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Abstract

Under shock loading, metals have been found to melt and with reflection of the
shock wave from the material free surface, cavities nucleate and grow. This
process is referred to as microspalling and has been the topic of several exper-
imental investigations. Measurements during the cavity growth phase are not
possible at present and we present here a Detailed Numerical Simulation of an
idealized problem where we assume an inviscid, incompressible liquid subject to
a constant expansion rate with cavities at a vanishing vapour pressure.

To allow for a time-varying gas volume a free-surface interface condition
has been implemented in an existing incompressible multiphase Navier-Stokes
solver, PARIS, using a Volume-Of-Fluid method. The gas flow remains un-
solved and is instead assumed to have a fixed pressure which is applied to the
liquid through a Dirichlet boundary condition on the liquid-gas interface. Gas
bubbles are tracked individually, allowing the gas pressure to be prescribed using
a suitable equation of state.

Simulations with hundreds of bubbles have been performed in a fixed domain
under a constant rate of expansion. A bubble competition is observed: larger
bubbles tend to expand more rapidly at the demise of smaller ones. The time
scale of this competition is shown to depend on the Weber number.

Keywords: Micro-spall, Pore Competition, Volume-of-Fluid, Bubbles,
Cavitation, Free-surface

1. Introduction

Andriot [1] is cited by Signor [31, 33] as the first to have used the term
microspalling. Micro-spall refers to the fine spray of ejecta formed from melted
material after failure of a material under shock loading [33]. The process is
described by Signor [33]: dynamic stress loading on material samples creates
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a compression wave that propagates through it. Upon reflection from the free
surface of the sample, tensile stresses are created in the material that cause
the nucleation of cavities. These cavities may grow up to coalescence and lead
to fine droplets of melted material being formed as the material fails [31]. A
schematic representation of this process is taken from [34] and shown in Fig. 1.

Microspalling has been studied experimentally [10, 11, 34]. Some analytical
models have been created to predict the debris sizes measured in these experi-
ments, which provide global perspectives on void fraction evolution and debris
sizes [16, 32, 33, 36]. Theoretical investigations into micro-spalling have also
been made. Stebnovskii, for example, conducted several investigations, includ-
ing the formation conditions for vapour bubbles during cavitation [35], a shear
deformation model [37] and a rheological model of the media during cavitation
[36]. In [33], Signor proposes a hollow sphere model to investigate the dynamics
of cavities using analytical models. Several liquid dilatation rates for typical
shock loading times are applied to the hollow sphere model and the evolution of
the total porosity is studied. The main question posed by that author is whether
the kinetic energy transferred to the liquid from the loading is sufficient to lead
to percolation.

It is this competition between the expansion of the volume and the energy
required to sustain it that forms the focus of our investigation. Present experi-
mental methods cannot study the detail physics in the melted material, due to
the complex nature of the process and the time and length scales involved. We
therefore propose to create a simplified model problem of the cavitation process
prior to the ejection of micro-spall and then to study it using a Detailed Nu-
merical Simulation. By this term, we mean that we solve in three dimensions
a set of governing equations up to a resolution where the dominant physics for
the simplified model problem of microspalling is captured.

The model problem consists of an incompressible, inviscid liquid contain-
ing several gas bubbles. The inviscid assumption is based on the very small
Ohnesorge number (Oh) encountered in micro-spall fracture experiments with
tin samples. Typical tin samples have a thickness of the order of 100µm. If
we consider the length scale of the small debris in laser irradiation and plate
impact experiments, L ≈ 10µm [34], we have

Oh =
µ√
ρσL

= 5.5× 10−3 (1)

Figure 1: A schematic representation of the micro-spall process by Signor [34]. A compression
wave is shown by the pressure plot at the top and moves from left to right through the material
sample. As the wave reaches the free surface on the right, it is reflected and vapour bubbles
are nucleated from the resulting tension in the material. If bubbles grow sufficiently large to
percolation, droplets are formed that get ejected by the residual momentum in the material
post shock.
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with µ = 10−3 Pa.s, ρ = 6.5 × 103 kg.m−3 and σ = 0.5 N.m−1 the dynamic
viscosity, density and surface tension of liquid tin. Our model will include the
effects of surface tension at the vapour-liquid boundary, as this will be a crucial
effect governing the size distribution of vapour bubbles in the expanding liquid.
Thermal effects are not considered in this idealized problem and the carrier
fluid density and surface tension coefficient are treated as constants. The effect
of gravity is considered negligible. The cavity nucleation process will not be
modelled, but small spherical vapour bubbles will be assumed to already exist
in the carrier liquid.

The next section will discuss existing methods to deal with this model prob-
lem or similar problems, after which our approach will be stated.

1.1. Existing numerical work

Bubble clouds during cavitation or its interactions with shocks have been
the topic of investigation in several theoretical studies employing mathematical
models. A prominent example is the study of pressure wave propagation in
liquids filled with bubbles in the dilute limit by Watanabe and Prosperetti [40].
Another example is the study by Fuster et al. [16], where the potential energy
in the system is considered as a critical factor in the interaction between bubble
clouds and their carrier liquid under tension.

