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The available design rules to evaluate the force distributions in the tension and the compression parts of bolted circular flange connections under bending moment and axial are often based on the beam theory which is not adequate. The aim of this paper is to propose an analytical model for the calculation of the static resistance of bolted circular flange connections subjected to a combined bending moment and an axial force considering the influence of the joint ductility. An analytical model is also proposed to evaluate the stiffness of the tensile and the compressive parts of the connection and thus its initial rotational stiffness. The results obtained via the proposed analytical model are compared favourably against experimental tests and numerical simulations.

specimen is loaded by two load-jacks with a capacity of 1500 kN. The loading is forcecontrolled during the elastic stages and displacement-controlled during the elasto-plastic stage.

Introduction

Bolted circular flange connections are used in tubular members such as chimneys, pylons for wind turbines and ski-lift installations. Most of these connections should be designed for a combination of bending moment and axial load. Several models have been proposed to evaluate the tensile resistance of bolted circular flange connections under tension ( [START_REF] Wardenier | Design guide for circular hollow section (CHS) joints under predominantly static loading[END_REF], [START_REF] Kato | Bolted Tension Flanges Joining Circular Hollow Section Members[END_REF], [START_REF] Igarashi | Limit design of high strength bolted tube flange joints: Part 1. Joint without rib-plates and ring-stiffeners[END_REF], [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]). The L-stub model has also been developed to predict the resistance of the tensile part in connections subjected to combined loading ( [START_REF] Petersen | Stahlbau (Steel Construction[END_REF], [START_REF] Seidel | Zur Bemessung geschraubter Ringflanschverbindungen von Windenergieanlangen[END_REF], [START_REF] Couchaux | Tensile resistance of L-stubs[END_REF]).

Two types of model have been developed to evaluate the static resistance of bolted circular flange connections subjected to a bending moment and/or an axial force. In the first group of models, which are based on elastic analysis ( [START_REF] Seidel | Zur Bemessung geschraubter Ringflanschverbindungen von Windenergieanlangen[END_REF], [START_REF] Bourrier | anchorage of chimney[END_REF], [START_REF] Delesques | Column bases of circular hollow section[END_REF]), the ultimate limit state is assumed to be attained when the resistance of the most critical component of the connection (tensile or compressive) is reached. This approach does not always reflect the observed ultimate behaviour of the connection as other components may possibly reach their full ultimate state before © 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/ Version of Record: https://www.sciencedirect.com/science/article/pii/S0143974X18310058 Manuscript_252f8e924881ad91436bd2ccc34c3b58 Bolted circular flange connections under static bending moment and axial force 2 complete failure of the joint. However, for non-ductile joint (tube-wall buckling, premature bolt failure in tension), this assumption is not far from the experimental and numerical observations [START_REF] Yamaguchi | Mechanical behaviour of height strength bolted tube flange joints subjected to bending and tension[END_REF]. Stamatopoulos & Ermopoulos ([11]- [START_REF] Stamatopoulos | Non-preloaded Bolted ring flanges connections subjected to static loads[END_REF]) have developed a model where all the components of the connection are assumed to reach their full plastic resistance at ultimate state. Hence, the tensile components would have to be sufficiently "ductile" to permit the mobilization of all components and tube-wall buckling should be avoid. The strength of a connection plays an important role in design. However, its stiffness can have an important impact on the overall behaviour of the structure. A model has been proposed by Kozlowski & Wojnar ([13], [START_REF] Kozlowski | Mechanical model for assessment of the stiffness of bolted flange joint[END_REF], [START_REF] Wojnar | Influence of the flange bolted joints stiffness on the behaviour of steel chimneys[END_REF]) to evaluate the initial rotational stiffness of these connections but the calculation method involves an iterative procedure and is not suitable for a day-to-day design.

The objective of this paper is to propose a new model that fully characterize the behaviour of this type of connection, and particularly the moment-rotation curve (see Figure 1). As suggested in EN 1993-1-8, the moment rotation curve is drawn based on two essential characteristics of the connection: the bending resistance and the initial rotational stiffness. The proposed model provides the static resistance of a bolted circular flange connection subjected to the full range of combinations of bending moment and compressive or tensile axial load. This model considers two statically admissible force distributions depending on the ductility of the tensile part and the shell buckling resistance of the compressive part. The resistance of all components can be fully reached provided that they are sufficiently ductile, this mode is then called "ductile mode". In the case of a "non-ductile mode", the resistance of the connection is considered to be attained once the most loaded component fails. The components method is considered to determine the initial rotational stiffness. To validate this model, a bending test has been performed on a ring flange connection and completed by a parametric study considering 20 connections subjected to the combination of a bending moment and an axial force. It is shown that the proposed models predict well the initial stiffness as well as the connection resistance.

Experimental test

Test set-up and specimen geometry

An experimental test has been performed in the laboratory of INSA in Rennes on a bolted circular ring flange connection subjected to a bending moment. This connection, typically used in pylon of sky-lift, is composed of two forged flanges of 40 mm thickness welded on a tube 762×6 (see Figure 2). Flanges are bolted using 24 bolts HR M24 [START_REF]High-strength structural bolting assemblies for preloading[END_REF]. The steel grade of the tubes and the flanges is S355, and the bolts are class 10.9. The connection was initially tested in the elastic range for three levels of bolt tightening: 10, 50 and 100 % of the nominal preloading according to EN 1090-2 [START_REF] Nf En | Execution of steel structures and aluminium structures, Part 2: Technical requirements for steel structures[END_REF] with the aim to evaluate the effect of preloading on the bolt forces distribution. The nominal preloading forces are increased by 10 % as required by the torque method (see Table 1). Half of the bolts were instrumented (see Figure 5). For these bolts, tightening was performed by reading the strain gauge according to the calibration factor. Non-instrumented bolts were tightened applying the torque method of EN 1090-2 [START_REF] Nf En | Execution of steel structures and aluminium structures, Part 2: Technical requirements for steel structures[END_REF]. During these stages, the magnitude of the bending moment was selected to avoid any yielding for each level of preloading. These three cycles are named stage 1, 2 and 3 respectively. After these three elastic cycles, HR bolts were preloaded to 20 % of the nominal preloading as specified in EN 1090-2. The specimen was loaded until failure of the connections so as to evaluate the elasto-plastic behaviour and particularly the plastic and ultimate resistances. This step corresponds to stage 4.

