
HAL Id: hal-03486986
https://hal.science/hal-03486986

Submitted on 20 Dec 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

A conditional dependence approach to CO2-energy price
relationships

Julien Chevallier, Duc Khuong Nguyen, Juan Carlos Reboredo

To cite this version:
Julien Chevallier, Duc Khuong Nguyen, Juan Carlos Reboredo. A conditional dependence
approach to CO2-energy price relationships. Energy Economics, 2019, 81, pp.812 - 821.
�10.1016/j.eneco.2019.05.010�. �hal-03486986�

https://hal.science/hal-03486986
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


A Conditional Dependence Approach to CO2-Energy
Price Relationships

Julien Chevallier∗, Duc Khuong Nguyen†, Juan Carlos Reboredo‡

2nd Revision May 2019

Abstract

This paper uses the conditional vine copula approach to model the dependence struc-
ture between European-based carbon allowances and major energy prices. It makes two
central contributions to the related literature. First, we extend the previous works of
Reboredo (2013, 2014) by allowing for complete coverage of energy markets including
natural gas, coal, and electricity, beyond the carbon-oil dependencies. Second, we si-
multaneously investigate the multivariate dependence among all variables in the system
so that each of them can interact with the others based on a rich variety of bivariate
copula functions. The consideration of the electricity market in this context offers the
possibility to gauge its influences through the computation of the fuel-switching mech-
anism. We mainly find that there is a reliable and positive link between coal and gas
prices, and between coal and oil prices, with or without the presence of electricity prices,
while a weak and positive link is detected between Brent and gas prices. Carbon prices
co-move only weakly with energy prices, and their link to oil and gas prices is negative.
Moreover, the switch from coal to gas does not occur when the relative price of fuels
taking into account carbon costs is assessed. This happens because the fuel-switching
mechanism is still more costly than carbon abatement. Our findings remain intact when
alternative electricity prices are used.
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1 Introduction

Establishing the stochastic relationships intertwined in carbon and energy markets remains
a challenging task as far as it is related to the climate change targets of carbon emission
reductions, carbon efficiency of power generation, transition to renewable energy, and optimal
energy investments (e.g., Ding et al., 2016; Bonneuil and Boucekkine, 2016; Zhang and Chen,
2017). Previous contributions in the field, notably Aatola et al. (2013), have generally
discovered a strong link between the fundamentals (i.e., electricity, gas and coal prices) and
the price of European Union Allowances (EUA). More importantly, the EUA forward prices
tend to fluctuate closely with fundamentals, particularly with the price of electricity and also
the gas-coal difference. Hammoudeh et al. (2014) have taken a closer look at the short-run
dynamics by using a Bayesian Structural VAR. Their structural model allows us to identify
that a positive shock affecting crude oil prices generates an initial positive impact on the CO2

allowance prices. Regarding gas and coal, an unexpected increase in the natural gas prices
tends to reduce the price of CO2 emissions, whereas coal prices affect carbon prices only
when the electricity price is omitted. Ji, Zhang and Geng (2018) study information linkages
and spillover among the carbon-energy system. Their return and volatility connectedness
features that crude oil, clean energy, and coal play a pivotal role. Their network confirms that
the electricity market is the main net information receiver affected by the carbon market.
This dynamic spillover approach has been applied recently as well by Zhang and Broadstock
(2018) in commodity markets against the background of the financial crisis and also by Zhang
(2017) for the oil-stock relationship.

Whenever potential interactions are at stake, several methodological frameworks (such as
time series and neural networks) can be used to detect them. In recent contributions, Lutz
et al. (2013) made use of the regime-switching GARCH model to investigate the nonlinear
relation between the carbon price and its fundamentals including energy prices, macroeco-
nomic risk factors and weather conditions. Their findings indicate that gas, coal, and oil
can be deemed to be reliable price drivers of the CO2 price and that their influence depends
on high- versus low-volatility regimes. Koch (2014) adopts a smooth transition approach to
model the conditional correlations between carbon and energy prices and finds much closer
carbon-energy price linkages during 2008–2012 (when compared with 2005–2007). These
conditional correlations are further dependent on market uncertainty conditions. Previous
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empirical findings have in common a high degree of substitution among the three primary
energy sources (i.e., crude oil, natural gas, and coal). Another relevant analytical framework
is the dependence-switching CoVaR-copula model, applied by Ji, Liu, Nehler, and Salah Ud-
din (2018), to (clean) energy returns and uncertainty changes; by Ji, Bouri, Roubaud, and
Shahzad (2018) to energy and agricultural commodities; and by Kumar et al. (2018) to the
BRICS stock and foreign exchange markets. In these empirical applications, tail dependence
for different market conditions can be indeed estimated using a dependence-switching copula
model.

In this paper, we further extend the investigation of the cross-relationships between the
CO2 price and energy markets by advancing two central contributions. The first contribution
deals with the choice of data. We decided to work not only with CO2, oil, gas and coal but
also with the price of electricity. The rationale behind this idea is that variations in electricity
prices have significant implications on the choice of power plants and fuels, which in turn
affect carbon emissions and their prices. Meanwhile, the fluctuations in carbon prices can
change the merit order of coal and gas plants whereby the efficiency of the plants and the
fuel costs are critical decision factors. The exact relationship between energy and carbon
prices could thus be biased if the dynamics of electricity prices is ignored. Here, the influence
of the electricity variable is captured through the construction of a specific spread, which we
termed the ‘fuel-switching price’. Delarue and D’haeseleer (2007) defined it as the CO2 price
at which a gas-fired power plant is as economically and equally profitable as a coal-fired power
plant. It exists for every pair of gas and coal plants. The fuel-switching price thus brings
meaningful content for energy economists and policymakers. However, its influence has been
omitted in most of the previous literature, except in engineering journals (see Delarue et al.,
2010).

