V e , e = 1, ..., N e . ( 16 
)

The NURBS-based SIMP method for Topology Optimisation

The formulation of the SIMP method in the B-Spline entities framework has been firstly provided in [START_REF] Qian | Topology optimization in B-spline space[END_REF] and [START_REF] Wang | Efficient Filtering in Topology Optimization via B-Splines[END_REF]. The more general formulation in the NURBS geometric entities framework, by deeply investigating the influence of both discrete and continuous parameters of the NURBS blending functions, is given in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | A NURBS-based Topology Optimisation method including additive manufacturing constraints[END_REF][START_REF] Costa | A Geometry-based Method for 3D Topology Optimization[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF][START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF]. The main features of the NURBS-based SIMP method for TO are briefly recalled in the following because they are basic for a fruitful understanding of this paper.

In the context of the NURBS-based SIMP method, the pseudo-density field is represented through a suitable NURBS entity [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | A NURBS-based Topology Optimisation method including additive manufacturing constraints[END_REF][START_REF] Costa | A Geometry-based Method for 3D Topology Optimization[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF][START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF]. Therefore, a NURBS surface is used for 2D problems

ρ(u 1 , u 2 ) = n 1 i 1 =0 n 2 i 2 =0 R i 1 ,i 2 (u 1 , u 2 ) ρ i 1 ,i 2 , ( 17 
)
whilst a NURBS hyper-surface is considered for 3D problems

ρ(u 1 , u 2 , u 3 ) = n 1 i 1 =0 n 2 i 2 =0 n 3 i 3 =0 R i 1 ,i 2 ,i 3 (u 1 , u 2 , u 3 ) ρ i 1 ,i 2 ,i 3 . (18) 
In Eqs. ( 17) and ( 18), R i 1 ,i 2 (u 1 , u 2 ) and R i 1 ,i 2 ,i 3 (u 1 , u 2 , u 3 ) are the NURBS rational basis functions, defined according to Eq. ( 2). Of course, ρ(u 1 , u 2 ) in Eq. ( 17) represents only the third coordinate of the array H of Eq. ( 1) in the special case N = 2 and M = 3 (the three coordinates in the NURBS space are the two spatial coordinates and the pseudo-density). Similarly, ρ(u 1 , u 2 , u 3 ) (N = 3) in Eq. ( 18) constitutes the fourth coordinate of the array H (M = 4). Hence, the dimensionless parameters u 1 , u 2 , and u 3 are directly related to the physical coordinates as follows:

u j = x j a j , j = 1, 2, 3. (19) 
As stated above, there are many parameters affecting the shape of NURBS entities. Among them, the NURBS control points and the related weights are identified as design variables. They are arranged in the arrays

ξ 2D 1 ∈ R [(n 1 +1)(n 2 +1)]×1 and ξ 2D 2 ∈ R [(n 1 +1)(n 2 +1)]×1 for 2D problems ξ 2D 1 = { ρ 0,0 , . . . , ρ n 1 ,0 , ρ 0,1 , . . . , ρ n 1 ,1 , . . . , ρ n 1 ,n 2 }, ρ i 1 ,i 2 ∈ [ ρ min , ρ max ], ∀i 1 = 0, ..., n 1 , ∀i 2 = 0, ..., n 2 , ( 20 
)
ξ 2D 2 = {ω 0,0 , . . . , ω n 1 ,0 , ω 0,1 , . . . , ω n 1 ,1 , . . . , ω n 1 ,n 2 }, ω i 1 ,i 2 ∈ [ω min , ω max ], ∀i 1 = 0, ..., n 1 , ∀i 2 = 0, ..., n 2 , (21) 
whilst control points and weights are collected in the arrays ξ

3D 1 ∈ R [(n 1 +1)(n 2 +1)(n 3 +1)]×1 and ξ 3D 2 ∈ R [(n 1 +1)(n 2 +1)(n 3 +1)]×1 for 3D problems ξ 3D 1 = { ρ 0,0,0 , . . . , ρ n 1 ,0,0 , ρ 0,1,0 , ρ n 1 ,1,0 , . . . , ρ n 1 ,n 2 ,0 , . . . , ρ 0,0,n 3 , . . . , ρ n 1 ,n 2 ,n 3 }, ρ i 1 ,i 2 ,i 3 ∈ [ ρ min , ρ max ], ∀i 1 = 0, ..., n 1 , ∀i 2 = 0, ..., n 2 , ∀i 3 = 0, ..., n 3 , (22) 
ξ 3D 2 = {ω 0,0,0 , . . . , ω n 1 ,0,0 , ω 0,1,0 , ω n 1 ,1,0 , . . . , ω n 1 ,n 2 ,0 , . . . , ω 0,0,n 3 , . . . , ω n 1 ,n 2 ,n 3 }, ω i 1 ,i 2 ,i 3 ∈ [ω min , ω max ], ∀i 1 = 0, ..., n 1 , ∀i 2 = 0, ..., n 2 , ∀i 3 = 0, ..., n 3 . (23) 
The other NURBS parameters can be identified as design parameters, i.e. their value is set a priori at the beginning of the TO analysis and is not optimised. A concise discussion on the effect of these parameters on the final optimum topology is given here below. For more details, the interested reader is addressed to [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF][START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF].

• The blending functions degrees: increasing the degree implies broadening the local support size and the effect of this operation is twofold. On the one hand, a smoother boundary for the optimised topology can be got and, on the other hand, a worse convergence towards more efficient configurations is observed.

• The control points number : enhancing the control points number implies a smaller local support size. Thus, better performances, in terms of objective function, can be achieved and thinner topological features are allowed. Of course, this fact involves a higher number of design variables and, consequently, an increased computational burden.