Initial imperfections of the flanges

Near each bolt, the position of the flanges has been measured at the outer edge (point 2 in Figure 4) and at the inner edge of the flanges (point 1 in Figure 4). The difference between these two points corresponds to the imperfection of the flange:

Position2 Position1 ∆ = - (1) 
The mean value of initial flange imperfection [START_REF] Couchaux | Behaviour of bolted circular flange connections[END_REF] is equal to 1,09 mm and tends to favour contact at the outer edge of the flanges as indicated in Figure 4. 

Measurements

During the test, bolt forces, displacements and strains in the connection were measured. Two rosette strain gauges (BR1 and BR2) have been placed on the flange to measure radial and hoop strains (see Figure 5). Two rosette strain gauges (TR1 and TR2) have also been positioned on the tube at 15 mm of the weld toe for the same reason. Thirteen axial strain gauges located at 300 mm of the weld toe have been used to estimate the axial strain distribution in the tube.

Thirteen bolts have been instrumented with axial strain gauges BTM-6C in order to measure the axial strain and thus by calibration, the tensile force in the bolts. Instrumented bolts have also been used to control the bolt preload during tightening as explained in section 2.1. The main displacement transducers (LVDT) positioned to measure the displacements at different locations on the test specimen are presented in Figure 3. 

Moment-rotation curve

Failure of the specimen occurred by local tube-wall buckling at the junction with the connections just above the weld (see Figure 6). It was observed that the three most tension-loaded bolts yielded just prior the end of the test (see section 2.5.2). The maximum bending moment resisted by the connection during the test is equal to 925 kNm.

Figure 6 : Specimen after local buckling

The connection rotation has been evaluated using the displacement given by transducer n°21 (see Figure 3): 2.

δ δ φ - = L ( 2 
)
where δ 21,merasured is the displacement measured by LVDT n°21 (see Figure 3), δ 21,theoretical the theoretical displacement calculated at the location of LVDT n°21 and L 21 the distance from LVDT n°21 to support n°2.

The moment-rotation curve is depicted in Figure 7 for stage 4. The elastic stage is rapidly followed by a drop of the bending moment. This is a typical situation observed with shell-type local buckling behaviour. 

Strain gauge measurements

Rosette strain gauges BR1 and BR2 show that at failure the flanges remain elastic in the tensile area. The elongations of bolts was not sufficient in the tensile area to lead to a cambering of the flanges as it was observed for the bolted circular flange connections subjected to a tensile force tested by Couchaux et al [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]. Stresses calculated with strains measured by axial gauges placed at 300 mm of the connections Tube i ( )

1 13 = → i
are presented in Figure 10. The evolution of stresses as a function of bending moment is linear until the development of stresses close to the yield strength in the tensile and compressive areas for a bending moment close to 850 kNm. Then, the stresses decrease in the most compressed strain gauges (Tube 11, 12 and 13) and increase in the remaining strain gauges placed in the compression area. This redistribution of stresses is caused by the local buckling of the tube-wall in the vicinity of the connection. At the end of the test, strain gauges Tube 1, 2 and 3 reach the yield stress. The tube was able to develop its elastic bending moment.

a-Distribution of stresses b-Evolution of stresses

Numerical analysis

Presentation of the finite element model

A numerical model has been developed to carry out a parametric study and to complete the available experimental results ( [START_REF] Yamaguchi | Fundamental study on high strength bolted tensile joints[END_REF], [START_REF] Jakubowski | Experimentelle Untersuchungen an vorgespannten Ringflanschstössen mit Imperfektionen[END_REF], [START_REF] Wang | Bending behaviour and design model of bolted flangeplate connections[END_REF], [START_REF] Pavlovic | Connections in towers for wind converters, part I: Evaluation of down-scaled experiments[END_REF]). The numerical model was built using the Finite element code ANSYS V11.0. This model is quite similar to that developed for bolted circular flange connections subjected to a tensile force [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]. Connections are generated with 3D solid elements (hexahedral or tetrahedral bricks). The bolts are modelled considering a constant cross-section equal to the effective area A s specified by EN1993-1-8. The model domain consists of 1/4 of the full geometry, since there are two planes of symmetry (see Figure 11). Friction is neglected between the two flanges because of the symmetry.

The stress-strain relationship for steel (flange, tube and bolts) is assumed to be multi-linear (see Figure 13). Large deformations are also considered. As soon as the deformation level reaches ε u , the stress drops to 10 N/mm 2 in order to model the failure of the element. This phenomenon leads either to a drop-off of the force applied to the connection or to the termination of the calculation. This latter state is assumed to be the ultimate state for the connection. The Von Mises criterion is retained to monitor plastic yielding. A complete curve has been used for the analysis of the tested specimen and considers true stress and true strain.

For the parametric study, a simple bi-linear curve has been used (see Figure 13-b). The true stress-strain curve was built considering (f y , ε y ), (f y , ε h ), (f m , ε m ) and (f u , ε u ) that were determined from coupon test results (see section 2.4 and Couchaux et al [START_REF] Couchaux | Tensile resistance of L-stubs[END_REF]).

The extremity of the tube is linked to a pilot node where rotation or bending moment are applied. Loading is controlled in rotation for pure bending moment in order to be able to observe the post-critical regime. In the case of combined loading, the normal force (force controlled loading) is firstly applied. Next the rotation of the pilot node is progressively increased. 

Comparison to test results

Geometrical and mechanical characteristics

A quarter of the connection is modelled as explained in the previous section and presented in Figure 14. The length of the tube is equal to 1250 mm. Analyses have been performed considering four levels of bolt preloading:

• Stage NP: Bolts are not preloaded and a bending moment equal to 400 kNm is applied,

• Stage 2: Bolts are preloaded to half the nominal preloading of EN 1090-2 and a bending moment equal to 580 kNm is applied,

• Stage 3: Bolts are preloaded to the complete nominal preloading of EN 1090-2 and a bending moment equal to 360 kNm is applied,

• Stage 4: Bolts are preloaded to 20 % of the nominal preloading of EN 1090-2 and the rotation is increased until post-buckling.