The second contribution is a methodological one because we capture the dependence
structure by resorting to the vine copula approach. This methodological framework offers
the advantage of modeling various dependence structures and also their potential to construct
a rich set of distributions, in the spirit of Reboredo (2013, 2014).1 We go one step further
than these previous works by examining the dependence structure between a more extensive

1It is worth noting that we are not leaning towards establishing causal relationships in this paper. The
very logic of copula is instead to study dependencies; that is, how are markets linked in average and extreme
market conditions, with a specific focus on the moderating role played by the electricity variables.
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array of time series in the carbon and energy spheres from a multivariate setting perspective.
The objective of this paper is to develop a time series model including the fuel-switching

price that allows for various interesting applications for economists, as suggested by Zach-
mann (2013). Indeed, to the extent that multi-commodity options are quite common in
electricity markets, the ability of the stochastic model to statistically capture the commod-
ity co-movements would help assess the effectiveness of these options. The results from our
vine copula analysis mainly show a complex dependence structure between the price variables
under consideration. In particular, we find a strong dependence between the fuel-switching
price, coal and gas prices. The dependence is positive and high between coal prices, and
the switch variable with symmetric upper and lower tail dependence; whereas it is harmful
and high between gas prices and the switch variable. We also find that CO2 prices weakly
co-move with energy prices, especially with the switch variable (as a proxy for electricity
prices) that displays low and negative dependence. Overall, high carbon costs do not appear
as a sufficient criterion to trigger the switch from coal- to gas-fired plants (potentially owing
to the engineering costs accrued by shut down/power up installations in the process).

The rest of this paper is structured as follows. Section 2 provides a brief review of the
inter-relationships between energy and carbon markets. Section 3 presents the data. Section
4 describes the methodology. Section 5 contains the empirical results. Finally, Section 6
summarizes the main findings.

2 Power sector and CO2 pricing

In the power sector, the marginal generation technology is essential to the determination of
electricity prices.2 There is thus ‘merit order’ which ranks the different generation units by
marginal costs from the cheapest technology to the most expensive. Sijm et al. (2005) show
that several parameters including fuel prices, plant efficiencies, carbon intensity, and carbon
costs are critical for this ranking. Likewise, the merit order of power plants may change with
the introduction of carbon costs through climate policy instruments.

In the following, we build on the notations developed by Delarue et al. (2008) who
2In the electricity price forecasting literature, electricity prices are either taken as they are or transformed

with functions which can handle negative prices (such as probability integral transform), see e.g., Uniejewski,
Weron and Ziel (2018).

4



derived the E-Simulate model at the KU Leuven university in Belgium.3 This is a European
simulation model of interconnected power system networks that are developed according to
the physical characteristics of the electricity grid.

Assuming no carbon costs, the marginal cost of electricity is represented by the ratio
between fuel costs and the plants’ efficiencies, such as:

MC =
FC

η
(1)

where MC is the marginal cost, FC is the fuel cost, and η is the plant’s efficiency.4

When the carbon costs are introduced, the marginal cost for each plant accounts for an
emissions factor which typically depends on the fuel and the quantity of fuel burnt:

MC =
FC

η
+
EF

η
EC (2)

where EF is the emissions factor and EC is the emissions costs. The switching point
between a given coal plant and a given gas plant can be defined as the emissions cost that
equalizes marginal costs; that is, MCgas = MCcoal. This represents the allowance cost that
leads to a switch between two plants in the merit order. This price interacts with various
factors related to fuel prices, energy efficiency, and associated CO2 emissions:

ECswitch =
ηcoalFCgas − ηgasFCcoal
ηgasEFcoal − ηcoalEFgas

(3)

If the carbon price is higher than this cost, then generating electricity from gas is more
profitable than from coal. Besides, the allowance cost of the switching point varies linearly
with the coal-to-gas price ratio. Consider the fuel price ratio r = FCgas

FCcoal
, then write the

so-called switching point:

ECswitch =
(ηcoalr − ηgas)FCcoal
ηgasEFcoal − ηcoalEFgas

= ar−b (4)

with a = ηcoalFCcoal

ηgasEFcoal−ηcoalEFgas
and b = ηgasFCcoal

ηgasEFcoal−ηcoalEFgas
. Eq.(4) shows that the switching

3The notations developed in this section draw substantially on previous works by Chevallier (2011) and
Chevallier and Goutte (2017).

4In this paper, we do not consider the costs associated with regulatory changes, workforce, and operations
and maintenance. This assumption allows us to make the model more inclined to empirical work.
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point depends linearly on the fuel price ratio. It also shows that switching can occur even
with zero allowance costs. The denominator is positive if ηgas

ηcoal
> EFgas

EFcoal
. This relationship

is verified in practice: the emissions factor for gas-fired power plants is nearly half of that
for coal-fired power plants. Additionally, the efficiency of gas-fired power plants (especially
CCGT) is usually higher than that for coal-fired power plants.

If r > ηgas
ηcoal

, then ECswitch > 0. It means that the carbon cost for switching is positive.
On the contrary, it is interesting to notice that fuel-switching could even occur will null
carbon costs. Therefore, for a given (>0) coal price, it is theoretically possible to have a
gas price that is low enough to influence the power producers’ fuel-switching behavior, even
with null carbon costs (whenever the coal-to-gas ratio is equal to the ratio of the gas and
coal efficiencies, see e.g. Delarue et al., 2009)).

The introduction of CO2 costs provides incentives for generators to use gas instead of
coal at the switching point. Depending on the load and the number of gas units available,
the emissions cost profile differs.

In practice, the main abatement opportunities occur by switching from coal to gas. Notice
switching from/to oil is limited in Europe. Similarly, switching from/to nuclear is difficult
because nuclear energy is not flexible.

To compute the switch price, we plug in the values costngas = 0.5 as the production cost of
one MWh of electricity based on net CO2 emissions of gas (e.g. the efficiency of the typical gas
plant, expressed in EUR/MWh), costcoal = 0.4 the production cost of one MWh of electricity
based on net CO2 emissions of coal (e.g. the efficiency of the typical coal plant, expressed
in EUR/MWh), tCO2coal = 364.68 the emissions factor (expressed in kgCO2eq/MWhp) of
a conventional coal-fired plant, and tCO2ngas = 210.96 as the emissions factor (expressed
in kgCO2eq/MWhp) of a conventional gas-fired plant (see Delarue and D’haeseleer (2007,
2008), Delarue et al. (2008)).