Studies on single bubbles have been performed using different interface track-
ing techniques with a one-fluid formulation of the governing equations. Popinet
used marker particles to study the collapse of vapour bubbles [26] in an in-
compressible liquid. He used a free surface approach to model vapour bubbles
and studied the effect that viscosity has on the formation of jets during bubble
collapse. A combined level set and VOF method (CLSVOF) was developed by
Sussman [38], which was shown to have second order convergence in space and
time. Can and Prosperetti [6] used a level set method and studied the evolution
of a vapour bubble in a microtube.

A DNS study of the propagation of shock waves in an incompressible liquid
containing multiple compressible gas bubbles was performed by Delale et al.
[13] using front tracking to capture the liquid-vapour interface. In terms of high
performance computing, Rossinelli et al. [27] performed a very large simulation
on the collapse of vapour bubbles. A computational mesh of 13 × 1012 grid
points was used to simulate the collapse of around 15000 bubbles. This was
a study focussing on high performance computing aspects of CFD and, how-
ever impressive it was, it presented very limited results of the flow physics and
the details of the boundary conditions were not mentioned. Additionally, no
capillary effects were included in the governing equations.

This study will similarly use a free surface approach to model multiple,
compressible bubbles in an incompressible carrier liquid. It will use a VOF
method, coupled with the PLIC interface representation to study, for the first
time in our estimation, the capillary effects on bubble clouds in a liquid under
tension using Detailed Numerical Simulation.

2. Mathematical Formulation

We solve the flow in an incompressible, inviscid liquid with a sharp interface
of arbitrary shape to a gas phase. We assume this interface moves freely and
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apply a Dirichlet boundary condition for the pressure at the interface. This pres-
sure value is computed using the gas phase pressure as well as the pressure jump
due to surface tension. The liquid flow is then governed by the incompressible
Euler equations.

Momentum conservation in the liquid is described by

∂u

∂t
+ u · ∇u = −∇p

ρ
, (2)

with ρ and u respectively the liquid density and velocity, while p is the pressure
inside the liquid. Note that the surface tension term is excluded here, but is
accounted for in the pressure boundary condition at the free surface.

For the incompressible liquid phase, mass conservation is given by

∇ · u = 0 . (3)

The pressure of the unresolved phase can be determined from an equation of
state. In this case adiabatic conditions are assumed and a polytropic gas law is
applied [39] to compute the gas pressure in the cavity

pc = p0

(
V0
Vc

)γ
, (4)

where Vc is the total volume of a single gas cavity at pressure pc. p0 and V0 are
respectively the reference pressure and volume of the gas phase, γ is the heat
capacity ratio.

The pressure at the free surface on the liquid side, ps, is equal to the gas
pressure with the addition of the Laplace pressure jump due to surface tension

ps = pc + σκ , (5)

where σ is the surface tension coefficient, here assumed to be constant. The
interface curvature is given by κ. The interface is captured using a Volume-Of-
Fluid (VOF) [20] method. The VOF method defines a colour function, c, in
each control volume, which represents the volume fraction of the reference phase
present in that particular volume. For a control volume V`, c is then given by

c =
1

|V`|

∫
V`

H (x, t) dV (6)

where H (x, t) is the Heaviside function, satisfying H = 1 inside the carrier
phase and H = 0 outside it.

The evolution of the color function is governed by the following advection
equation, which is intended to be solved in a weak form by integrating over
finite volumes

∂c

∂t
+ u ·∇c = 0 . (7)

3. Numerical Method

The governing equations are discretized on an equi-spaced Cartesian mesh
in the so-called MAC arrangement [17]. Volume-averaged scalar values (p and
c) are located in the center of computational cells, while scalar components of
velocity are located on cell faces. The liquid density is considered constant.
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3.1. Time integration

The above system of equations is solved numerically using a projection
method [9]. The discrete form of the equations that follow are written for an
explicit first order time integration to illustrate the numerical procedure. First,
a temporary velocity field u∗ is obtained by solving

u∗ − un

∆t
= −un ·∇hun (8)

where ∆t is the time step, the superscript n refers to the n-th time step and
∇h is the discrete gradient operator. The velocity at the next time step, n+ 1,
is then obtained by adding the contribution of the pressure term

un+1 − u∗

∆t
= −∇

hpn+1

ρ
. (9)

The pressure gradient will be calculated to include surface tension at the inter-
face. This will be detailed in Section 3.2. For incompressibility of the flow we
require

∇h · un+1 = 0 , (10)

and by substituting (9) in (10) we have

∇h ·
[

∆t

ρ
∇hpn+1

]
=∇h · u∗ . (11)

We therefore find the divergence-free velocity field at time step n + 1 by cor-
recting the temporary velocity field u∗ with the pressure found by solving (11)
and then using (9)

un+1 = u∗ − ∆t

ρ
∇hpn+1 . (12)

These equations are solved for the liquid flow. We have an arbitrary, free surface
interface to the gas phase and track the liquid using a VOF method, for which
we solve an advection equation, which includes the divergence-free condition (3)

cn+1 = cn −∆t
[
∇h · (cu)

n]
. (13)

This equation is solved in two steps: reconstruction of the interface as a plane in
each grid cell and then its advection with the computation of the reference phase
fluxes across the cell boundary. The use of planes to reconstruct the interface
is sometimes referred to as piecewise linear interface construction (PLIC) and
is accredited to De Bar [12]. In the first part of the reconstruction step, the
interface normal ns is computed with the “mixed Youngs-centered” (MYC)
method [2]. Then the position of a plane, representing the interface in the cell,
is determined using elementary geometry [29]

ns · x = nsxx+ nsyy + nszz = α , (14)

where the scalar α characterizes the position of the interface. For the compu-
tation of the reference phase fluxes we can use the Lagrangian explicit CIAM
scheme [23] or the strictly conservative Eulerian scheme of Weymouth and Yue
[41].