A geometrical imperfection homothetic to the buckling mode shape obtained at failure (see Figure 15) was applied with a magnitude equal to 1,4 mm.

Figure 14 : Finite element mesh

The mechanical properties used with the strain-stress curve presented in Figure 13-a are given in Table 3.

Element

Thickness/ Diameter 

E f y ε h f m ε m f u ε u N/mm 2 N/mm 2 % N/mm 2 % N/

Moment rotation curves

The failure mode obtained with the finite element model corresponds to local buckling of the tube at the junction with the flange (see Figure 15 

Bolt forces

The evolution of the bolt forces during phases 2, 3 and 4 is presented in Figure 17 as a function of the bending moment. During stage 4, the evolution of the bolt forces is clearly linear until the bending moment reaches 900 kNm. During stages 2 and 3, the variation of bolt forces is more progressive at the beginning of loading than at the end due to the effect of bolt preloading. This phenomenon also happens in L-stub and bolted circular flange in tension ( [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF], [START_REF] Couchaux | Tensile resistance of L-stubs[END_REF]). At the beginning of loading, the contact area is located behind the bolts (see Figure 18-a) and the bolt elongation, and thus the bolt tensile force, is limited. The bolt forces further increase after partial uplift of the flanges occurs (see Figure 18-b).

The evolution of the force in the most tension-loaded bolt (in fact bolt n°1) is presented in Figure 19 as a function of the bending moment applied to the connection during stages 2, 3 and 4. The increase of bolt forces is more important in the test than in the numerical model. This difference is mainly due to the initial deformed shape of flanges (see section 2.2) that improves the contact at the outer edge of flanges. Effect of preloading decreases with increasing value of the applied load. As a result, the variation of bolt force is more pronounced. These phenomena were highlighted by Jakubowski & Schmidt [START_REF] Jakubowski | Experimentelle Untersuchungen an vorgespannten Ringflanschstössen mit Imperfektionen[END_REF]. 4 and Figure 20) subjected to either a pure bending moment or to a combination of bending moment and axial force (compression or tension). Specimens M15 to M19 are made of blank flanges whilst the remaining specimens are ring flanges. Bolts were not preloaded. The objective of this parametric study is to quantify the effect of the flange and tube thicknesses as well as the diameter of the tube. The behaviour of steel is multilinear as described in Figure 13-b and mechanical characteristics are given in Table 5. It has been observed during test (see section 2.5.2) that, when reaching the ultimate moment, the distribution of bolt force was almost linear in the tensile area of the connection. So, the tube wall buckling occurred just after yielding of the first three bolts preventing yielding of other bolts. On the contrary, some specimens studied numerically have been able to develop important rotation capacity with most of the bolts located in the tensile area yielding before the complete failure of the connection. For instance, Specimen M12 belongs to this latter category.

Specimen

R f R b R 0 t f R t t L 1 Bolt
Specimen Flange Tube Bolt f y,f f u,f ε u,f f y,t f u,t ε u,t f y,b f u,b ε u,b N/mm 2 N
The evolution of the bolt forces obtained for specimen M12 is presented in Figure 24 

Analytical model for moment-rotation curve

Introduction

The objective of this section is to propose a model which fully characterize the behaviour of this type of connections, and particularly the moment-rotation curve. As suggested in EN 1993-1-8, the moment rotation curve is built on two essential characteristics of the connection: the static bending resistance and the initial rotational stiffness. The static bending resistance of connection is evaluated considering either a fully plastic mechanism or a deformation mode where only part of the connection is plasticized (see section 4.3). The initial rotational stiffness is determined in section 4.2 considering the component method. The tensile part is modelled considering an L-stub in tension [START_REF] Couchaux | Effect of contact on the elastic behaviour of tensile bolted connections[END_REF]. Based on the model developed by Couchaux et al [START_REF] Couchaux | Enriched beam model for slender prismatic solids in contact with a rigid foundation[END_REF] for beams in contact with a rigid foundation, a new component, corresponding to flanges in compression, is derived and used to determine the position of the neutral axis of the connection.

The results obtained via this analytical model are compared favourably against numerical predictions and experimental results.

Initial rotational stiffness 4.2.1. Model assumptions

The flange is subjected to the following set of distributed loads (line loads) as depicted in Figure 25-a: • The contact forces f c exerted on the lower face of the flange in the compression area,

• A distributed force b exerted by the bolts on the upper face of the flange in the tensile zone,

• The prying force q exerted on the lower face of the flange in the tensile area.

The above loading is statically equivalent to a concentrated normal force N placed at the centroid of the tube and a bending moment M j at the same location. The tensile force f T applied by the tube-wall to the flange is in longitudinal equilibrium with the bolt and the prying forces.

Moreover, the tube-wall exert a compressive force, f C , on the flange in the compression area. In presence of thick flanges, the prying force may not exist and only the bolts load the flange in the tensile area. The bolt forces are then equal to the tensile forces applied by the tube-wall to the flange and create a local bending moment at the junction between the tube-wall and the flange.

This assumption has been considered by Stamatopoulos [START_REF] Stamatopoulos | Non-preloaded Bolted ring flanges connections subjected to static loads[END_REF] and Kozlowski et al [START_REF] Kozlowski | Initial stiffness of flange bolted joints and their influence on the behaviour of steel chimneys[END_REF] either for the evaluation of the bending resistance or the initial rotational stiffness. In presence of thin flange, the prying force always exist and tend to decrease the bending moment at the junction with the tube-wall created by the bolt forces. In order to avoid complex calculations involving bolt and prying forces, the tensile force is applied at a radius R t,el such as it reproduces the same local bending moment at the junction between the tube-wall and the flange (see Figure 25-b). This radius will be defined in section 4.2.5. In the meantime, the contact stress distribution is replaced by a line force f c located at a radius R c that will be determined in section 4.2.4. The cross-section at the junction between the tube wall and the flange (see Figure 26) is supposed to be rigid in its own plane and to remain plane during loading (Bernoulli assumption). A rotation φ j is applied to this cross-section and the interaction between the flange and the tube wall is modelled considering springs placed along the circumference of the tube.