Technical values for typical coal- or gas-fired power installations are required for the
computation of the switch price, which is a theoretical (unobserved) price that needs to be
computed for this study. The references provided above are taken from recognized engi-
neering journals regarding the calibration of the E-Simulate model at the K.U. Leuven in
Belgium, which was used extensively to model the electricity grid in Europe. Several schol-
ars (see, e.g., Convery and Redmond, 2007) or even the EU DG Clima have re-used their
estimates in several reports.
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As long as the carbon price lies below this switching price, coal plants are more profitable
than gas plants — even after taking carbon costs into account.

In the next section, we will examine in more detail the effects of EUA prices, on the one
hand, energy and power prices, on the other hand.

3 Data

3.1 Data description

Our dataset consists of the ICE ECX EUA Daily Futures - SETT. PRICE (in Euro per
ton of CO2), the Crude Oil-Brent Cur. Month FOB U$/BBL, the ICE Natural Gas 1
Mth.Fwd. P/Therm, the Coal ICE API2 CIF ARA Nr Mth $/MT - SETT.PRICE, and
the fuel-switching price; computation is detailed in Section 2. Energy prices are pictured in
Figure 1.

We obtained 1598 daily prices that spanned the period from 1 January 2010 to 19 May
2016. All price series were converted to US dollars using the bilateral exchange rates given
by the European Central Bank and the Federal Reserve Bank of St. Louis. From daily
prices, including the fuel-switching price, we computed the price returns at each time t as
(pt − pt−1)/pt−1, where pt denotes the price at time t5.

5Notice in our paper, we are not using logarithmic returns. It is not possible given that our switch variable
can take positive or negative values. Therefore, we use the percentage change of the level of series as given
by (pt−pt−1)

pt−1
, where pt denotes the price level of the corresponding series at time t.
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Figure 1: Energy Prices
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3.2 Descriptive statistics

Table 1 reports the descriptive statistics and the basic stochastic properties for carbon al-
lowance price returns (EUA), oil price returns (Brent), gas price returns (Gas), coal price
returns (Coal) and fuel-switching price returns (Switch). The mean returns are close to zero
for all series and are relatively low concerning their standard deviations. Standard devia-
tions and differences between maximum and minimum values show that the Switch series
is much more volatile than the other series. Coal prices display lower volatility. Negative
values for skewness are only observed for the Switch variable; the other variables only display
positive skewness. All the returns exhibit excessive kurtosis, confirming the presence of fat
tails in the marginal distributions or a relatively high probability of extreme observations.
The Jarque-Bera test for normality rejects the normality of the unconditional distribution
for all the series. The Ljung-Box statistic for autocorrelation up to 20th order in the returns
suggests the presence of serial correlation in the Coal and Switch series and no evidence
of serial correlation for the other series. Finally, the results of the Lagrange multiplier for
the ARCH (ARCH-LM) statistic for serially correlated squared returns indicate that ARCH
effects are likely to be found in all the return series.

[Insert Table 1 here]

Table 2 reports information on the Pearson linear correlation coefficient, with values
indicating that Brent with Gas, Brent with Coal and Coal with Gas display positive depen-
dence, Switch with Gas displays negative dependence and Switch with Coal displays positive
dependence. All other pairs show very low or nonlinear dependence.

[Insert Table 2 here]
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4 Methodology

We study multivariate dependence between carbon allowance prices and major energy prices,
considering the dependence structure between (a) CO2, Brent, natural gas and coal prices,
because this helps track interactions between the CO2 market and each of the major en-
ergy markets in a multivariate and integrated setting. (b) CO2, Brent and electricity prices
(Switch), because this reveals the influence of the electricity market on carbon allowance
prices and the substitutability potential for crude oil with the other two energy sources (Gas
& Coal). (c) CO2, Brent, natural gas, coal and electricity prices, because these reveal inter-
actions between carbon allowance prices and all energy prices. For multivariate dependence
modeling, we employ the vine copulas briefly described below.

4.1 Modelling multivariate dependence with vine copulas

A copula function is a uniform multivariate distribution function of a d-dimensional multi-
variate random vector with support in [0, 1]d. According to the Sklar’s (1959) theorem, the
copula function C(·) is related to the cumulative distribution function of a random vector,
F (x1, x2, ..., xd), via:

C(u1, u2, ..., ud) = F (x1, x2, ..., xd), (5)

where ui = Fi(xi) is the value of the marginal distribution function of the variable xi for
i = 1, ..., d. The converse of Eq. (5) is also true: any multivariate distribution function can be
written using its marginal distributions and a copula function. Assuming that the marginals
and copula C are differentiable, then the density representation of the copula is given by

f(x1, x2, ..., xd) = f(x1)f(x2) · · · f(xd)c(F1(x1), F2(x2), ..., Fd(xd)), (6)

where fi(xi) are the marginal densities and c(·) is the copula density given by

c(u1, u2, ..., ud) =
∂dC(u1, u2, ..., ud)

∂u1∂u2 · · · ∂ud
. (7)

Thus, the multivariate density is represented by the product of the marginal densities and the
multivariate copula density that accounts for the structure of dependence. This feature allows
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for model flexibility by untying univariate marginals distribution estimates from dependence
estimates.

Although several multivariate copulas (such as the Gaussian, Student-t or Archimedean
copulas) have been used to model multivariate dependence, they lack modeling flexibility for
a large number of variables (e.g., by imposing the same structure of dependence for bivariate
pairs). Therefore, vine copulas — which were initially proposed by Joe (1996) — have been
developed to describe multivariate dependence.