• The knot vector : the non-trivial knot vectors components appearing in Eq. ( 6) have been uniformly distributed on the interval [0, 1] for both 2D and 3D problems.

For the sake of synthesis, the following arrays can be defined:

Ξ (l) = ξ 2D l if N = 2, ξ 3D l if N = 3, l = 1, 2. (24) 
Moreover, the total number of control points is trivially n tot = (n 1 + 1)(n 2 +1) in 2D and n tot = (n 1 +1)(n 2 +1)(n 3 +1) in 3D. Thus, the statement of the classic TO problem of compliance minimisation subject to an equality constraint on the volume is provided through an unified formulation: min Ξ (1) ,Ξ (2) c(ρ(Ξ (1) , Ξ (2) ))

c ref ,

subject to:                  ( Ne e=1 ρ α e [K e ]){d} = [K]{d} = {f}, V (ρ(Ξ (1) , Ξ (2) )) V ref = Ne e=1 ρ e V e V ref = γ, Ξ (1) 
k ∈ [ ρ min , ρ max ], Ξ (2) k ∈ [ω min , ω max ], ∀k = 1, ..., n tot . (25) 
In Eq. ( 25), ρ e is the generic element pseudo-density, i.e.

ρ e =        ρ(u e 1 , u e 2 ) = ρ x e 1 a 1 , x e 2 a 2 , if N = 2, ρ(u e 1 , u e 2 , u e 3 ) = ρ x e 1 a 1 , x e 2 a 2 , x e 3 a 3 , if N = 3, (26) 
where x e j is the j-th Cartesian coordinate of the element centroid. The objective function is divided by a reference compliance (c ref ), to obtain a dimensionless value.

The computation of the derivatives of both objective and constraint functions with respect to the design variables are needed in order to efficiently solve problem (25) through a gradient-based method. This task is achieved by exploiting the NURBS local support property. Particularly, the local support related to a control point ρ I 1 ,I 2 in 2D or ρ I 1 ,I 2 ,I 3 in 3D can be defined as

S τ =      S I 1 ,I 2 = U (1) I 1 , U (1) 
I 1 +p 1 +1 × U (2) I 2 , U (2) 
I 2 +p 2 +1 , if N = 2, S I 1 ,I 2 ,I 3 = U (1) I 1 , U (1) 
I 1 +p 1 +1 × U (2) I 2 , U (2) 
I 2 +p 2 +1 × U (3) I 3 , U (3) 
I 3 +p 3 +1 , if N = 3. ( 27 
)
In Eq. ( 27), the triplet of capital indices (I 1 , I 2 , I 3 ) identifies a specific control point or weight. For the sake of compactness, the linear index τ can be defined according to the following relationships

τ = I 1 + (I 2 -1) (n 1 + 1), if N = 2, I 1 + (I 2 -1) (n 1 + 1) + (I 3 -1) (n 1 + 1)(n 2 + 1), if N = 3. ( 28 
)
Then, the general expressions of the derivatives of both the compliance and the volume read

∂c ∂Ξ (1) τ = -α e∈Sτ c e ρ e R e τ , (29) ∂c ∂Ξ 
(2) τ = - α Ξ (2) τ e∈Sτ c e Ξ (1) 
τ -ρ e ρ e R e τ , (30) 
∂V ∂Ξ

= e∈Sτ V e R e τ , (1) τ 
∂V ∂Ξ (2) τ = 1 Ξ (2) τ e∈Sτ (Ξ (1) τ -ρ e )V e R e τ . (31) 
The scalar quantity R e τ , appearing in Eqs. ( 29) -( 32) is simply a suitable NURBS rational basis function:

R e τ = R I 1 ,I 2 (u e 1 , u e 2 ), if N = 2, R I 1 ,I 2 ,I 3 (u e 1 , u e 2 , u e 3 ), if N = 3. ( 33 
)
Some consequences of outstanding importance result from the NURBSbased SIMP approach.

• The number of design variables is unrelated to the number of elements.

• The filtering effect deriving from the local support property: each control point (with the related weight) affects only those elements whose centroid falls in local support S τ within the domain D. This fact is equivalent to the definition of an explicit filter in classic SIMP approaches, which is introduced in order to avoid numerical artefacts (such as the "checkerboard effect").

For further details on the NURBS-based SIMP method, the reader is addressed to [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF].

Minimum length scale in the NURBS-based SIMP approach

Minimum length scale resulting from B-Spline entities

The minimum length scale is defined as the minimum thickness that can be identified within a structure. Consider a 2D problem: as previously specified, the pseudo-density function defines the amount of material density to be distributed in the design domain by means of control points coordinates affecting a NURBS surface. In order to retrieve the 2D optimised structure, an intersection between the surface and a suitable threshold plane is performed, as shown in Fig. 1 (see [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF] for more details). Analogously, for 3D problems, the final shape can be recovered by performing the intersection between the corresponding 4D hyper-surface with the threshold density hyper-plane, as it is illustrated in Fig. 2 [START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF].

As the minimum length scale requirement must be satisfied on the final topology, the NURBS parameters listed in section 2 are supposed to have a strong impact on this topological feature. For the sake of clarity, only B-Spline entities are considered in a first time. In this background, some peculiar requirements need to be introduced in order to implicitly ensure a given minimum length scale, without introducing en explicit constraint into the problem formulation.

Requirement 1: The spatial coordinates of control points defining the B-Spline surface and hyper-surface are distributed according to the Greville's abscissae [START_REF] Farin | Curves and Surfaces for CAGD: A Practical Guide, 5th Edition[END_REF], i.e. 