5



A well-known method [14, 38] to increase the convergence order of time
integration is to calculate two explicit time steps and then halve the result

ũ∗ = un + ∆t L(un) (15)

u∗∗ = ũ∗ + ∆t L(ũ∗) (16)

u∗ =
1

2
(u∗∗ + un) , (17)

where ũ∗ is an intermediate temporary velocity field and L is the advection
operator of (8).

3.2. Treatment at the free surface

At the interface to the gas phase, a Dirichlet boundary condition for the
pressure needs to be applied to include the effects of the cavity pressure and
surface tension on the liquid flow. The method used in this work is inspired
by the idea of Fedkiw and Kang [15, 21], often referred to as the ghost fluid
method. First, the pressure in each individual cavity is found from (4). In this
equation, p0 and V0 are known gas quantities, but the volume V needs to be
calculated for each individual cavity.

An algorithm was previously added into PARIS by Yue Ling which is ca-
pable of identifying continuous volumes of a tracked phase (in our case gas)
inside the domain. This algorithm is based on Herrmann’s [19] and makes use
of the color function c. The first step is to loop through the entire compu-
tational domain, check whether a cell contains the tracked phase and tag it.
Neighboring cells will be assigned the same tag number. The next step is to
agglomerate continuous volumes of the tracked phase across processor bound-
aries for parallel computations. The output of the algorithm is a lookup table
for each agglomerated volume, containing its volume, centroid location, velocity
and other information. This lookup table is interrogated to obtain the volume
V for each cavity, which in turn allows for the calculation of pc using (4).

With the value of pc calculated for each cavity, special care is required in
the discretization of (11) for liquid cells near the interface. Cells that contain
mostly gas are excluded from the solution, so that only cells where c < 0.5 are
solved (with c = 0 in the liquid).

Fig. 2 shows a representation of a 2D grid with a section of an interface.
The grey area represent a vapour-filled cavity. Cells that contain a filled circle
are included in the pressure solution, while cells without a marker are excluded.
The finite volume discretisation of the left hand side of (11) for a bulk liquid
cell in 2D, shown in Fig. 3a, is written as

∆t

|Vi,j |

∫
Vi,j

∇ ·
[
∇h pn+1

ρ

]
dV

≈∆t

ρ

(
∇hy pi,j+1/2 −∇hy pi,j−1/2

∆y
+
∇hx pi+1/2,j −∇hx pi−1/2,j

∆x

)

=
∆t

ρ

pi,j+1 + pi,j−1 + pi+1,j + pi−1,j − 4pi,j
h2

, (18)

where the i and j subscripts are integer indices for the discrete computational
cell with volume Vi,j . Since the equation above is only applied in the liquid
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Figure 2: A portion of the 2D computational mesh, showing part of a gas bubble in grey.
Filled circles represent the cell nodes where pressure is calculated. Triangles indicate scalar
velocity components on the computational cell face: filled triangles indicate values which are
found by solving the governing equations, while empty triangles represent boundary values
found by extrapolation.

pi,jpi−1,j pi+1,j

pi,j−1

pi,j+1

(a) Standard discretisation of the
pressure equation in the liquid bulk

pi,jpi−1,j

ps,i,j−1

pi,j+1

δi,j−1/2 δi+1/2,j

ps,i+1,j

(b) Discretisation of the pressure
equation near the interface

Figure 3: Schematic representation of the Poisson equation discretisation.

phase and thermal effects are neglected, then the density ρ is assumed constant.
Furthermore, for cubic cells ∆x = ∆y = ∆z = h, where h is the constant grid
spacing.

The stencil for the pressure gradient components has to be changed near
the interface when a neighbouring pressure in expression (18) falls inside the
gas phase. This point must be disregarded and its pressure substituted by a
surface pressure. We apply the same approach as Chan’s [7]. As an example,
the approximation for the pressure gradient components for the cell with indices
i and j in Fig. 3b is written

∇h
x pi+1/2,j =

ps,i+1,j − pi,j
δi+1/2,j

; ∇h
y pi,j−1/2 =

pi,j − ps,i,j−1
δi,j−1/2

, (19)

where δ is the length of the segment connecting the pressure node under con-
sideration and the intersection with the interface along the relevant coordinate
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i, j

δi+1/2,j

Figure 4: With the given interface configuration, cell i, j will typically have a vertical height
column, but not a horizontal one. A plane reconstruction (thick black line) is made in the
staggered volume indicated with dashed lines and this reconstruction is used to obtain δi+1/2,j

.

direction. The pressure ps on the liquid side of the interface is found by adding
to pc the Laplace pressure jump. The gas pressure pc inside each cavity is known
from (4). The interface pressure in the x-direction will then be

ps,i+1,j = pc,i+1,j + σ
κi,j + κi+1,j

2
. (20)

From (20) and (19) it is clear that accurate estimates of both the interface
curvature as well as the interface position are important parameters to ensure
the accuracy of the pressure solution.