Vine copulas are multivariate copulas that are generated using a hierarchical structure
given by a cascade of bivariate copulas (pair copulas), where each bivariate pair copula cap-
tures the conditional dependence between two random variables. Vine copulas are obtained
by decomposing the joint probability density in Eq. (6) by iterative conditioning. However, a
crucial issue in this density decomposition is the choice regarding the order of the variables.
The literature includes several vine specifications that are made of different pair-copula con-
structions composed of d(d − 1)/2 bivariate copulas (see, e.g., Bedford and Cooke, 2001,
2002; Kurowicka and Cooke, 2006; Aas et al., 1999). In our research, we focus on three
vine models with different hierarchical tree structures that have been widely employed in the
empirical literature, namely, C-vine, D-vine, and R-vine copulas. Specific details on those
copulas are reported in the Appendix.

4.2 Marginal and copula models

The marginal densities and the bivariate copulas are the main building blocks of multivariate
dependence modeled using a vine copula. The marginal models and copula specifications
used in the empirical analysis are described as follows.

To account for the main characteristics of the distribution of energy price changes (such
as leverage, fat tails and asymmetries), we consider that the conditional mean and variance
of the returns (rt) are given by an autoregressive moving average (ARMA) model with p and
q lags given by:

rt = φ0 +

p∑
j=1

φjrt−j +

q∑
h=1

ϕhεt−h + εt, (8)

where εt = σtzt such that zt is a zero mean and the unit variance i.i.d. random variable that
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follows a Student-t density distribution and σ2
t is the conditional variance, with dynamics de-

scribed by a threshold generalized autoregressive conditional heteroskedasticity (TGARCH)
specification:

σ2
t = ω +

r∑
k=1

βkσ
2
t−k +

m∑
h=1

αhε
2
t−h

m∑
h=1

λh1t−hε
2
t−h, (9)

where ω is a constant, σ2
t−k is the GARCH component, ε2t−h is the ARCH component and

1t−h is the indication function equal to 1 if εt−h < 0 and otherwise equal to 0. The parameter
λ captures asymmetric effects in such a way that when λ > 0, the future conditional variance
will proportionally increase more following a negative shock than following a positive shock
of the same magnitude.

To model bivariate dependence, we use ten different copula specifications to capture
different characteristics of dependence, such as tail independence and symmetric and asym-
metric tail dependence. Table 3 summarizes the main features of all the copula functions
specifications used in the empirical analysis.

[Insert Table 3 here]

Marginal and copula parameters are obtained following a two-step procedure. First ob-
tained by maximum likelihood are the parameters for the univariate marginal models in
Eq. (8)-(9) and also the standardized residuals that will be the pseudo-sample observations
for the copula.6 Next obtained are the parameters of the vine copula using the sequential
maximum likelihood estimation procedure, as introduced by Aas et al. (2009) and discussed
in Hobaek and Haff (2013). This consists of sequentially estimating pair copula parameters
and conditioning them on the parameters of the previous levels of the vine structure. Thus,
given the selected tree, for the first tree level we estimate the bivariate copula parameters
by maximum likelihood and choose the best pair copulas—from the family reported in Ta-
ble 3—using the Akaike information criterion, as described in Brechmann and Czado (2011)
and Dißmann et al. (2012). Then, for the next tree level, we compute the pseudo-sample
observations from the estimated copulas of the previous level using Eq. (11) and then obtain

6We cannot conduct robustness checks on raw data because raw returns are not i.i.d. Therefore, econo-
metric theory teaches us to infer dependency relationships from residuals instead. This is standard practice
in copula estimation (see Jaworski et al., 2010 for a review).
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the copula parameter estimates for this tree. This process is repeated sequentially until tree
d− 1.

5 Results

5.1 Results for the marginal distribution models

Table 4 reports the estimation results for the marginal models described in Eqs. (8)-(9). The
parameters p, q, r and m were selected for different combinations of values ranging from
zero to a maximum lag of two, using, for this purpose, the AIC values. Accordingly, an
ARMA(0,0)-TGARCH(1,1) specification was selected for all return series except the coal
series, where a single lag was considered to account for serial correlation as described in
Table 1. The estimation results indicate that the conditional volatility is quite persistent
for all the series. Volatility asymmetric effects are observed for all the series, except coal.
Furthermore, neither autocorrelation nor ARCH effects remained in the residuals of the
marginal models.

[Insert Table 4 here]

We assessed the adequacy of the marginal distribution model by testing the null that
the standardized residuals were uniform (0,1). We used the Kolmogorov-Smirnov, Cramer-
von Mises and Anderson-Darling tests, which compare the specified theoretical distribution
function with the empirical distribution function. The last three rows of Table 4 report
the p values for those tests, which indicate that the null of the correct specification of
the distribution function cannot be rejected at the 5% threshold level. We also checked
for the presence of structural breaks in the standardized residuals by using the exponential
likelihood ratio F-statistic—as developed by Andrews (1993), Andrews and Ploberger (1994)
and Hansen (1997)—which endogenously identifies one structural breakpoint. For all series,
we were unable to reject the null of no change point in the standardized residuals. Similarly,
the multiple breakpoint tests developed by Bai and Perron (1998) was unable to identify any
structural change in the standardized residuals. The marginal models are, thus, accurately
specified and the copula model can correctly capture the dependence structure among energy
prices.
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5.2 Results for the vine copula models

We now discuss the empirical results for three different market situations with and without
the fuel-switching price variable. This analysis offers the possibility to assess the role of the
switch variable in the formation of coal prices.

CASE 1: CO2, Brent, natural gas and coal prices.

Figure 2: C–vine copula tree for Brent (B), gas (G), coal (C) and EUA (E).

Note: For each edge, we have indicated the name of the best pair copula (see Table 3) and its estimated
parameter value with the corresponding standard error (in parenthesis) and Kendall’s tau (in brackets).