I 1 , * , * = a 1 p 1 p 1 -1 k=0 U (1) I 1 +k+1 , I 1 = 0, ..., n 1 , X (2) * ,I 2 , * = a 2 p 2 p 2 -1 k=0 U (2) I 2 +k+1 , I 2 = 0, ..., n 2 , X (3) * , * ,I 3 = a 3 p 3 p 3 -1 k=0 U (3) I 3 +k+1 , I 3 = 0, ..., n 3 , (34) 
wherein the symbol * , replacing two of the three indices, aims at pointing out that the considered Greville's abscissa depends only upon the corresponding knot vector. Eq. (34) holds for 3D problems (for 2D problems, only the first two equations must be considered and index I 3 must be disregarded). Greville's abscissae guarantee that the Cartesian coordinates of the hyper-surface control points are distributed in such a way that the B-Spline evaluation at the x j coordinate coincides exactly with x j .

Requirement 2: the condition of minimum length scale must be emulated. As far as 2D problems are concerned, the minimum member size condition is reproduced by assigning the value ρ min = 10 -3 to each control point coordinate ρ i 1 ,i 2 , apart from either a column or a row of control points, which are set to ρ max = 1, as shown in Fig. 3a and Fig. 3c. Thanks to the strong convex-hull property of NURBS entities [START_REF] Piegl | The NURBS book[END_REF][START_REF] Farin | Curves and Surfaces for CAGD: A Practical Guide, 5th Edition[END_REF], the pseudo-density function takes values in the interval [10 -3 , 1]. The result of the intersection between the B-Spline surface and a suitable plane (representing the pseudo-density threshold value) is a strip of material phase (Fig. 3b and Fig. 3d). Of course, the thickness of this strip represents the minimum length scale, that can be obtained along x 2 or x 1 axes if control points coordinates are set to 1 column-wise or row-wise, respectively. Since control points coordinates are arranged in 3D arrays for B-Spline hyper-surfaces, a similar procedure can be repeated in 3D by setting ρ min for all control point coordinates ρ i 1 ,i 2 ,i 3 , except for those points belonging to a suitable "page" of the 3D array: e.g. the minimum member size that can be identified along the x 1 direction is detected by setting ρ I 1 ,i 2 ,i 3 = 1, ∀i 2 = 0, . . . , n 2 , ∀i 3 = 0, . . . , n 3 , with an assigned I 1 . Similarly, ρ i 1 ,I 2 ,i 3 = 1, ∀i 1 = 0, . . . , n 1 , ∀i 3 = 0, . . . , n 3 and ρ i 1 ,i 2 ,I 3 = 1, ∀i 1 = 0, . . . , n 1 , ∀i 2 = 0, . . . , n 2 define the minimum length scale along x 2 and x 3 axes, respectively (see Fig. 4). Requirement 3: the threshold value used for the pseudo-density field (ρ th ) has an impact on the minimum length scale for the problem at hand, as it can be easily inferred from Fig. 3. As observed in all the TO analyses performed in the present as well as in the previous works [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF], the threshold density can be set as ρ th ∈ [ρ th-LB , ρ th-UB ], with ρ th-LB = 0.35 and ρ th-UB = 0.6. A deeper insight into the choice of a suitable value of ρ th is provided in Section 3.2.

Requirement 4: the NURBS-based SIMP method for TO has been outlined in section 2 in its most general form. Particularly, the same methodology can be applied regardless the knot vectors components. Moreover, the Greville's abscissae formula applies for whatever knot vector distribution. In this work, knot vectors components have been chosen uniformly spanned in the interval [0, 1], unless otherwise stated, i.e.

U (j) = {0, . . . , 0 p j +1 , 1 n j -p j + 1 , . . . , k j n j -p j + 1 , . . . , n j -p j n j -p j + 1 , 1, . . . , 1 p j +1
},

k j = 1, . . . , n j -p j , j = 1, 2, 3.
(35) Thus, the distance between two non-trivial components of the knotvector, i.e. ∆U (j) , is

∆U (j) = 1 n j -p j + 1 , j = 1, 2, 3. (36) 
Furthermore, it is easy to verify the following relationship among control points coordinates and the respective knot vectors components:

∆X (j) = a j n j -p j + 1 = a j ∆U (j) , j = 1, 2, 3. (37) 
The minimum length scale along a specific direction j, evaluated as detailed at Requirement 2, is referred as d (j) min . Considering the previous aspects, a sensitivity analysis of d (j) min with respect to the number of control points and blending functions degree is presented in the following. For this preliminary analysis, the blending functions degrees along each parametric direction, i.e. p j , j = 1, 2, 3, are kept constant and the knot-vectors components are equispaced in the range [0, 1] according to Eq. (35). The logical steps of Algorithm 1 (devoted to the derivation of the minimum length scale curves) are reported here below.

Algorithm 1 Minimum length scale requirement.

1: Set a j and p j (j = 1, 2, 3). Set the initial value of the number of control points along each direction, i.e. n 0j . Initialise the slack variable k = 1 and set its upper bound k max . 2: Update the control points number in each parametric direction according to

n j = n 0j + ∆n j (k), j = 1, 2, 3 (38) 
3: Evaluate the uniform knot-vector according to Eq. ( 35). 4: Calulate Greville's abscissae according to Eq. (34). 5: Determine ∆X (j) (k), j = 1, 2, 3, according to Eq. (37). 6: For 2D applications, two B-Spline surfaces denoted as ρ 1 (k) and ρ 2 (k) are created, while, for 3D problems, three hyper-surfaces ρ 1 (k), ρ 2 (k) and ρ 3 (k) are defined as described in Requirement 2. 7: The minimum member size d j min (k) is evaluated by performing a suitable intersection between the two B-Spline surfaces and the threshold plane in 2D or between the three B-Spline hyper-surfaces and the threshold hyper-plane in 3D. In order to provide a general design tool, d j min (k) is computed for each of the following values of threshold density: [0.35, 0.40, 0.45, 0.50, 0.55, 0.60]. 8: k = k + 1. If k < k max , go to point 2, otherwise go to point 9. 9: The trend of d j min vs. ∆X (j) is plotted.