The springs have different stiffness in tension and in compression. The distribution of the forces applied by the tube wall to the flange is then linear in both compression and tension zones.

Considering the plane cross-section assumption, the displacement of the flange at the junction with the tube-wall (see Figure 26) can be expressed as follows:

c,m t,m cos cos for 0 1 cos ( ) cos cos for cos 1

θ α δ θ α α δ θ α θ δ α θ π α -  - ≤ ≤   - =  -  ≤ ≤  +  (3)
where δ c,m is the maximum displacement in the compressive zone (θ = 0), α the angle defining the position of the neutral axis and δ t,m the maximum displacement in the tensile zone (1 cos )

(θ = π).
δ α φ = + R (4) c,m j (1 cos ) δ α φ = - R (5) 
The relation between the distributed force applied by the tube-wall and the displacement is:

t ( ) ( ) θ δ θ = f k (6)
where k is a stiffness coefficient per unit length; equal to k t in the tensile zone and to k c in the compressive zone, respectively.

These stiffness coefficients are calculated via L-stub models presented in sections 4.2.4 and 4.2.5 for the compressive and tensile parts, respectively.

Let f T,m be the maximal force per unit length applied by the tube-wall in the tensile area (θ = π)

and f C,m the maximal force per unit length applied by the tube-wall in the compressive area (θ = 0). These forces are related to the maximum displacements t,m δ and c,m

δ through T,m t t,m δ = f k (7) C,m c c,m δ = f k (8)
Due to circumferential symmetry, the relation between the force applied by the tube-wall and those on the flange are:

t,m T,m t,el = R f f R (9) c,m C,m c = R f f R (10)
where f t,m is the maximal force applied on the flange in the tensile area (θ = π) and f c,m the maximal force applied to the flange in the compressive area (θ = 0).

The ratio between f t,m and f c,m reads:

t,m t c c k c,m c t,el t,el 1 cos 1 cos 1 cos 1 cos α α α α + + = = - - f k R R m f k R R ( 11 
)
The force applied to the flange can be expressed as:

c,m t,m cos cos for 0 1 cos ( ) cos cos for cos 1

θ α θ α α θ α θ α θ π α -  ≤ ≤   - =  -  ≤ ≤  +  f f f (12)
Finally, regarding the connection behaviour, two cases are possible:

• The bending moment is dominant and both a compressive and a tensile zone develop. It is therefore necessary to find the position of the neutral axis, which depends on the loading and the relative stiffness of the tensile and compressive parts of the connection,

• The axial force is dominant and large enough to produce tension or compression over the whole cross-section.

The initial rotational stiffness S j,ini is defined as the ratio between the bending moment M j and the connection rotation φ j :

j j,ini j φ = M S (13)

Position of the neutral axis

If the bending moment is dominant, the stress distribution comprises a compressive and a tensile zone as indicated in Figure 26. Considering Eq [START_REF] Stamatopoulos | Non-preloaded Bolted ring flanges connections subjected to static loads[END_REF], the axial forces generated by the compressive and the tensile stresses are given by: 

+ - = = + ∫ F f R d R f (14) c,tot c c c,m 0 sin cos 2 ( ) 2 1 cos α α α α θ θ α - = = - ∫ F f R d R f (15)
The equilibrium in the longitudinal direction gives:

c,tot t,tot = - N F F ( 16 
)
Inserting equations Eqs ( 11), ( 14) and ( 15) in ( 16), we get the expression of f c,m as a function of N and α:

( )

c,m c k 1 cos 2 sin cos sin ( ) cos α α α α α π α α - = - - + - N f R m ( 17 
)
The bending moments about the neutral axis produced by the compressive and tensile forces, respectively, are given by:

2 j,c c c c c,m c,tot c 0 cos sin 2 ( ) ( ) cos 1 cos α α α α θ θ θ α α - = = - - ∫ M f d R d R f F R (18) 2 j,t t t,el t,el t,m t,tot c cos sin 2 ( ) ( ) cos 1 cos π α π α α α θ θ θ α α -+ = = + + ∫ M f d R d R f F R (19) 
where d c and d t are the distances between the neutral axis and the line forces:

( )

c c t c t,el ( ) cos cos ( ) cos cos θ θ α θ α θ = - = - d R d R R
The total bending moment M j reads:

j j,t j,c c cosα = + + M M M NR (20) 
Finally, the bending moment has the following expression: 

α α α π α α α α α - -+ = + - + M R f R f (21)
Inserting expression of f c,m in [START_REF] Wang | Bending behaviour and design model of bolted flangeplate connections[END_REF], one obtains an equation for α :

( ) ( ) ( ) c k t,el N k ( cos sin ) cos sin 2 sin cos sin ( ) cos α α α π α α α α α α α π α α - + -+ = - - + - R m R e m ( 22 
)
where e N is the eccentricity :

j N = M e N
The angle α being comprised between 0 and π, the corresponding eccentricity is greater than R c /2 or less than -R t,el /2. For other values of the eccentricity, the flange is completely in tension

( t,el N / 2 0 - ≤ ≤ R e ) or completely in compression ( N c 0 / 2 ≤ ≤ e R ).

Initial rotational stiffness • Dominant bending moment

When the bending moment is dominant, Eq (4) to Eq (10) can be combined together to yield:

t,m t j t,el

(1 cos )

α φ = + R f k R R (23) c,m c j c (1 cos ) α φ = - R f k R R ( 24 
)
Inserting ( 23) and ( 24) into ( 21), the expression of the bending moment applied by the tube to the connection becomes:

2 j j c c t,el t sin 2 sin 2 2 2 α α φ α π α       = - + -+             M R R k R k (25) 
Thus the initial rotational stiffness of the connection is:

2 j,ini c c t,el t sin 2 sin 2 2 2 α α α π α       = - + -+             S R R k R k (26)
The above expression is a function solely of α which can be obtained solving equation [START_REF] Pavlovic | Connections in towers for wind converters, part I: Evaluation of down-scaled experiments[END_REF] and is comprised between 0 and π. Outside this range, the axial force is dominant and the connection is completely in tension or completely in compression.