We first estimated the three vine copula models in Eqs. (10), (12) and (13) using the
pair copulas in Table 3 for CO2, Brent, natural gas and coal prices. Table 5 reports results
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for different selection criteria; the best copula fit was achieved by the C-vine copula model
represented in Figure 2, along with the corresponding information on the pair copulas. Ac-
cordingly, the dependence structure between prices for CO2 and energy is dominated by coal,
which exhibits greater dependence with Brent and gas prices (with Kendall’s taus of 0.16
and 0.22, respectively) than with CO2 prices.

[Insert Table 5 here]

The EU ETS was designed to foster innovation in technologies that are less carbon-
intensive than coal, which is often the cheapest alternative for power production. The
introduction of carbon costs is meant to integrate the social value of carbon into the business
models of user companies. We can observe, with this first set of results, that coal is the
benchmark polluting technology and that it is difficult to trigger a move towards a low-
carbon era.

Moreover, Figure 2 reveals that conditional dependence between Brent and gas prices and
Brent and CO2 prices is weak; this is also the case for conditional dependence between gas
and CO2 prices. The best pair copulas reveal that there is no upper or lower tail dependence.
This result is consistent with the fact that spikes in energy prices are independent and so are
not transmitted between different energy sources. Overall, our evidence indicates that coal,
oil, and gas prices are, on average, integrated, even though they behave as if independent
in the case of extreme upwards or downwards movements; in contrast, CO2 prices co-move
weakly with different energy prices.

We now investigate in more depth whether inclusion of the electricity market (switch
variable) will reveal any new interplays between CO2 and the energy markets.

CASE 2: CO2, Brent and electricity prices (switch).
Different selection criteria show that there is no difference between the three vine cop-

ula structures. Figure 3 depicts a similar structure for the three models. The results for
multivariate dependence between CO2, Brent and electricity prices for the three vine copula
models are presented in Table 6.

[Insert Table 6 here]
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Figure 3: D–vine copula tree for Brent (B), switch (S) and EUA (E).

Note: For each edge, we have indicated the name of the best pair copula (see Table 3) and its estimated
parameter value with the corresponding standard error (in parenthesis) and Kendall’s tau (in brackets).

Estimation of the multivariate dependence structure indicates that there is weak depen-
dence between CO2 and Brent, and also between Brent and switch, as Kendall’s tau takes
low values (0.03 and -0.02, respectively). Likewise, the dependence between CO2 and switch
as given by the Gaussian copula is extremely weak. For all the pairs, we find evidence of no
tail dependence, indicating that these prices are always independent of extreme upward or
downward energy price movements.

This second set of results indicates that power companies did not immediately introduce
carbon cost pricing into their usual dark and spark spreads. At the time of initial allocation
of CO2 allowances, these were free and, given their price evolution until the early phase of
the financial crisis launched in 2008, there were insufficient incentives to reduce coal use
and increase gas use, even though there were moments when gas was cheaper than coal.
To ensure profitability, the power company needs a sufficiently significant and stable price
gap between the two fuels for several weeks or months, after accounting for all costs related
to the switch between fuels (engineers need several days to close down a facility and open
a new one). In Phase III, we would expect the expectations of these companies to change
dramatically with the move to auctioning (i.e., with the need to bid for each CO2 allowance).
This increases the burden of CO2 costs and adds to the fuel-switching formula (clean spark
and explicit dark spreads).
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CASE 3: CO2, Brent, natural gas, coal and electricity prices.

[Insert Table 7 here]

In considering CO2 prices simultaneously with the four energy prices, the results of the
selection criteria for multivariate dependence reported in Table 7 indicate that — based on
an analysis of their tree hierarchical structures — the R- and D- vine copula structures yield
similar results and outperform the C-vine structure.

Figure 4: D–vine copula tree for Brent (B), gas (G), coal (C), switch (S) and EUA (E).

Note: For each edge, we have indicated the name of the best pair copula (see Table 3) and its estimated
parameter value with the corresponding standard error (in parenthesis) and Kendall’s tau (in brackets).

Figure 4 represents this dependence structure, along with information on the pair copulas.
Pair dependence in the first tree indicates the existence of positive and significant dependence
between Brent and coal prices, and also between gas and coal prices. There is also strong
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negative dependence between the gas and switch variables, with Kendall’s tau of -0.52, and
positive dependence between Brent and CO2 prices is weak, with Kendall’s tau of 0.03.

In the second tree of the multivariate dependence structure, there is a positive depen-
dence between Brent and gas prices and there is also strong positive conditional dependence
(Kendall’s tau of 0.52) between the coal and switch variables. The latter finding is also con-
sistent with evidence of symmetric upper and lower tail dependence, given that the Student-t
copula is the best model in describing the coal-switch dependence structure. In contrast,
there is weak dependence between coal and CO2 prices (Kendall’s tau of 0.03) and between
the Brent and natural gas prices (Kendall’s tau of 0.07). The third tree reveals weak con-
ditional dependence between gas and CO2 prices, and also weak dependence between Brent
prices and the switch variable. Finally, the fourth tree indicates that conditional dependence
between CO2 prices and the switch variable is very weak and negative, as indicated by an
associated Kendall’s tau of -0.02.

Overall, when all energy prices are included in the multivariate dependence analysis, the
primary evidence provided by different vine copula model structures can be summarized as
follows. First, there is a strong dependence between electricity prices, as measured by the
switch variable, and coal and gas prices. Dependence is, however, positive and high between
coal prices and the switch variable, with symmetric upper and lower tail dependence, whereas
dependence is negative and high between gas prices and the switch variable. Second, there is
a strong positive dependence between coal and gas prices and between coal and Brent prices,
which may reflect concomitant increases in energy prices in economic boom periods. Third,
CO2 prices weakly co-move with energy prices, with negative dependence on Brent and gas
prices. Finally, CO2 prices are weakly and negatively associated with the switch variable,
suggesting that high carbon costs will not activate the switch from coal-fired to gas-fired
plants.