The trend of d j min vs. ∆X (j) is illustrated in Figs. 5 -9 for p j = 3 and for both 2D and 3D problems. min vs. ∆X (1) . min vs. ∆X (2) . X (1) [mm] min vs. ∆X (3) . If the curves of Fig. 5, related to 2D problems, are represented on the same graph, the result is an almost perfect superposition, as shown in Fig. 7a. The same procedure is carried out for the 3D case, as shown in Fig. 6, and the result is analogous, see Fig. 7b.

As it can be deduced by the complete superposition of the curves d (j) min vs. ∆X (j) for each density threshold value, there is no need to use a specific graph for each parametric direction / physical coordinate j: thus, the superscript j can be removed and, accordingly, the minimum length scale evaluated according to Requirement 2 (in whatever direction) is referred as d min . Fig. 7 illustrates synthetic graphs on the plane d min vs. ∆X for both 2D and 3D problems. Of course, these graphs depend also upon the degree of the blending functions: the cases p j = 2 and p j = 4 are given in Figs. 8 and9 for both 2D and 3D problems, respectively. It is highlighted that the minimum length scale corresponding to the ρ th = 0.6 is equal to 0 when the degree of the NURBS blending functions is 4 for both 2D and 3D problems (as shown in Fig. 9). This fact simply means that there is not any intersection between the NURBS entity and the plane/hyper-plane representing the threshold density. This behaviour is due to the local support of NURBS that act as a filter zone in TO problems and it is perfectly consistent with results obtained in bibliography [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF]. The curves d min vs. ∆X can be used as a design tool to forecast the minimum length scale for different combinations of n j and p j . In particular, given a certain value of d min (e.g. imposed by technological requirements), the designer can choose the B-Spline degree and, through the corresponding abaci of Figs. 789, can select the related ∆X to be used along each physical direction x j , j = 1, 2, 3 (this fact asks the designer to forecast a suitable value for the final threshold density). Through the knowledge of ∆X from Eq. (37), the designer can easily determine a suitable number of control points along each parametric direction, i.e. n j (j = 1, 2, 3). Furthermore, since the knot vectors are uniform, the previous graphs can be converted in d min vs. n/a curves, that is the minimum member size as a function of the control points density, as shown in Figs. 101112. Therefore, the TO analysis is performed by setting the right number of control points: once convergence is achieved, the minimum length scale is measured on the reassembled geometry (after the cutting operation through the threshold density plane/hyperplane) and it should be verified that the minimum member size measured on the CAD model is always greater than or equal to the minimum length scale forecast by means of Figs. 789. This methodology does not depend on the shape of the computational domain. Whatever domain can be embedded in a rectangle in 2D and in a regular prism in 3D: the TO analysis can be carried out by simply disregarding those control points that do not affect any element of the mesh, as widely discussed in previous works [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF]. As the estimated minimum length scale is independent of the physical direction, the design abaci constitute very versatile tools for both academic benchmarks and industrial problems. The previous procedure for determining suitable abaci to take into account for the minimum length scale must be slightly modified for those regions which are close to the boundary of the computational domain. This fact is perfectly logic, since the previously discussed algorithm holds for a constant ∆X (j) . Indeed, as control points are distributed on the reference domain by means of the Greville's abscissae formula of Eq. (34), ∆X (j) is not constant and strongly varies within the regions adjacent to the boundary of the computation domain, wherein Eq. (37) should be replaced by ∆X In Eq. (39), ∆X

0 indicates the value of ∆X (j) at the boundary. Therefore, the idea is to provide design abaci similar to those of Figs. 7-9 by using Eq. (39) at point 5 of Algorithm 1. The abaci related to the minimum member size near the boundary of the computation domain, which is denoted d B min , are illustrated in Figs. 13 -15. These abaci show the same trend of the previous ones and they can be used as a design tool in order to forecast the minimum member size at the boundary of the design domain. It is noteworthy that the minimum member size next to the computational domain boundary constitutes a special condition that deserves a particular attention. To understand this point, let consider a 2D TO problem: the B-Spline degrees are set to p 1 = p 2 = 3 and the domain characteristic dimensions are a 1 = 320 mm and a 2 = 200 mm. Suppose that the demanded minimum member size is d min = 5 mm. The corresponding graph of Fig. 7 is examined and it can be retrieved that ∆X = 5.5 mm for an estimated threshold value ρ th = 0.5. Accordingly, the graph of Fig. 11a provides a control points density n/a = 0.191. Therefore, n 1 + 1 = 62 and n 2 + 1 = 39 are enough to obtain a final design meeting the imposed minimum member size constraint. However, this control points distribution implies ∆X 0 = ∆X/3 = 1.83 mm according to Eq. (39), thus an expected minimum member size d B min = 1.35 mm, as it can be inferred from the graph of Fig. 14a. This result does not mean that the design will surely provide a minimum member size of 1.35 mm, but it rather warns the designer that the minimum member size could decrease up to 1.35 mm near the boundary. Under these circumstances, the designer has two choices: on the one hand, the demanded minimum member size condition can be forced on the design domain boundary, i.e. a greater ∆X 0 is chosen, and, accordingly, a smaller number of control points; on the other hand, the designer can try to run the TO computation and then analyse the resulting configuration. In any case, the method allows the designer to be aware about the effects of his choices: reducing too much the number of control points could lead to a poor description of the final topology and, consequently, to inefficient configurations. Contrariwise, launching the TO analysis with n 1 + 1 = 62 and n 2 + 1 = 39 could produce too thin features in the neighbourhood of the domain boundary, that could be unsatisfactory from a technological/mechanical viewpoint.