The interface curvature is computed with the height function method [28].
The height function defines the approximate position of a point on the interface
with respect to a reference cell face [5], and is calculated by summing the VOF
values in a column of grid cells, called a height stack, which is aligned with
the Cartesian direction perpendicular to the cell face. The principal curvature
can then be obtained by using finite difference approximations for the first and
second derivatives of the height function. This method has been shown to
produce second-order accuracy for the curvature [25].

It is not always possible to find all the required heights to calculate a cur-
vature. In this case a paraboloid is fitted through the plane centroids of neigh-
bouring interface cells, and then is used to estimate the curvature.

The length δ in the pressure gradient components (19) near the interface
can also be easily calculated if the height function is defined along the relevant
coordinate direction. In Fig. 3b the length δi+1/2,j is given by the absolute
value of the difference between the local horizontal height (red point on the
right of Fig. 3b), and the abscissa of the midpoint of cell i, j, both measured
from the same reference cell. When the interface configuration is such that a
local height cannot be obtained in the required direction, the length δ is then
approximated by using a plane reconstruction of the interface in the staggered
volume, as shown in Fig. 4.

First, the staggered VOF fractions are obtained by considering the plane
reconstruction in centered cells and by computing and adding the half fractions
of Fig. 4. A procedure similar to that of centered cells is then used in the
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staggered cells to reconstruct the interface as a plane, as in (14). Once the plane
equation is known, the interface distance δi+1/2,j can then be easily calculated.

The finite difference discretization of the left hand side of (11) for cell i, j in
Fig. 3b will then be

∆t

ρ
∇h ·

[
∇h pn+1

]
≈ ∆t

ρ

(
∇hy pi,j+1/2 −∇hy pi,j−1/2

1/2
(
∆yj+1/2 + ∆yj−1/2

) +
∇hx pi+1/2,j −∇hx pi−1/2,j

1/2
(
∆xi+1/2 + ∆xi−1/2

) )

=
∆t

ρ

(
2

h+ δi,j−1/2

(
pi,j+1 − pi,j

h
− pi,j − ps,i,j−1

δi,j−1/2

)
+

2

δi+1/2,j + h

(
ps,i+1,j − pi,j

δi+1/2,j
− pi,j − pi−1,j

h

) )
. (21)

The implementation in 3D is included in PARIS.

3.3. Extrapolation of the velocity field

The previous section dealt mainly with the discretisation of the pressure term
near the interface. The solution of the Poisson equation (11) for the pressure
is used in (12) to correct the temporary velocity field u∗ obtained in (8). This
section will deal with the extrapolation of the velocity field, which is required
in the advection term on the right hand side of (8). The advection term u ·∇u
can be discretized using a choice of schemes, including QUICK [22], ENO [18]
and WENO [30].

For all these schemes, the discretization of u ·∇u may require a velocity
stencil including neighbours up to two grid spacings away, depending on the
upwind direction. The discrete pressure nodes that are included in the solution
have been discussed in the previous section, and we need to do the same for
the velocity components, considering also the fact that we are on a staggered
grid. The velocity components that have to be included in the solution of
the governing equations are all those on the boundary of the grid cells where
the pressure is computed. These velocity components are marked with filled
triangles in Fig. 2. We recall that in a staggered MAC discretisation on each
cell face is located only the normal component of the velocity.

As mentioned earlier, the resolved velocity components right next to the
interface will require neighbours in the gas phase in order to discretize the ad-
vection term in the momentum equation with an upwind scheme. These values
in the gas phase can be considered as boundary values to the resolved velocity
components. In order to find neighbours in the gas phase, we extrapolate the
resolved velocities similarly to Popinet’s [25].

After calculating un+1 in (9), we have a field of updated velocities in the
liquid. To find the boundary velocities for the next time step, the closest two
neighbours of each velocity component are extrapolated from the field of liquid
velocities using a linear least square fit. Let’s assume that the velocity field
near a point x0 with extrapolated velocity u0 can be approximated by the
linear expression

u (x) = A0 · (x− x0) + u0 (22)

where the components of the tensor A0 = ∇u0 and of the vector u0 are the
unknowns.
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Liquid

Gas

Figure 5: 2D example of the problem to correct the extrapolated velocities (unfilled triangles).
A Poisson problem is solved in the cells marked with an unfilled circle.

If we now take a 5× 5 stencil around the unknown gas velocity at location x0,
we can find the extrapolated velocity u0 by minimizing the functional

L =

N∑
k=1

∣∣A0 · (xk − x0) + u0 − uk
∣∣2 (23)

This is done first for all locations closest to the resolved velocities uk (“first
neighbours”), whereafter the process is repeated for the “second neighbours”.
Note that only resolved velocity components are included in the cost function,
therefore the number N of resolved velocities can vary depending on the shape
of the interface. Furthermore, because of the staggered grid, only one velocity
component of u0 is computed at location x0.