It is worth noting that the finding of a positive link between coal prices and the switch
variable in the first case described in the previous paragraph typically suggests that energy
producers, to produce electricity, tend to shift between energy sources as an input at the
installation level. In practice, the switch from coal to gas occurs when relative prices make
gas (cheaper as a baseline fuel) more profitable than coal as an input for electricity production
at the installation level, after taking into account carbon costs. Inversely, an increase in gas
prices will prevent the switch from gas to coal plants when assessing the relative price of
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fuels (including carbon costs). In this case, electricity producers would keep operating the
installation with the baseline technology.

Finally, the nature of dependence among energy and carbon emissions prices does not
differ with and without electricity prices since their relationships are mostly described by the
same symmetric copulas (Frank, Gaussian, and Student-t copulas). The exceptions include
the relationship between electricity prices on the one hand, and natural gas and coal prices,
on the other hand. The robustness of our dependence results was checked by considering
potential structural breaks in market dependence or time-varying dependence. Concretely,
the dependence analysis was performed by splitting the sample period into two subsamples
(January 2010 to July 2013 and August 2013 to May 2016) and considering time-varying
parameter pair copulas. The empirical evidence from the structural break analysis fully
confirms the dependence results reported for the whole sample period and by the reported
static copulas.7

5.3 Robustness

We have checked the robustness of our results by considering daily spot prices form EPEX
spot for Germany/Austria instead of our switch variable8. Indeed, the main empirical find-
ings show that for cases 2 and 3 (note that case 1 does not focus on power prices) our
evidence on dependence remains similar. We typically find that hierarchical dependence in
case 2 for EUA, Brent and power prices remained identical and with similar bivariate de-
pendence structures. Similarly, for case 3 among EUA, Brent, coal, gas and power prices
the hierarchical dependence changed from a D-vine to a C-vine, even though bivariate de-
pendence results point to similar evidence than the one we reported for the switch variable.
Overall, analysis with EPEX spot prices is entirely consistent with the evidence we obtain
by using the switch variable.

7For reasons of brevity, results for the structural break test and for time-varying pair copulas are not
reported here, but are available on request.

8The detailed results are not reported here for the sake of concision but can be entirely made available
upon request to the authors. We wish to thank an anonymous reviewer for this valuable suggestion.
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5.4 Discussion

If we look at the big picture — that is, how the obtained results can be used in the current
debate on CO2 emissions —, then we need to reflect on the experience gathered with carbon
and GHG trading systems, while focusing on the performance of these mechanisms as they
have been implemented in practice.

The United Nations Framework Convention on Climate Change (UNFCCC) clearly states
that greenhouse-gas concentrations in the atmosphere coming from anthropogenic interfer-
ence need to be stabilized as much as possible to prevent climate change to a 2 degrees
Celsius scenario at the 2050 to 2100 horizon (see Hoffert et al., 1998).

At the European level, several scholars have analyzed the contribution of the EU ETS
to the management of CO2 emissions with reductions, if any, coming from abatement at
the cheapest sources of pollution. Based on early 2005–2007 data, Ellerman and Buchner
(2007) have documented design flaws giving rise to possible over-allocation in the system.
The scheme has also been affected by erratic (low) allowance price movements in the wake
of inter-Phases I and II banking restrictions (see, e.g., Alberola and Chevallier, 2009).

In this paper, based on 2010–2016 European data, we contribute to this debate by empiri-
cally establishing that high CO2 prices alone are insufficient to push the electricity producers
to switch from coal-fired plants to gas-fired plants. In practice, this means that the emis-
sions trading scheme is not functioning at its maximum potential to provide incentives for
polluters to switch to the lower carbon-intensive fuel (gas). This happens because of the
price differential between coal and gas that is not compensated enough by the introduction
of carbon costs in the range of 20 to 30 euros per ton of CO2-equivalent. Our central policy
implication for the GHG emissions debate is that the tutelary value of carbon should be
much higher than the current historical means. Perhaps, the CO2 price should oscillate in
the range of a hundred euros per ton to effectively foster the switch away from coal pollution
towards gas-fired power installations.

Concerning the industry operations management, we can advance another practical im-
plication of our paper. If the relative price differential between gas and coal (including carbon
costs) is sufficient to trigger the fuel-switching mechanism, then practically this task requires
manual engineering work. That is to say, a team of engineers and technical assistants needs
to manually operate the factory to shut down a coal-fired installation and redirect power
production towards a gas-fired installation. The whole process could take over a day and
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a half to three days before the factory can be considered as shut down. Therefore, we un-
cover in this paper that in reality, the fuel switching mechanism occurs on fewer occasions
than economists initially believed it would in theory (fostering the targeted carbon emissions
abatement). In a nutshell, it is because the price differential (including a massive carbon
cost, most likely higher than the 35 Euro historical high) must be prolonged for several days
(ideally a week or two) before it becomes profitable actually to shut down a factory and
open-up another.

6 Conclusion

Global climate change seriously affects environmental quality, human health, and economic
activity, and it requires coordinated policies from countries around the world. Central to the
threats of climate change is the increasing tendency of global CO2 emissions, which consti-
tute the single most important greenhouse gas in the atmosphere with a contribution of 64%
out of all long-lived greenhouse gases since 1750. The 2012 greenhouse gas bulletin of the
World Meteorological Organization (WMO) documents a 140% increase in carbon emissions,
compared to their level before the industrial era. In Europe, the European Commission has
undertaken, since the early-1990s, some initiatives to reduce carbon emissions and combat
the consequences of climate change, mainly through the European Climate Change Pro-
gramme (ECCP). These initiatives include, among others, the establishment of the EU ETS
for companies to trade out their emission allowances, proposals on the taxation of energy
products, and policy measures to promote electricity from renewable energy and voluntary
commitments by car makers to reduce CO2 emissions. This framework requires a compre-
hensive understanding of the behavior of carbon prices under the effects of not only energy
prices but also the prices of electricity produced with different energy sources.