A smart way to overcome this dichotomy is the utilisation of a nonuniform knot vector, i.e. a knot vector which is not characterised by equally spaced components. In this case, design abaci similar to those of Figs. 7 -9 can be provided. However these graphs are not reported here for sake of brevity. Rather, the beneficial effect of the use of a non-uniform knot vector on the final optimised topology and on the related minimum length scale is directly illustrated on a meaningful benchmark in section 4.

Some remarks about the proposed approach

The approach making use of the previous abaci presents different aspects of outstanding importance.

The method is simple and intuitive to the designer and does not need the introduction of a further constraint in the TO problem formulation. This fact is of paramount importance because constraints involving the minimum member size are often burdensome from a computational viewpoint. Furthermore, these constraints are not met on the reassembled geometry at the end of the optimisation process in the most of the cases. Contrariwise, the proposed approach allows for setting a pertinent combination of number of control points and degrees of the NURBS blending functions that automatically satisfy the imposed minimum member size. The aim of the design abaci is to forecast d min on the reassembled geometry without any explicit optimisation constraint. This method has been conceived in order to promote the consistence between estimated and actual minimum length scale. As a side effect, the methodology could under-estimate the minimum length scale for some combinations of NURBS degrees and number of control points: therefore, the actual minimum length scale measured on final configurations could be higher than the estimated one. A thoughtful discussion on this aspect is provided in Section 4.

Even if the advantages of the NURBS-based SIMP approach have been already shown in previous works [START_REF] Qian | Topology optimization in B-spline space[END_REF][START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF][START_REF] Wang | Efficient Filtering in Topology Optimization via B-Splines[END_REF], the choice of the NURBS discrete parameters (i.e. the number of control points and/or the degree) was not unique and it was left to the designer experience. By means of the abaci of Figs. 789, it is possible to choose a suitable number of control points by setting the desired minimum member size.

Nevertheless, the proposed method is not free of drawbacks. There are two most evident issues to be discussed. Firstly, the designer must arbitrarily set the degree of the blending functions and, a priori, he should try several degrees in order to understand the influence of this parameters on the final optimum topology. Secondly, the designer is obliged to set a threshold density. However, the actual value of this quantity is provided at the end of the optimisation in order to meet the imposed constraints [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF]; this means that ρ th is unknown before performing the TO analysis. Anyway, these are only minor issues that can be easily overcome.

The range of degrees to be used for the TO analysis is limited because, as widely explained in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF], high degrees hamper the correct convergence of the algorithm towards an efficient solution, especially when the number of control points is low. Therefore, there is no interest in using high degrees and the designer can try just the values p j = 2, 3, 4.

Accounting for the gained experience on solving TO problems through the NURBS-based SIMP approach, a likely value for the threshold density is 0.5 and 0.45 for 2D and 3D applications, respectively. Then, if the problem at hand presents particular constraints, which could lead to a poor convergence rate, the previous values can be reduced. If the designer is uncertain among two values for ρ th , the highest value should be set in order to make the most conservative choice.

The effects of the NURBS weights on the minimum length scale

Including the NURBS weights among the design variables leads to some advantages. As discussed in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF], better performances can be achieved when weights and control points are optimised at the same time and final geometries exhibit a smoother boundary. However, their use should be carefully assessed because choosing a NURBS rather than a B-Spline implies doubling the number of design variables if the same number of control points is used.

The minimum member size should be forecast in the case of NURBS as well. The main difficulty raised by considering the weights as design variables consists of the lack of a simple relationship between physical coordinates and the respective knot vector. In other words, the Greville's abscissae formula in the form of Eq. ( 34) does no longer apply, so it is not possible to easily calculate the physical coordinates x j , j = 1, 2, 3 of the control points within the design domain. Moreover, it should be remarked that weights are now design variables and that their value is not a priori known. Since the previously depicted method seemed to be sound enough for B-Splines entities, it is sought to exploit the methodology also in the case of NURBS entities.

To this purpose, the simple benchmark of Fig. 1 has been considered: it is the solution of the TO problem (25) for a 2D aluminium plate clamped on the left side and subject to a shear load applied to the right-bottom corner taken from [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF]. The NURBS discrete parameters were set as n 1 = 47, n 2 = 29 and p 1 = p 2 = 3. The idea is to observe the behaviour of the pseudo-density and weights along horizontal lines related to specific control points rows. Particularly, it is sought to identify some minimum length scale condition, corresponding, for instance, to the thin topological element appearing in the middle-bottom zone of the domain represented in Fig. 1b. In order to have a clearer picture of the situation, Fig. 16 reports the optimised topology observed in Fig. 1b together with the trends of pseudo-density and weights at control points evaluated along the green lines.

Graphs of Fig. 16 confirm that the d min condition occurs when a single control point takes the value 1 whilst its neighbours take the value 0. In this particular condition, the attention is focused on the trend of the corresponding weights: the weight related to the peak control point is always grater than 1, whilst the weights related to the two closest control points at the two sides of the peak are lower than 1. In practice, when the minimum length scale condition is emulated, the pseudo-density field is more attracted towards the material phase when it is represented by means of a NURBS entity rather than a B-Spline one. Thus, the most critical condition (i.e. the lowest value of member size) is obtained with B-Spline surfaces and not with NURBS surfaces. The natural conclusion of this study is that the design graphs of section 3.1 can be used for B-Spline and NURBS entities as well, since in any case they will constitute a conservative estimation of the minimum length scale. Of course, when NURBS entities are considered, the aforementioned abaci should be used with caution. The use of the design graphs, that is sound for B-Spline entities, can be only partially justified for NURBS entities. Indeed, the graphs of section 3.1 are referred to ∆X and n/a. In the case of NURBS entities, these quantities must be interpreted as average quantities, since it is not possible to locate control points according to the Greville's abscissae formula.