3.4. Ensuring volume conservation

After the liquid velocities have been extrapolated into the gas phase, an ad-
ditional step is required to ensure that these velocities are divergence free. This
is required to ensure that the advection of the colour function (7) is conservative.

An approach similar to Sussman’s [38] is used. Only the first two layers
of cells inside the gas phase are considered and all other cells are disregarded.
A 2D example is presented in Fig. 5. A “phantom” pressure is computed in
the cells with extrapolated velocity components in all its faces, by solving the
following Poisson equation, which is close to that of the projection step (11)
previously discussed,

∇h ·
(
∇hP̂

)
= ∇h · u0 , (24)

where P̂ is the “phantom” pressure and u0 is the extrapolated velocity on the
faces of the first two gas neighbours. P̂ must be calculated only in the cells
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represented by unfilled nodes in Fig. 5. On the liquid side of these cells, the
solved velocities (filled triangles) are used as a velocity boundary condition with
the pressure gradient on this face set to zero. On the gas side, beyond the cells
where the pressure P̂ is computed, a fixed pressure is prescribed (red filled
circles). Only the extrapolated velocities (unfilled triangles) are then corrected

by the solved pressure gradient ∇P̂

un+1
0 = u0 −∇hP̂ , (25)

to ensure a divergence-free velocity field in the first two layers of cells just inside
the gas.

4. Results

4.1. Single bubble validation with Rayleigh-Plesset equation

A widely-used [6, 26, 38] validation test for volume-changing bubbles in an
incompressible liquid, is to compare a numerical simulation of a single gas bubble
with a fixed liquid pressure at infinity to the solution of the Rayleigh-Plesset
equation [24]. This equation describes the evolution of a bubble of radius R in
an incompressible liquid, assuming spherical symmetry with some fixed pressure
at infinity. A derivation of this equation is given in Appendix 4.4. Neglecting
viscous effects, the Rayleigh-Plesset equation is written for the evolution of the
radius R of a gas bubble, exposed to a pressure p∞ at infinity

R̈R+
3

2
Ṙ2 =

ps − p∞
ρl

=
pc − 2σ/R− p∞

ρl

(26)

where R is the bubble radius, ps the pressure on the liquid side of the interface,
p∞ the pressure at infinity, σ the surface tension coefficient and ρl the liquid
density. The bubble pressure, pc, is obtained from a polytropic gas law

pc(t) = p0

(
V0
V (t)

)γ
(27)

where γ = 1.4 is the isentropic gas coefficient, V0 is the bubble volume at some
reference pressure p0 and V (t) is the bubble volume.

Simulation setup

A bubble of radius R is placed in the center of a cubic domain, with side
L = 1. The initial bubble radius is chosen such that the bubble is not in
equilibrium with p∞ and will expand or shrink as a result.

The application of boundary conditions to the problem is not trivial, since
some finite sized flow domain must be created, while the Rayleigh-Plesset equa-
tion is derived with a pressure at an infinite distance. This problem is addressed
by using the solution of (26) to obtain an expression for the pressure

p(r, t) = ps − ρl

(
Ṙ2R4

2r4
− R̈R2 + 2RṘ2

r
+ R̈R+

3

2
Ṙ2

)
. (28)
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Figure 6: Comparison between PARIS simulations and the solution of the Rayleigh-Plesset
equation for the time evolution of the volume of a single oscillating gas bubble at different
grid resolutions h = 1/N , N = 64, 128, 256 of the unit cube, L = 1. Simulation of a complete
oscillation (left) and local zoom near the minimum (right).

The derivation is given in the Appendix. The solution for the Rayleigh-Plesset
equation (26) is obtained numerically with a fifth order Runge-Kutta integration
method. The time step size for the numerical solution of (26) is deliberately
chosen to coincide with that of the PARIS simulation, to ensure that the pres-
sure calculated from (28) is applied consistently at the boundary. A zero normal
gradient is applied for the velocity on the boundary.

A test case is set up with the following parameters: a bubble with initial
radius R(t = 0) = 0.15 is placed in the center of a cubic domain, containing
liquid with density ρl = 1.0 and a surface tension coefficient σ = 0.05. The
bubble is assumed to be initially at rest, Ṙ(t = 0) = 0. The bubble has a radius
R0 = 0.14 at the reference pressure p0 = 1.0, while the pressure at infinity is
p∞ = 1.5.

First, a time convergence study was performed to determine a fixed time
step size. The solution was found to be suitably converged in time for a time
step of ∆t = 10−5, or smaller, on a grid with Nx ×Ny ×Nz = 643 grid points.

Three simulations were completed for one oscillation cycle with 643, 1283

and 2563 grid points and time step sizes ∆t = 10−5, ∆t = 5 × 10−6 and ∆t =
2.5× 10−6 respectively.

Fig. 6 shows a comparison between the results in PARIS and a numerical
solution of the Rayleigh-Plesset equation. In Table 1, some quantitative results
are given. More specifically, the cavity volume at time t=0.075 is compared
to the theoretical volume computed by the numerical solution of (26) and the
relative error is calculated. The time at which the cavity reaches its minimum
volume is also compared to the theoretical value.