• Dominant axial force

When the axial force is dominant, the stiffness is the same along the circumference of the connection and is equal to either k t or k c . The rotation is directly related to the displacement of the flange produced by the bending moment. Considering the plane cross-section assumption, the displacement δ is given by (see Figure 27):

j ( ) cos R δ θ φ θ = - (27) 
The initial rotational stiffness is:

for a dominant compressive force (

N c 0 / 2 ≤ ≤ e R ): 2 j,c c c π = S k R R (28)
for a dominant tensile force ( t,el Wojnar [START_REF] Kozlowski | Initial stiffness of flange bolted joints and their influence on the behaviour of steel chimneys[END_REF] proposed a formulation based on a parametric study for three types of welds. A theoretical solution is proposed here for full penetration butt welds of ring and blank flanges (see Figure 28).

N / 2 0 - ≤ ≤ R e ):
f C f C

a-L-stub : ring flange b-T-stub : blank flange

Figure 28. L-stubs and T-stubs in compression • Full penetration butt welds of ring flanges : L-stub in compression

The opposite flanges in contact are modelled via the model proposed by Couchaux et al ( [START_REF] Couchaux | Effect of contact on the elastic behaviour of tensile bolted connections[END_REF], [START_REF] Couchaux | Enriched beam model for slender prismatic solids in contact with a rigid foundation[END_REF]) for beams in frictionless contact with a rigid foundation. The latter corresponds to the transverse plane of symmetry passing through the opposite flanges. Stamatopoulos & Ermopoulos [START_REF] Stamatopoulos | Interaction curve for non-preloaded bolted connections in tubular members[END_REF] investigated a flange subjected to a compressive force when the yield strength is reached at the tube-wall and proposed, based on numerical simulations, the following expression for the contact pressure: 

Figure 29. L-stub in compression

These expressions of the contact pressure will be adopted to simplify the analytical expressions and c f 0,98 ξ t ≈ will be considered equal to t f . Hence, if the flange in contact with a rigid support is modelled via the mechanical model proposed by Couchaux et al [START_REF] Couchaux | Enriched beam model for slender prismatic solids in contact with a rigid foundation[END_REF], the deflection w at the tube-wall junction is:

2 4 2 t max t 1 3 3 f f f ( ) 1 6 ( , ) 2 3 2 ( ) ( ) 4 ν   - = - + - - +     p p p z z z z w x z z M x w x t E E t Et ( 31 
)
where M(x) is the bending moment per unit length in the flange, w 1 (x) the deflection at z = 0. Its expression is given by: [ ]

f 1 max t f 3 ( ) 13 3 ( ) 32 2 ν = - + + t w x p p M x E Et (32)
Hence the transverse displacement of the flange at the junction with the tube-wall is:

max t c f f (0, / 2) 2 δ + = - = p p w t t E (33)
Considering equilibrium in the longitudinal direction, one obtains:

C max f t 2 = + f p t t ( 34 
) C t t = f p t (35)
Inserting ( 34) and ( 35) into (33), we get the stiffness per unit length of an L-stub in compression:

C C t t c c f t (2 1) (0, / 2) 2 1/ 2 λ λ δ λ + = = - = + f f k E w t (36) with t t f . t t λ =
The distance between the resultant of the contact stresses and the centre of the tube is:

t f c t 2 / 3 2 2 1 λ λ + = + + t R R
(37)

• Full penetration butt welds of blank flanges : T-stub in compression

The component in compression of a blank flange is modelled via a T-stub in contact with a rigid support and subjected to a compressive force (see Figure 30). The maximum contact pressure is thus:

C max t f = + f p t t (38)
Finally, the stiffness per unit length of a T-stub in compression is: 

t t c t 2 ( 1) 2 1 k E λ λ λ + = + ( 

Stiffness of the tensile part

The stiffness of the component in tension corresponds to the ratio between the tensile force applied by the tube wall to the flange f T and the displacement of the flange δ t .

The evaluation of the stiffness is based on the model proposed for L-stubs by Couchaux et al [START_REF] Couchaux | Effect of contact on the elastic behaviour of tensile bolted connections[END_REF] and presented in Figure 31. The flange rotation is prevented by the tube-wall, and the effect of the bolt is modelled by an axial spring. The stiffness of the bolt is defined according to EN 1993-1-8 rules:

s b b / 2 EA k L = (40)
where L b is the tensile bolt length calculated via EN 1993-1-8 [START_REF]Eurocode 3, Design of steel structures -Part 1-8: Design of joints[END_REF] and A s its cross-section area.

The flange is in pointwise contact at a point located between the bolt axis and the outer edge of the flange which corresponds to the point of application of the prying force. The prying force is also positioned at a distance n from the bolt axis as suggested by Couchaux et al [START_REF] Couchaux | Effect of contact on the elastic behaviour of tensile bolted connections[END_REF]:

( )

2 f min 2 / 3; 0,74 n e t ξ ξ   = + +   (41) with R,0 2 2 R e e α ξ α = ≤ 3 s 1 2 1 R b R,0 3 f b b b 2 1 1 2 4 , , . ( ) π α α   + = = =     A e e e R p t L p n e e F T n e 1 e 2 t f

Figure 31 : Model for L-stubs in tension

To simplify the analysis, the response of the flange is studied considering the mechanical model presented in Figure 32 where the vertical support at the free edge corresponding to a point-wise contact has been moved to the junction between the flange and the tube and supplemented by a torsional spring that reproduces the flexural interaction between the tubewall and the flange. The expression of the stiffness of the rotational spring is: 1) , . 12( 1)

θ t b 2β = k D p (42) with 3 2 t 4 t 2 2 2 t 3(
ν β ν - = = - Et D R t
In presence of blank flange, the elastic restrain due to the portion of flange present inside the tube can be considered via the circular plate bending theory:

( )

θ t f b 2 (1 ) / β ν = + + k D D R p (43) with 3 f f 2 .
12( 1)

ν = - Et D Q B FT e1 n 1 2 kθ x z

Figure 32 : Analysis of the L-stub

The flange is subjected to the bolt force B and the prying force Q. These forces are in equilibrium with the applied tensile force F T . In the meantime, compatibility between the bolt and the flange has to be fulfilled. The prying force and the bolt force act at point 1 and point 2, respectively. Under a unit prying force (Q = 1) alone, the deflections at point 1 and at point 2 are taken to be δ Q1 and δ Q2, respectively. Similarly, under a unit bolt force (B = 1), the deflections at point 1 and at point 2 are taken to be δ B1 and δ B2 , respectively. The total flange deflection at point 2 can be expressed as:

2 Q2 B2 w Q B δ δ = - (44) 
with 

2 3 1 1 1 1 1 Q2 1 B2 1 f f θ f f θ 1 1 , , 2 3 3 δ δ 
    +   = + + + = + +             e e
3 b f f f b f , 0,8 12 = = p t I A p t
Similarly, the total flange deflection at point 1 is computed as:

1 Q1 B1 w Q B δ δ = - (45) with ( ) ( ) 
3 2 1 1 1 Q1 f f θ 3 δ + + + = + + e n
e n e n EI GA k and

2 1 1 B1 B2 f θ . 2 δ δ   = + +     e e n EI k
Compatibility demands that the elongation of the bolt is equal to the difference between 1 w and 2 w :

1 2 b B w w k -= - (46) 
Furthermore, equilibrium in the vertical direction gives:

T B F Q = + (47) 
Combining equations ( 44) to (47), one obtains the relation between the bolt force and the tensile force:

Q1 Q2 T T b Q1 Q2 B1 B2 1/ ( ) B F F k δ δ η δ δ δ δ - = = + - - - (48) 
Finally, the stiffness of the tensile part is given by:

T T t t 1 b B1 Q1 Q1 b 1 ( ) δ η δ δ δ = = - =   - +   f F k w p p ( 49 
)
The bending moment at the junction between the tube-wall and the flange is equal to:

( )

E 1 1 T 1 1 ( ) ( 1)( ) η η 
= - + = -- + M Be Q e n F e e n (50) 
The same bending moment can be obtained by applying the tensile force F T at a distance x t,el from the tube-wall :

E t,el 1 1 T ( 1)( ) η η 
= = -- + M x e e n F (51) 
One obtain the equivalent radius of the tensile part considered in Figure 25-b:

t,el t,el 1 1 ( 1)( ) η η 
= + = -- + + R x R e e n R (52) 

Plastic bending moment 4.3.1. General hypothesis

The failure mode depends on the ductility of the different components of the connection. We have chosen to consider two types of failure modes:

• A "ductile" failure mode (see Figure 33-a) where the full resistance of each component is reached,

• A "non-ductile" failure mode (see Figure 33-b) where the full resistance of the most stressed components of the connection is reached.

In section 4.3.2, we explain how to identify the relevant failure mode. , for 0 ( ) , for

f f f θ α θ α θ π ≤ ≤   =  ≤ ≤   (53) 
where f c,pl is the compressive resistance per unit length (see section 4.3.6), f t,pl is the tensile resistance per unit length (see section 4.3.5), α is the angle defining the position of the neutral axis.

Such as for the evaluation of the rotational stiffness, the tensile forces are placed at a radius, R t,pl , comprised between R and R b to take into account the presence of prying force. The evaluation of R t,pl is explained in section 4.3.5 and depends on the failure mode of the tensile zone.

In a "non-ductile" failure mode, the resistances of the most stressed tensile and compressive components of the connection are reached (see Figure 33-b), which gives: c,pl t,pl cos cos , for 0 1 cos ( ) cos cos , for cos 1

f f f θ α θ α α θ α θ α θ π α -  ≤ ≤   - =  -  ≤ ≤  +  (54)
For these two failure modes, the position of the neutral axis, defined by the angle α, will be determined considering the axial equilibrium equation: c,pl,tot t,pl,tot

= - N F F ( 55 
)
where F c,pl,tot is the resultant of the compressive part, F t,pl,tot the resultant of the tensile part and N the axial force.

Furthermore, the bending moment acting on the connection is: j,pl j,t,pl j,c,pl

c cosα = + + M M M NR ( 56 
)
where M j,c,pl is the resultant bending moment arising from the compressive part evaluated at the neutral axis, M j,t,pl is the resultant bending moment arising from the tensile part evaluated at the neutral axis

Ductility of the connection

Each connection components will reach its resistance only if the most deformed components are sufficiently ductile in both tensile and compressive parts. It is obvious that the tensile part of the connection is not ductile when its failure mode corresponds to the rupture of bolts without prying action. On the other hand, the compressive part of the connection is ductile when the tube is class 1 or 2. However, even if the class of the tube is 3 or 4, the tensile part of the connection, when sufficiently ductile, can reach its entire potential resistance if its resistance is significantly lower than that of the compressive part of the connection. Finally, with the benefit of a series of comparisons with numerical and experimental results, the authors have chosen that a connection can be classified as "non-ductile" if one of the following condition is fulfilled:

• The class of the tube is 4 according to proposal of Rotter & Sadowski [START_REF] Rotter | Development of circular tube slenderness classifications under axial and bending actions[END_REF] and prEN 1993-1-1 [START_REF]Draft of Eurocode 3, Design of steel structures -Part 1-1: General rules and rules for buildings[END_REF] (see Eq. ( 57)) and the ultimate tensile resistance of the connection increased of 20% is greater than the compressive resistance of the tube N c,pl ,

• The ultimate tensile resistance of the connection is greater than 95% of the sum of the tensile resistance of the bolts.