Finally, even if the validity of the proposed method cannot be rigorously justified in the case of NURBS entities, its effectiveness is empirically shown on some meaningful benchmarks in section 4.

Results

Minimum length scale in 2D

The effectiveness of the abaci presented in section 3 is proven here in the case of 2D problems through the simple benchmark of Fig. 17 (refer to related caption for details about the geometry and the FE analysis). The TO problem is formulated according to Eq. ( 25), where V ref = a 1 a 2 t and γ = 0.4. Furthermore, a symmetry condition is imposed with respect to the plane x 2 = a 2 /2. The TO problem is solved by means of the NURBSbased SIMP method described in Section 2.3. Details about the architecture of the corresponding algorithm for TO, called SANTO (SIMP And NURBS for Topology Optimisation) and developed at the I2M Laboratory, can be found in [START_REF] Costa | NURBS Hyper-surfaces for 3D Topology Optimisation Problems[END_REF][START_REF] Montemurro | A contribution to the development of design strategies for the optimisation of lightweight structures[END_REF]. When the solution is achieved, the result is exported in Initial Graphics Exchange Specification (IGES) format and the 2D solution is retrieved by means of the threshold operations described in [START_REF] Costa | A 2D topology optimisation algorithm in NURBS framework with geometric constraints[END_REF][START_REF] Costa | A NURBS-based Topology Optimisation method including additive manufacturing constraints[END_REF]. This operation is performed in the CAD environment of CATIA R , as shown in Fig. 18a. Once the 2D structure is obtained, the actual minimum thickness of structural elements is identified and measured. The concept of minimum length scale is pretty clear but a mathematically exact definition does not exist. Accordingly, the measured minimum length scale can be conventionally defined as the diameter of the smallest circle inscribed within the structure such that a slight increment of its diameter would exceed the boundary of the structure itself (an example is given in Fig. 18b). In the following Tables, the (B) symbol appears next to the values of d M min when the minimum member size is measured in the neighbourhood of the boundary; otherwise, the critical zone, wherein d M min is measured, occurs within the design domain.

As it can be retained from Tables 1 and2, the minimum length scale is correctly forecast for both B-Spline and NURBS solutions. The previous statement must be interpreted in the sense that the minimum length scale that is forecast through the proposed methodology is always lower than the actual minimum length scale that is measured on the CAD-reassembled geometry. In this sense the method is conservative.

Minimum length scale in 3D

Because of the complexity of 3D topologies, the minimum length scale condition is checked in a different way with respect to the case of 2D struc- tures. The problem of Eq. ( 25) is solved for the benchmark of Fig. 20. Two symmetry conditions, with respect to the planes x 2 = a 2 /2 and x 3 = a 3 /2, are added. Solutions are provided in the following for different control points numbers and by setting the B-Spline/NURBS hyper-surfaces degrees equal to 3. For 3D problems, the optimised configurations can be handled, at the end of the optimisation process, via suitable Standard Tessellation Language (STL) files. The graphs of section 3 can be used in order to forecast the minimum member size within the domain and on its boundary. The STL file collects the n T R triangles composing the boundary of the optimised volume, thus the local outward normal vector n can be identified on each boundary surface. This information can be exploited to measure the actual minimum member size at the end of the optimisation, in order to check the effectiveness and the robustness of the approach based on the abaci illustrated in section 3.1. It is noteworthy that the boundary of the 3D continuum is retrieved from the knowledge of the iso-surface ρ = ρ th of the fictitious density field. Considering the normal vector, the fourth coordinate of the NURBS hypersurface (which describes the pseudo-density field) takes values ρ < ρ th (no material phase) along the outward direction and ρ > ρ th along the inward direction (material phase). Therefore, the idea is to move from the iso-surface towards the material phase at least for a distance equal to the minimum member size and to check if the opposite side of the boundary is still in the material phase. The main steps realising such operations are described in Algorithm 2, which is carried out in Matlab environment.

n tot c/c ref [Nmm] d M
Algorithm 2 Minimum length scale check for 3D problems.

1: Retrieve the total number of triangles n T R from the STL file. Two counters are set n F = 0 (number of feasible triangles) and n U F = 0 (number of infeasible triangles). Set j = 0. 2: j = j + 1. The topologies corresponding to the configurations appearing in Tables 3 and4 are shown in Figs. 21-23 for B-Spline solutions and in Figs. 242526for NURBS solutions. In particular, the red boundary highlights the domain regions where the minimum length scale is correctly forecast, whilst the blue boundary is constituted of "infeasible" triangles, i.e. those zones characterised by a thickness smaller than that forecast by means of the abaci presented in section 3. Results clearly show that the minimum length scale is correctly forecast in a wide zone of the domain. The minimum member size is smaller than the predicted value only in very circumscribed regions. The fractions of Tables 3 and4 are not exactly 1 because of several reasons. Firstly, the estimation of the minimum member size is based on the assumptions described in section 3, which could be not met in whatever circumstances. Secondly, while the method seems quite intuitive in 2D, its extrapolation in 3D is not immediate.