A relatively good agreement was achieved, but the rate of convergence in
space is slow, which may suggest that the PARIS simulations are close to being
converged in space. Another important factor to be considered in this test case,
is the boundary effect which is caused by applying a zero normal gradient to
the velocity on the cube boundary, while the actual velocity field is spherically
symmetric. One way to compensate for this effect is to increase the ratio L/R,
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Cell size, h Vol., t=0.075 Vol. Error t at Vmin t Error
[×10−3] [×10−3] [%] [%]
15.63 7.004 7.16 0.1187 4.27
7.813 7.065 6.35 0.1191 3.95
3.906 7.141 5.35 0.1195 3.63

Table 1: The cavity volume at t=0.075 is compared to the theoretical value (7.5446 × 10−3)
for three different grid resolutions. The time at which the volume reaches a minimum is also
compared to the theoretical value (0.124).

L/R ratio Vol., t=0.075 Vol. Error t at Vmin t Error
[×10−3] [%] [-] [%]

4.29 6.032 20.05 0.1105 10.89
8.59 7.065 6.35 0.1191 3.95
17.18 7.411 1.77 0.1225 1.21

Table 2: The relative errors are calculated using the same criteria as in Table 1, but for three
different ratios of L/R.

between the domain length L and the mean bubble radius R. To study this
effect, the same test case was considered, but with varying domain sizes L.
Three cases were tested, with L = 0.5, L = 1.0 and L = 2.0, respectively,
while both the grid spacing (h = 1/128 ≈ 7.813× 10−3) and the time step size
(∆t = 5 × 10−6) are kept constant. The results are shown in Fig. 7 and the
relative errors, for the same conditions of Table 1, are presented in Table 2.
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Figure 7: Results of the same test case of Fig. 6, but for three different cube sides, L =
1/2, 1, 2, and constant h and ∆t.

It can be seen from these results that the solution in Fig. 6 likely suffered
from the boundary effect. To further investigate this point, another test was
created with the initial radius of the bubble R(t = 0) = 0.10. The remaining
parameters are selected such that the bubble radius decreases significantly more
than in the previous test, thereby ensuring that the ratio L/R is much higher.
The surface tension is σ = 0.10, p∞ = 0.5 and the reference pressure is p0 = 1.0
at a radius R0 = 0.9. This final test case was run on a domain with L = 1.0 with
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1283 grid points. The results for two complete bubble oscillations are shown in
Fig. 8.

Figure 8: Comparison between the PARIS simulation and the solution of the Rayleigh-Plesset
equation with L = 1 and h = 1/128, but smaller initial radius of the bubble and slightly
different physical parameters than the test case of Fig. 6.

A much better agreement is now obtained between the 3D results of PARIS
and the numerical integration of the Rayleigh-Plesset equation. Note that the
grid resolution in this problem is again h = 1/128, and this fact gives confidence
that a large portion of the error is indeed attributable to the boundary effect.
Further convergence studies become prohibitively expensive without the use of
adaptive mesh refinement. However, the agreement achieved in this test problem
is considered sufficient to proceed with the study of the model problem.

4.2. Multiple bubble tests

In this section the results of model problem simulations containing multiple
pre-nucleated bubbles are presented. The setup of the numerical simulations
will be described and some non-dimensional numbers will be defined by which
the flow can be characterized. A parametric study will then be performed.

Simulation setup

As mentioned in the introduction, the shock wave effect in the liquid will be
modelled with a constant rate of expansion, ω. This is imposed by applying a
constant outflow velocity, Un, normal to all faces of the cubic domain, so that

ω =
6Un
L

, (29)

with L = 1 the length of the cube. This boundary condition fixes the growth
rate of the void fraction, since the liquid is assumed incompressible. Another
possible approach could be to fix the boundary pressure. Both options yield
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a kind of ”equation of state”. Whereas imposing velocity is physically more
unstable (the pressure resulting from an imposed velocity may have spikes as in
the waterhammer effect), imposing the velocity is numerically more convenient
and stable, (outflow conditions can be tricky). Since our system is intrinsically
unstable anyway (the speed of sound is imaginary) it seemed preferable to use
the velocity condition.

All simulations are started with bubbles pre-nucleated at some finite size.
Bubbles are seeded in a face centered cubic (FCC) lattice. The bubble positions
can correspond to the exact lattice nodes, or with some random displacement
around this position. Fig. 9 shows a 2D slice of a typical simulation setup.
Bubbles are placed in a central zone, referred to as the bubble zone. An all-

Un

Un

UnUn

Figure 9: 2D slice through domain showing a typical simulation setup. A uniform velocity
outflow rate is specified on the domain faces. Bubbles are initialised in an internal bubble
zone, surrounded by a layer of pure liquid.

liquid zone along the boundary of the computational domain forms a liquid layer
between the bubbles and the outflow faces. The size of this zone is chosen such
that only liquid exits the domain up to a void fraction of approximately 30%.
The inter-bubble distance, `D, is given by