The boundary between class 3 and 4 is:

3 3,0 N t lim = = D a a k t ( 57 
)
where a 3,0 is the boundary proposed by Rotter & Sadowski [START_REF] Rotter | Development of circular tube slenderness classifications under axial and bending actions[END_REF] for pure bending: 

        = -                 t L a D D y,t 235 ε = f k N is
α θ α = = ∫ F f R d R f (58)
α α α α θ θ θ π - = = ∫ M f d R d N R (61)
π α α π α α θ θ θ π + - = = ∫ R R M f d R d N ( 62 
)
where d c and d t are the distances between the neutral axis and the forces per unit length:

( )

c c t c t,pl ( ) cos cos ( ) cos cos θ θ α θ α θ = - = - d R d R R
Inserting Eq (61) and Eq (62) into Eq (56), we get the plastic bending moment: 

α α α θ θ θ α π α - = = - - ∫ N R M f d R d F R (67) 
+ = = + + ∫ N R M f d R d F R (68) 
Inserting Eq (67) and Eq (68) into Eq (56), we get the closed form expression for the plastic bending moment: c,pl c T,pl t,pl j,pl cos sin cos sin 2 1 cos 2 1 cos

α α α π α α α π α π α - -+ = + - + N R N R M (69)
The latter expression can be used for all the values of N comprised between N c,pl /2 and -N T,pl /2. When that condition is not fulfilled, the axial force is dominant and the connection is either completely in tension or in compression.

Dominant axial force (tension/compression)

When the axial force is dominant, the ultimate state is reached in the most stressed part of the connection, and the plastic bending moment becomes:

c,pl c c,pl c,pl c,pl j,pl T,pl t,pl T,pl T,pl T,pl 1 for 2 2 1 for 2 2    - ≤ ≤          =     + - ≤ ≤ -          N R N N N N N M N R N N N N N (70)

Resistance of the tensile part

The resistance per unit length of the tensile part of the connection, f t,pl , is derived from the pure tensile resistance of the connection:

T,pl t,pl t,pl 2π = N f R ( 71 
)
where N T,pl is the plastic resistance of the connection.

The tensile resistance of the connection can be determined via the L-stub model ( [START_REF] Petersen | Stahlbau (Steel Construction[END_REF], [START_REF] Seidel | Zur Bemessung geschraubter Ringflanschverbindungen von Windenergieanlangen[END_REF], [START_REF] Couchaux | Tensile resistance of L-stubs[END_REF])

or considering the circumferential symmetry of the circular flange [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]. In the present paper, the latter has been adopted. To evaluate the tensile resistance, four failure modes have been considered:

• Mode 1: plastic bending mechanism of the flange, the corresponding resistance is noted N T,1,pl

• Mode 2: yielding of bolts with prying effect, the corresponding resistance is noted

N T,2,pl
• Mode 3: yielding of the bolts with full separation of the flange, the corresponding resistance is noted N T,3,pl

• Mode 4: yielding of the tube in tension, the corresponding resistance is noted N T,4,pl

The tensile resistance of the connection is the minimum between the four failure modes. As for the elastic analysis, the position of the tensile force that produces the same bending moment at the junction between the tube-wall and the flange is approximated by: t,pl 1 1

( 1)( ) ( 1)( )

η η = -- + x e e n ( 72 
η η = + = -- + + R x R e e n R (73) 
The ratio η depends on the failure mode of the connection. In presence of failure mode 3, the resistance is:

T,3,pl pl = = ∑ ∑ N B B ( 74 
)
with B pl being the tensile resistance of one bolt.

Hence x t,pl = e 1 and R t,pl = R b , the position of the tensile force coincides with the radius of the bolt pitch circle. This assumption has been considered by Stamatopoulos [START_REF] Stamatopoulos | Non-preloaded Bolted ring flanges connections subjected to static loads[END_REF]. For failure mode 4, the value obtained with an elastic analysis can be used.

ΣB n Q N T,pl

Resistance of the compressive part

Since the limit state is reached in the compressive part when the tube wall buckles or yields, the resistance per unit length of the compressive part of the connection f c,pl is derived from the compressive resistance of the tube: unsafe for some specimens (M10 and M11), however the bending resistance obtained with the numerical simulations is close to the bending moment resistance of the tube with a failure mode corresponding to buckling of the tube-wall. In presence of axial force, the bending resistance of the tube calculated according to Rotter & Sadowski [START_REF] Rotter | Development of circular tube slenderness classifications under axial and bending actions[END_REF] is clearly below that obtained numerically.

Ultimate bending moment

The ultimate bending resistance, M j,u , is evaluated with the model developed in section 4.3.

However, the plastic resistance in tension N T,pl is replaced with the ultimate resistance in tension N T,u as proposed by Couchaux et al [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]. However the engineering ultimate tensile stress is used instead of the true ultimate tensile stress for the evaluation of failure modes 1 and 2 as the tubewall buckles before developing such high stresses. In Table 8, the ultimate bending resistances obtained via numerical analysis and the analytical model, noted M j,u,num and M j,u,ana respectively, are compared. The bending resistance of the tube is also given.

Yamaguchi, the analytical model overestimated the ultimate resistance with failure caused by buckling of the tube-wall far from the connection [START_REF] Yamaguchi | Fundamental study on high strength bolted tensile joints[END_REF]. In these particular cases, the bending resistance of the tube evaluated by the model of Rotter & Sadowski [START_REF] Rotter | Development of circular tube slenderness classifications under axial and bending actions[END_REF] 

Moment-rotation curve

The moment-rotation curve is fully characterized, as suggested in EN 1993-1-8, by the bending resistance and the initial rotational stiffness. The initial rotational stiffness is determined using expressions given in section 4. The initial rotational stiffness is well estimated by the analytical model. For connection M17, the initial rotational stiffness is clearly underestimated. For this specimen, the diameter of the tube is smaller than for the other specimens (200 mm instead of 600-800 mm) and the circumferential symmetry neglected in the L-stub model plays an important. The model could be improved considering the circular bending plate theory instead of the beam theory for the evaluation of the stiffness of the tensile part.