′ j = OG j -d B min n 5: The B-Spline/NURBS is evaluated in OG ′ j : if ρ OG ′ j > ρ th , n F = n F + 1; otherwise, if ρ OG ′ j < ρ th , n U F = n U F + 1. 6: If j < n T
n tot c/c ref [Nmm] d min [mm] d B min [mm] f F f B F 24 
In particular, for 3D problems the evaluation of the pseudo-density threshold value is not unique and a trial-and-error approach is often required (at the end of the optimisation process) before achieving a good compromise in terms of performances and minimum length scale requirement. However, it is noteworthy that the methodology based on the use of abaci presented in section 3 is both simple and reliable enough to be used in the NURBS-based SIMP algorithm. As far as the computational cost is concerned, it varies depending on the problem at hand. The computational The same optimisation problem is run for the 2D cantilever plate by applying these two different knot vectors and results are shown in Fig. 28 for B-Spline surfaces and in Fig. 29 for NURBS ones. The results of Figs. 28 and 29 highlight one strong potential of the NURBS-based algorithm for TO: for the same mesh, the same number of control points and the same polynomials degrees, the user can opportunely set the knot vector components (which constitute further degrees of freedom of the proposed method) to obtain different topologies. It is interesting to check that the minimum member size forecast by means of the graphs of section 3 is always conservative (the estimated threshold value is ρ th = 0.5). In fact, if the first knot vector clumping is considered, the most critical value ∆X = 4.756 mm is obtained along the X 1 direction on the right side of the domain: the corresponding minimum member size, forecast by using the graph of Fig. 7, is d min = 4.314 mm. The effective (measured) minimum member size is d M min = 7.7 mm for the B-Spline solution (Fig. 28b) and d M min = 7.6 mm for the NURBS solution (Fig. 28c). As far as the second knot vector clumping is considered, the critical value ∆X = 4.367 mm is obtained along the X 1 direction on the left side of the domain. In this case, d min = 3.986 mm and d M min = 5.1 mm for the B-Spline solution (Fig. 29b) while d M min = 7.0 mm for the NURBS solution (Fig. 29c). Therefore, these results put in evidence that, when the number of control points is kept constant, the designer can distribute the knot vectors components in order to have different dimensions of topological features on specified domain zones. Moreover, the generality of the method of section 3 is proven, since the ∆X must be interpreted as a local information, regardless the considered knot vector components distribution.

Conclusions

In this work, an innovative method to effectively handle the minimum member size in TO problems has been presented in the framework of the NURBS-based SIMP approach.

The most relevant contribution of the proposed strategy relies on the fact that, thanks to NURBS entities properties, it is possible to forecast the minimum length scale by simply choosing the NURBS discrete parameters (number of control points and degrees) and some of their continuous parameters, like knot vectors components, by making use of very general design abaci. No further optimisation constraints need to be added to the problem formulation. Three main consequences immediately follow: firstly, the proposed method is completely geometry-based and does not depend upon the underlying mesh. In this sense, the definition of the minimum length scale becomes totally independent from the mesh size. Secondly, the minimum length scale can be controlled not only on the FE model of the structure but also on the reassembled geometry at the end of the optimisation process. Thirdly, it has been shown that the designer can decide to set knot vector according an ad hoc criterion and, consequently, to perform TO with a different minimum length scale in different regions of the domain. Of course, all these aspects can be controlled by properly tuning the NURBS parameters.

Two evident perspectives can be identified. Firstly, the derived abaci can be used, in a conservative sense, in the framework of NURBS entities but their utilisation is rigorously justified only in the case of B-Spline entities. Indeed, for NURBS entities, the current formulation of the minimum length scale could be considered valuable only from a practical viewpoint, as it provides a sort of rule of thumb for forecasting the minimum member size in TO problems. In this background, closed-form solution for Greville's abscissae for NURBS entities must be derived and integrated within the algorithm proposed in this work in order to obtain pertinent abaci.

Secondly, some promising results can be obtained by varying the knot vector components in the NURBS-based SIMP method for TO. In particular, ad hoc knot vector distributions could be proposed to accomplish extremely specific tasks. In particular, the difference between the predicted and measured minimum member size can be minimised by acting on the non-trivial components of the knot-vectors of Eq. ( 6) which should not be set as uniformly distributed in the interval ]0, 1[. Rather, these quantities should be integrated into the vector of design variables in order to reduce the difference between measured and forecast minimum scale length and to improve the quality of results by exactly meeting the constraint on the minimum length scale on the overall computation domain.

Moreover, these aspects go beyond the minimum length scale requirement. The knot vector components together with the number of control points and blending functions degree along each parametric direction could be simultaneously optimised in order to satisfy both minimum and maximum scale requirements. One could act, on the one hand, on the number of control points and degrees to smartly tune the number of knot vector components and, on the other hand, on the value of the non-trivial components of each knot vector to locally satisfy the minimum and maximum scale requirements. Research is ongoing on these aspects.

  The final optimised topology of the 2D structure.

Figure 1 :

 1 Figure 1: An example of 2D optimised topology provided by the NURBS-based SIMP method taken from [19].

  (a) NURBS hyper-surface. (b) The final optimised topology of the 3D structure after the intersection with a suitable hyper-plane.