`D =

(
L3

N0

) 1
3

, (30)

with N0 the number of pre-nucleated bubbles. Bubbles are initialized with a
variable radius R0 and the parameter ∆R0/Rmin describes the variance in the
initial bubble diameter, so that Rmin < R0 < Rmin + ∆R0. Once the center
position and radius of each bubble have been generated, the initial conditions for
the colour function field can be easily and accurately initialized with the Vofi
library [3, 4]. An advantage observed when using this library is a significant
drop in computational time compared to iterative, mesh refinement techniques
to generate the initial field.
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To further characterize the problem, a Weber number is introduced based
on the fluid density ρ, surface tension σ and the inter-bubble distance defined
above

We =
ρ `3D ω

2

σ
. (31)

Considering the Weber number, two extreme limits of flow type exist. In
the We → 0 limit, when Un → 0 or σ → ∞, surface tension dominates over
expansion. In the opposite case, the expansion dominates over surface tension
when Un → ∞ or σ → 0 and We → ∞. This situation can be thought of
as bubbles that have some finite size and are driven to expand by a large fluid
expansion rate and surface tension effects are overpowered by strong inertial pull
of the rapidly expanding fluid. In this case we would expect that all cavities
grow at close to the same rate and ultimately percolate.

First, the We = 0 limit is studied and then some cases with increasing We
will be presented. As the Weber number is increased, we are mainly interested
in the individual bubble evolution. With the given boundary conditions, we
know the growth rate of the void fraction, but we do not know in advance how
individual bubbles will evolve to achieve this void fraction and what the influence
of We on this process is. More particularly, even though the growth rate of the
total bubble volume is given, each single bubble may evolve differently from the
expected mean growth rate and this fact affects the total surface area of the
bubbles in the domain and therefore the total surface energy.

Zero Weber

A test case is presented for We → 0. This case is created by defining a
simulation where periodic boundary conditions are used on a unit cube, instead
of using an outflow velocity Un. There are 172 bubbles pre nucleated with
Rmin = 0.025 and ∆R0/Rmin = 0.5. The bubble zone is an inner cube with
length 0.75.

The time evolution of the volume of the bubbles is shown in Fig. 10. The
bubbles are initialized with a random size distribution, as can be seen at time
zero. In this case there is no net flux from the domain, so the void fraction
remains constant throughout the simulation. However, the individual bubbles
either grow or shrink. This can be seen as a surface energy minimization process
in which the system grows some bubbles (in general larger ones), while some
shrink. We can also define a time scale τR based on the bubble radius and fluid
parameters

τR =

(
ρR3

σ

) 1
2

, (32)

with ρ = 1000 and σ = 0.01 in this case. It is then clear from the plot on the
right of Fig. 10 that this time scale is the time scale of bubble collapse.

A plot of the pressure in Fig. 11 shows how the average pressure evolves
in the domain. The increase in pressure is indicative of the tension in the
system relaxing. The negative value of pressure is of no consequence in the
incompressible flow assumption, as we could raise the entire field’s pressure by
some scalar value without changing the physics. Next, we will study the effect
of varying the void fraction growth rate.
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Figure 10: Time evolution of the volume of the bubbles for the We = 0 case. On the right a
logarithmic plot is presented in which the time is re-scaled by τR.

Parameter Value
Liquid buffer to domain length ratio 0.12
Expansion rate ω 0.033, 0.165, 1.05
Initial bubbles N0 365
Grid points 5123

We 5 · 10−4, 0.013, 0.54

∆R0/Rmin 0.5

∆`D/`D 0, 0.2

Table 3: Simulation parameters for multiple bubble tests.

4.3. Multiple bubbles with varying We

In this section the results of three test cases with N0 = 365 initial bubbles
in an expanding domain will be illustrated. The simulation parameters used for
these tests are given in Table 3. By varying the normal outflow velocity Un,
different expansion rates ω are obtained. Three velocities Un are considered,
5.5 × 10−3, 2.75 × 10−2 and 1.75 × 10−1, in turn corresponding to the three
Weber numbers, 5× 10−4, 1.3× 10−2 and 0.54, of Table 3.

The effect of We on the simulation results can be appreciated in Fig. 12,
where individual bubble volumes are plotted against the total void fraction
instead of time, since with constant outflow rates the void fraction is directly
proportional to time. It is observed that the higher the Weber number, the
later the bubble collapse occurs and the number of bubble collapses at a given
total void fraction decreases with increasing We. This means that the higher
the Weber number, the more uniform the growth rate of individual bubbles and
consequently fewer bubbles collapse as the total void fraction increases.

Fig. 13 shows screen shots at progressive time steps. A bubble competition
is observed: some larger bubbles tend to grow at the demise of smaller ones. The
two-dimensional slices on the right show a number of bubbles, with the colour
scale indicating the pressure. A pressure gradient is formed in the liquid from
the large bubbles towards the smaller ones. The average pressure also increases
with time, in a way similar to that observed in the zero We case. An average
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Figure 11: The average pressure in the domain for the We = 0 case. Note that the negative
pressures are not of concern, as the actual value does not have a meaning in incompressible
flow. The reason for the negative values is the zero vapour pressure in cavities.
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Figure 12: Comparison of individual bubble volumes for varying We. Bubble collapse is
delayed with increasing We as the domain expansion counters capillary effects. Individual
bubble volumes are plotted as function of total void fraction.

pressure evolution plot is presented in Fig. 14 for the average pressure in the
three cases.