In this study, we have made use of a vine copula approach to investigate the multivariate
dependence patterns between carbon prices and energy prices, including electricity prices.
The integration of the electricity prices into the analysis is particularly relevant because they
influence the choice of power plants and primary fuels, and ultimately carbon emissions and
their prices. Moreover, the vine copula-based approach allows to capture a wide range of
multidimensional dependence characteristics (i.e., average dependence, upper and lower tail
dependence, and asymmetric dependence) of the price variables under consideration for the
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changing market states through time. The effect of the electricity prices is here accounted for
by the use a fuel-switching price, which is defined as the CO2 price level for which a gas-fired
power plant is as profitable as a coal-fired power plant. We conducted our empirical analysis
in three different scenarios to shed light on the role of carbon and electricity prices: i) the
dependence structure of energy prices without electricity prices (Case 1); ii) the dependence
structure of oil prices, carbon prices, and the fuel-switching price (Case 2); and iii) the
dependence structure of all the energy prices (Case 3). For each scenario, we estimate three
different multivariate dependence structures with the best copula model for each pair of
variables: C-vine, D-vine, and R-vine copulas.

Our results mainly show evidence of a strong and positive link between coal and gas
prices, and between coal and oil prices, with or without the presence of electricity prices.
However, contrary to the centrality of coal prices in the absence of electricity prices (Scenario
1), the dependence structure is much more complicated in the case where electricity prices
are included (Scenario 3). Specifically, we find a positive and high dependence between
electricity prices and coal, but negative and high between electricity prices and gas prices.
This means that a higher electricity price implied by, for example, a higher consumption can
cause a decrease in gas prices but an increase in coal prices and thus more carbon emissions.
A weak and positive link is also found between Brent and gas prices, which typically reflects
the competition between oil and gas in both consumption and production processes. Due
to their substitutes, if the price of one energy source increases significantly, then the end
consumers and producers will move to another source of energy, causing its price to rise.
This finding is particularly apparent during booming economic activities, as reported in
Aloui et al. (2014) who use GARCH-based copula approach to investigate the conditional
dependence structure between the crude oil and natural gas markets, and also to derive
implications for portfolio risk management in extreme economic conditions.

Another important finding is that carbon prices are only weakly associated with energy
prices and their link to gas prices is negative. The latter finding is obtained when electricity
prices are included in the multivariate dependence analysis and, thus, implies that high CO2

prices reduce the prices of gas thanks to a decrease in demand. It is worth noting that the
main findings for dependence structure remain intact when we replace our switch variable
by daily spot prices form EPEX spot electricity prices for Germany/Austria.

Finally, our results suggest that high CO2 prices alone are insufficient to push the elec-
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tricity producers to switch from coal-fired plant to gas-fired plant because they are only
weakly and negatively associated with the electricity prices proxied by the switch variable.
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7 Appendix. Vine copula models
This appendix describes the main features of the three vine copula models we use in our
empirical analysis of multivariate dependence: C-vine, D-vine, and R-vine copulas.

A C-vine copula has a multivariate density given by:

f(x1, x2, ..., xd) =
d∏

k=1

fk(xk)
d∏

h=2

c1,h(F1(x1), Fh(xh))

d−1∏
j=2

d−j∏
i=1

cj,j+1|1,...,j−1(F (xj|x1, ...xj−1), F (xj+1|x1, ...xj−1)).
(10)

where the conditional distribution functions between variables xi and xj can be obtained
(see Joe, 1997) as:

Fi|j(xi|xj) = ci|j[Fi(xi), Fj(xj)] =
∂Cij[Fi(xi), Fj(xj)]

∂Fj(xj)
, (11)

with ci|j denoting the conditional distribution of variable i given the variable j with a joint
distribution function Cij. The dependence structure of this decomposition can be represented
graphically as a hierarchical tree structure. C-vine trees have a star structure where the first
root node of the first tree T1 considers the dependence of one variable concerning the other
variables as represented by the edge connecting the two nodes. This dependence is given by
bivariate copulas (reflected in the second term of Eq. (10)). The tree is then expanded in
such a way that the edges of the previous tree form the nodes of the successive trees and,
thus consider hierarchical conditional dependencies (reflected in the third term of Eq. (10)).
In each tree, one variable plays a pivotal role as it shapes the root node, chosen as the node
that maximizes the sum of pairwise dependencies (as measured by Kendall’s tau) regarding
this node.

A D-vine copula has a multivariate density given by:

f(x1, x2, ..., xd) =
d∏

k=1

fk(xk)
d−1∏
h=1

ch,h+1(Fh(xh), Fh+1(xh+1))

d−1∏
j=2

d−j∏
i=1

ci,i+j|i+1,...,i+j−1(F (xi|xi+1, ...xi+j−1), F (xi+j|xi+1, ...xi+j−1)).

(12)

The specific ordering of the variables in the D-vine construction is, as can be observed,
different from that of the C-vine. The first tree (T1) models dependence between the first
and second variables, the second and third variables, and so on, using bivariate copulas.
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The edges connecting the nodes represent this dependence relationship. The second tree
(T2) models the conditional dependence between the first and the third variables, given the
second variable, between the second and fourth variables, given the third variable, and so
on. This process continues through different trees to the last tree, where only one bivariate
dependency remains. We thus have d(d − 1)/2 pair copula models. The ordering of the
variables in the first tree is crucial because it fully determines the dependence structure of
the remaining trees in the D-vine. From d!/2 possible orderings, the best ordering is selected
to capture as much dependence as possible (as measured by Kendall’s tau) in the first tree
(see Nikoloulopoulos et al. 2012).