Figure 2 :

 2 Figure 2: An example of 3D optimised topology provided by the NURBS-based SIMP method taken from [23].

Figure 3 :

 3 Figure 3: Emulation of 2D minimum length scale

Figure 4 :

 4 Figure 4: Emulation of 3D minimum length scale.

Figure 5 :

 5 Figure 5: d min trends in 2D, p j = 3.

Figure 6 :

 6 Figure 6: d min trends in 3D, p j = 3.

Figure 7 :

 7 Figure 7: d min vs. ∆X, p j = 3.

Figure 8 :

 8 Figure 8: d min vs. ∆X, p j = 2.

Figure 9 :

 9 Figure 9: d min vs. ∆X, p j = 4.

Figure 10 :

 10 Figure 10: d min vs. n/a, p j = 2.

Figure 11 :

 11 Figure 11: d min vs. n/a, p j = 3.

Figure 12 :

 12 Figure 12: d min vs. n/a, p j = 4.

Figure 13 :

 13 Figure 13: d B min vs. ∆X 0 , p j = 2.

Figure 14 :

 14 Figure 14: d B min vs. ∆X 0 , p j = 3.

Figure 15 :

 15 Figure 15: d B min vs. ∆X 0 , p j = 4.
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 55 (a) Pseudo-density and weights along the 7 th control points row.(b) Pseudo-density and weights along the 9 th control points row. Pseudo-density and weights along the 11 th control points row. Pseudo-density and weights along the 13 th control points row.

Figure 16 :

 16 Figure 16: Weights and Control Points trends for a NURBS solution.

Figure 17 :

 17 Figure 17: 2D benchmark -Geometric parameters: a 1 = 320 mm, a 2 = 200 mm, thickness t = 2 mm -Material parameters: E = 72000 MPa, ν = 0.33 -Mesh: 96 × 60 PLANE182 elements (plane stress formulation) -Load: P = 1000 N.

  (a) Threshold operation on the NURBS surface. (b) 2D final structure: highlight of the minimum member size.

Figure 18 :

 18 Figure 18: Procedure to measure the actual minimum member size.

  NURBS -96 × 60 CP.

Figure 19 :

 19 Figure 19: 2D solutions -minimum length scale, p j = 3.

Figure 20 :

 20 Figure 20: 3D benchmark -Geometric parameters: a 1 = 400 mm, a 2 = 100 mm, a 3 = 200 mm -Material parameters: E = 72000 MPa, ν = 0.33 -Mesh: 64 × 16 × 32 SOLID185 elements -Load: P = 2000 N.

3 : 4 :

 34 Determine the Cartesian coordinates of the center of gravity of the j-th triangle, i.e. OG j . If the topology boundary is inside the computation domain, move along the local inward direction according to OG ′ j = OG j -d min n; if the topology boundary is located on the boundary of the computation domain move along the local inward direction according to OG

  (a) Front view. (b) Rear view.

Figure 21 :

 21 Figure 21: Highlight of the minimum length scale in 3D, B-Spline solution, p j = 3, 24 × 6 × 12 control points.

Figure 22 :

 22 Figure 22: Highlight of the minimum length scale in 3D, B-Spline solution, p j = 3, 30 × 12 × 18 control points.

Figure 23 :

 23 Figure 23: Highlight of the minimum length scale in 3D, B-Spline solution, p j = 3, 36 × 18 × 24 control points.

Figure 24 :

 24 Figure 24: Highlight of the minimum length scale in 3D, NURBS solution, p j = 3, 24 × 6 × 12 control points.

Figure 25 :

 25 Figure 25: Highlight of the minimum length scale in 3D, NURBS solution, p j = 3, 30 × 12 × 18 control points.

Figure 26 :

 26 Figure 26: Highlight of the minimum length scale in 3D, NURBS solution, p j = 3, 36 × 18 × 24 control points.

Figure 27 :

 27 Figure 27: Knot vectors distributions.

  Uniform knot vectorc/c ref = 0.151. Clumping 2 -c/c ref = 0.163.

Figure 28 :

 28 Figure 28: B-Spline solutions with different knot vector distributions.

Figure 29 :

 29 Figure 29: NURBS solutions with different knot vector distributions.

Table 1 :

 1 Minimum length scale for 2D B-Spline solutions

			min [mm] d min [mm] d B min [mm]
	16 × 10	0.263	19.705 (B)	26.650	5.14
	32 × 20	0.178	16.340	12.010	2.34
	48 × 30	0.151	16.170	6.765	1.59
	64 × 40	0.146	5.173	4.937	1.32
	80 × 50	0.144	6.470	3.575	1.16
	96 × 60	0.145	4.960	2.910	1.08
	n tot	c/c ref [Nmm] d M min [mm] d min [mm] d B min [mm]
	16 × 10	0.210	18.905 (B)	26.650	5.14
	32 × 20	0.154	14.470	12.010	2.34
	48 × 30	0.142	17.159	6.765	1.59
	64 × 40	0.142	6.586	4.937	1.32
	80 × 50	0.143	6.946	3.575	1.16
	96 × 60	0.145	7.301	2.910	1.08

Table 2 :

 2 Minimum length scale for 2D NURBS solutions

  R go to point 2, else go to point 7. 7: Evaluate the fraction of triangles satisfying the minimum length scale, i.e. f F = n F /n T R . The fraction of triangles violating such a constraints is denoted asf U F = 1 -f FNumerical results are collected in Tables3 and 4: the objective function value is highlighted together with the forecast minimum length scale within the domain d min and on the boundary d B min for each solution. The fractions f F and f B F of "feasible" triangles are reported as well.

	n tot	c/c ref [Nmm] d min [mm] d B min [mm]	f F	f B F
	24 × 6 × 12	0.0873	15.000	5.000	0.978 0.958
	30 × 12 × 18	0.0700	10.295	2.356	0.936 0.974
	36 × 18 × 24	0.0620	6.136	1.522	0.982 0.999

Table 3 :

 3 Minimum length scale for 3D B-Spline solutions

Table 4 :

 4 Minimum length scale for 3D NURBS solutions

4.3. The effects of a non-uniform knot vector on the minimum length scaleSince only uniform knot vectors have been considered until now, it seems interesting to investigate the influence of a non-uniform knot vector on the
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