The bubble radius distribution is presented in Fig. 15. Initially all bubbles
expand in the high We case.

4.4. Bubble interaction

In this section a proportionality between the time scale of pore competition
and the Weber number is formulated. Since the liquid is incompressible, its vol-
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Figure 13: VisIt screenshots of a simulation with 365 initial bubbles at We = 0.1. The left
column shows a 3D view of the bubbles population at progressive time steps. The images on
the right show the pressure distribution at the same instances on a section at z = 0.5.
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Figure 14: The average pressure in the domain as a function of time for the three simulations
with different We.

ume outflow with a constant velocity is balanced by an overall volume expansion
of the bubbles in the computational domain, hence we can write

ωL3 =

N∑
i=1

4πR2
i Ṙi (33)

We now introduce the concept of an average bubble of radius R, with an average

rate of change of its radius Ṙ, which can be considered as representative of the
entire population of bubbles. The sum of the volume expansion of each bubble
can then be written in terms of the growth rate of this average bubble

N∑
i=1

4πR2
i Ṙi = N4πR

2
Ṙ . (34)

After substituting (34) in (33), the volume balance equation is integrated in
time to give the following evolution expression for the average radius R

R
3
(t) =

3ωL3t

4πN
(35)

Here it is has been implicitly assumed that Rmin � 1, a condition which is
satisified in our simulations, since bubbles are initialised to be as small as pos-
sible.

Let t1/2 be the time at which half of the bubbles have collapsed. Using
dimensional analysis and assuming that bubble collapse happens on a time scale
dictated by the bubble radius length scale, we can write

t1/2 =

(
ρR(t1/2)3

σ

)1/2

. (36)
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We = 5× 10−4 We = 1.3× 10−2 We = 0.54

Figure 15: Distribution of bubble radii, normalized to the maximum radius at that particular
time. Bubbles that are growing are shown in green, while bubbles that are shrinking are
shown in red. The first row shows the initial distribution and the second one after 3000 time
steps.

We introduce (35) in this expression and rearrange it to get

t1/2 ω =
3ω2ρ `3D

4πσ
=

3

4π
We . (37)

This relation was tested for the three simulations with different We and the
results are given in Fig. 16. The time t1/2 was measured by either considering
all the bubbles inside the domain, or by excluding the outermost ones. It is
interesting to note that the measured times differ, especially for the higher We
case. This indicates a buffering effect exerted by the outermost bubbles leading
to different evolution rates for the bubbles towards the interior. The relationship
is at least qualitatively linear, but should be confirmed with tests at a wider
range of Weber numbers.

Conclusion

A numerical tool was presented to deal with the specific problem of bubble
interaction in an expanding, incompressible liquid during the micro-spalling
of metals. The code was validated by simulating a single oscillating bubble
and comparing it to a higher order numerical solution of the Rayleigh-Plesset
equation.

Simulations with hundreds of bubbles were studied for test cases defined by
a different Weber number. A bubble competition was observed and the time
scale of bubble interaction was found to be dependent on the Weber number.
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Appendix: Rayleigh-Plesset equation

A derivation for the governing equation for a bubble with radius R in an
inviscid fluid will be detailed here. The flow is assumed to be spherically sym-
metric and incompressible. First, the velocity u is written as a function of the
general radial coordinate r and the bubble radius R. The continuity equation
for incompressible flow is

∇ · u = 0 . (38)

For a spherically symmetric flow, the velocity u is only a function of the
radial coordinate r and time t
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u = u(r, t) r̂ , (39)

where r̂ is the unit radial vector, so the velocity will simply be denoted by the
radial component u(r, t).

In general, the velocity at position r can be written as some function of time

u =
f (t)

r2
. (40)

At the interface of the bubble r = R, so that u = f(t)/R2 = dR/dt = Ṙ.
Rewriting this equation gives

f (t) = ṘR2 (41)

and substituting this back into (40) gives

u =
ṘR2

r2
(42)

The one-dimensional Euler equation is given by

Du

Dt
= −∇p

ρ
(43)

Substituting (42) into the above equation gives

R̈R2 + 2RṘ2

r2
− 2Ṙ2R4

r5
= − 1

ρ`

dp

dr
, (44)

with ρ` the liquid density.
This equation can now be integrated from the bubble interface at R, where

the pressure is pR to infinity at pressure p∞:

R̈R+
3

2
Ṙ2 =

pR − p∞
ρl

=
pc − 2σ/R− p∞

ρl
, (45)

with σ the surface tension coefficient and the pressure jump from surface tension
accounted for.

Pressure at a finite distance

We are interested in knowing the spatial pressure distribution in order to set
the pressure on the boundary of a numerical simulation. Starting from equation
44, we now integrate in space from the bubble surface at R to any r, with
respective pressures pR and p(r). An expression is then obtained for p as a
function of r which can be used to set the pressure at some finite distance

p(r, t) = pR − ρl

(
Ṙ2R4

2r4
− R̈R2 + 2RṘ2

r
− Ṙ2

2
+ R̈R+ 2Ṙ2

)
, (46)

with pR = pc −
2σ

R
.
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de Mécanique et d’Aérotechnique, 2008.
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