According to Kurowicka and Cooke (2006), an R-vine copula consists of linked trees
T1,...,Td−1 with nodes Ni and edges Ei for i = 1, ..., d− 1. The first tree has d nodes and E1

edges, whereas each tree of the remaining trees, i = 2, ..., d− 1, Ti has nodes Ni = Ei−1.
Besides, two edges in tree Ti are joined in tree Ti + 1 if they share a common node in

tree Ti (proximity condition). The edges in an R-vine tree are identified by conditioned
nodes denoted by e = j(e), k(e)|D(e), where D(e) is the conditioning set. Accordingly, the
multivariate density of the R-vine copula is given by

f(x1, x2, ..., xd) =
∏d

k=1 fk(xk)
∏d−1

i=1

∏
eεEi

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e))). (13)

where xD(e) denotes the sub-vector of x = (x1, ..., xd
) indicated by the indices contained in

D(e).
The C-vine is a special case of the R-vine when each tree has a unique node with degree

d− i (the root node). As shown in Morales-Napoloes et al. (2010), there are many different
R-vines. To select the most appropriate R-vine, the structure of the tree is selected using
the maximum spanning tree that solves the following optimization problem for each tree:

max
∑

edges e={i,j} in spanning tree

|τij|, (14)

where τi,j denotes the pairwise empirical Kendall’s tau and a spanning tree is a tree on all
nodes.
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Table 1: Descriptive statistics for price returns.

EUA Brent Gas Coal Switch

Mean 0.0001 -0.0001 0.0015 0.0002 -0.0023
Std. Dev. 0.0288 0.0173 0.0212 0.0101 0.2664
Max. 0.2279 0.1061 0.1695 0.0728 1.7781
Min. -0.1186 -0.0633 -0.0942 -0.0837 -1.7269
Skewness 0.3143 0.3955 1.2901 0.0952 -0.3450
Kurtosis 7.9177 6.1943 11.5108 18.0435 17.9146
JB 1636.6∗ 721.1∗ 5266.2∗ 15070.7∗ 14842.1∗
Q(20) 22.02 16.08 25.64 52.73∗ 53.93∗
ARCH-LM 8.32∗ 10.27∗ 2.30∗ 4.82∗ 14.10∗

Notes: Daily data for the period 1 January 2010 to 19 May 2016. JB is the statistic for the test of
normality. Q(20) is the Ljung-Box statistics for serial correlation in the squared returns computed
with 20 lags. ARCH-LM is Engle’s LM test for heteroskedasticity, computed using 20 lags. An
asterisk (∗) indicates rejection of the null hypothesis at the 5% level.

Table 2: Pearson correlation matrix.

EUA Brent Gas Coal Switch

EUA 1
Brent 0.04 1
Gas 0.02 0.11 1
Coal 0.03 0.15 0.25 1
Switch -0.02 -0.01 -0.21 0.09 1
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Table 3: Copula models.

Dependence features
Copula family positive negative symmetric Lower tail Upper tail

Gaussian (N) X X X – –
Student-t (t) X X X X X
Clayton (Cl) X – – X –
Gumbel (Gu) X – – – X
Frank (F) X X X – –
Joe (J) X – – – X
BB1 X – – X X
BB6 X – – X X
BB7 X – – X X
BB8 X – – X X
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Table 4: Parameter estimates for the marginal distribution models.

EUA Brent Gas Coal Switch

Mean equation
φ0 0.000 -0.000 -0.000 -0.000 -0.001

(0.38) (0.75) (-1.83) (-1.01) (0.03)
φ1 0.112∗

(5.21)
Variance equation
ω 0.000∗ 0.000 0.000∗ 0.000∗ 0.000∗

(2.49) (0.77) (2.44) (8.62) (3.67)
α1 0.054∗ 0.008 0.038∗ 0.021∗ 0.071∗

(3.41) (1.23) (3.55) (6.86) (2.12)
β1 0.913∗ 0.967∗ 0.933∗ 0.949∗ 0.761∗

(67.74) (130.67) (77.96) (69.61) (40.88)
λ 0.052∗ 0.050∗ 0.050∗ -0.021∗ 0.670∗

(2.51) (4.80) (2.31) (-6.44) (4.95)
Tail 5.712∗ 7.946∗ 4.780∗ 2.130∗ 2.887∗

(7.26) (4.73) (8.88) (12.46) (11.65)
Log-Likelihood 3658.25 4440.58 4189.28 5181.01 1408.41
Q(20) 21.95 12.18 18.79 23.94 22.08

[0.34] [0.91] [0.53] [0.24] [0.33]
Q(20)2 13.41 15.62 10.20 27.76 7.84

[0.85] [0.74] [0.96] [0.12] [0.99]
ARCH(20) 0.74 0.77 0.49 1.35 0.42

[0.77] [0.76] [0.96] [0.13] [0.98]
K-S [0.85] [0.21] [0.47] [0.36] [0.12]
C-vM [0.91] [0.25] [0.55] [0.34] [0.11]
A-D [0.93] [0.38] [0.23] [0.25] [0.11]

Notes: This table reports the ML estimates and z statistic (in brackets) for the parameters of the
marginal distribution models defined in Eqs. (8)- (9). The lags p, q, r and m were selected using
the AIC for different combinations of values ranging from 0 to 4. Q(20) is the Ljung-Box statistic
for serial correlation in the model residuals computed with 20 lags. Q(20)2 represents the Ljung-
Box statistics for serial correlation in the squared residual model calculated with 20 lags. ARCH
is the Engle’s LM test for the ARCH effect in the residuals up to 20th order. K-S, C-vM and
A-D denote the Kolmogorov-Smirnov, Cramér-von Mises and Anderson-Darling test for adequacy
of the distribution model. P -value (in square parenthesis) below 0.05 indicates rejection of the null
hypothesis. Asterisk (∗) indicates the significance at 5%.
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Table 5: Case 1: Selection criterion for vine copula models.

C-vine D-Vine R-Vine

Loglikelihood 92.67 90.52 92.31
AIC -173.35 -169.04 -172.62
BIC -141.09 -136.79 -140.36

Table 6: Case 2: Selection criterion for vine copula models.

C-vine D-Vine R-Vine

Loglikelihood 2.91 2.91 2.91
AIC 0.18 0.18 0.18
BIC 16.31 16.31 16.31

Table 7: Case 3: Selection criterion for vine copula models.

C-vine D-Vine R-Vine

Loglikelihood 1172.24 1173.05 1173.05
AIC -2318.48 -2320.11 -2320.11
BIC -2248.58 -2320.11 -2320.11

33