Conclusion

An experimental test has been performed on one ring flange connection typically used in pylon of ski-lift. A non-ductile failure mode corresponding to local buckling of the tube-wall and yielding of three bolts in tension was observed. Initial imperfections of flanges seem to play an important role in the evolution of bolt forces during loading. This experimental test has been completed by a set of finite element calculations using the code ANSYS. The FE model used solid and contact elements and permitted to observe plastic redistribution of bolt forces in presence of ductile failure modes. The influence of normal force and flange thickness on the bending resistances has also been investigated.

A closed-form expression for the moment-rotation curve has been proposed for bolted circular flange connections. This expression has been derived considering the initial rotational stiffness and the static bending resistance. A model, based on the component method, is proposed to determine the initial rotational stiffness and consider different stiffness in the tensile and compressive area. A new stiffness component, based on a beam model in contact with a rigid support, is evaluated for the compressive area and could be used for different connection configurations. The stiffness of the tensile zone is derived from L-stub model. The static resistance is determined for a combined bending moment and axial force (tension/compression).

Two distributions of forces are considered to determine the plastic bending moment depending on the ductility of the tensile and the compressive parts of the connection. For the "ductile" failure mode, all the components reach their plastic resistance. For the "non-ductile" failure mode, only the most stressed components reach their resistance. The resistance calculated via this model compares well against those determined experimentally and numerically. It is worth to mention that the elastic model proposed in this paper is able to evaluate the force transferred by the most tensile bolt rows as well as the maximum tensile bolt force that can be used for a fatigue design. Particular attention should be given to the evaluation of the stress concentration factor at the weld toe between the tube wall and the flange. This requires further investigation.
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 1 Figure 1 : Bolted circular flange joint subjected to a bending moment and an axial force

Figure 2 :

 2 Figure 2 : Specimen tested and main dimensions (in mm) Figure 3 gives an overview of the four point bending flexural test set-up. The specimen comprises two tubular segments of 3,75 m connected by the bolted circular flanges. The

Figure 3 :

 3 Figure 3 : Set-up of 4 points bending test (dimensions in mm)

Figure 4 :

 4 Figure 4 : Measurement of the initial imperfections of the flanges

Figure 5 :

 5 Figure 5 : Strain gauges on the flange and on the tube-wall2.4. Mechanical characteristics of steelCoupons extracted from the tube and the flanges as well as the bolts have been tested according to NF EN 10002-1. The mean value of mechanical characteristics of the bolts, the flanges and the tubes are given in Table2.
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 7 Figure 7 : Moment rotation curve -experimental test
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 8989 Figure 8 : Evolution of bolt force n°1 -experimental test
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 10 Axial stresses on the tube during stage 4

2 NFigure 11 :

 211 Figure 11 : Symmetries of the model and contact elements

Figure 12 :

 12 Figure 12 : Contact areas Contact elements are used between the flange and the bolts, and rigid contact elements between one flange and the horizontal plane of symmetry. An isotropic Coulomb friction law

Figure 13 :

 13 Stress-strain curves

Figure 15 :

 15 -b). Most tension-loaded bolts yield before the maximum bending moment is reached. The ultimate bending moment obtained numerically is equal to 911 kNm and close to the measured ultimate bending moment equal to 925 kNm. Local buckling of the tube-wall The moment-rotation curves of the connection obtained numerically and experimentally during stage 4 are depicted in Figure 16. Overall a fairly good match is observed as the global behaviour is well reproduced. The stiffness in the elastic domain is very well estimated, however the decrease of the bending moment occurring after tube buckling is more progressive and regular (constant slope).
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 16 Figure 16 : Moment rotation curve
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 171819 Figure 18 : Contact stress (in N/mm 2 ) in the tensile area

Figure 20 :

 20 Dimensions of specimens studied

  The plastic bending moment M j,pl is estimated according to the ECCS method via the moment-rotation curve[START_REF]recommended testing procedures for assessing the behaviour of structural elements under cyclic loads[END_REF]. When bolts and/or flanges yield in the tensile part, a yield line develops within the tube wall just above the junction with the flange. Failure corresponds either to bolt rupture in tension (Figure21-b) or to buckling of the tube wall above the compressed part of the flange (Figure21-a). For a large number of specimens, buckling of the tube-wall is preceded by important yielding of the tensile part of the connection (bolts and/or flanges).a-Local buckling of the tube wall b-Bolt rupture in tensionFigure 21 : Failure mode 3.3.3. Influence of flange thickness The geometrical characteristics of specimens M8, M9, M10 and N11 are identical except the flange thickness which is equal to 10, 15, 25 and 40 mm, respectively. The moment-rotation curves for these specimens are presented in Figure 22-a. An increase of flange thickness leads to an increase of initial rotational stiffness, plastic and ultimate bending moments and a decrease of the rotation capacity. The resistance is also limited by the local buckling of the tube wall for the four specimens even if yielding of flange and bolts are obtained. For specimen M8, the rotation capacity is clearly improved due to yielding of the flanges in bending, however the buckling of the tube is finally obtained in the compressive area. 20 a-Specimens N8 to N11 b-Specimens N12 to N14 Figure 22 : Moment rotation curves : Effect of flange thickness Similarly, the only difference between specimens M12, M13 and M14 is the flange thickness which is equal to 40, 30 and 20 mm, respectively. The moment-rotation curves for specimens M12, M13 and M14 are depicted in Figure 22-b. It has been observed that for these three specimens failure is due to bolts fracture. Furthermore, a reduction of flange thickness clearly increase the rotation capacity of the connections due to the development of plastic yield lines on the flange. 21 3.3.4. Influence of axial force The moment-rotation curves of specimen M9 and M10 obtained for different values of the axial force are presented in Figure 23. Compressive force increases the initial rotational stiffness whilst tensile force produces the opposite effect. The compressed area is stiffer than the tensile zone. By increasing this area, the stiffness of the connection is increased. In presence of an initial tensile force, a decrease of the stiffness is observed (particularly for specimen M10) with increasing values of the bending moment. Similarly, the stiffness decreases with increasing values of the bending moment in presence of an initial compressive force. This effect results from the development of a compression area that is stiffer than the tensile area. a-Specimen M9 b-Specimen M10

Figure 23 :

 23 Figure 23 : Moment rotation curves : Effect of axial force

  as a function of the bending moment. The yield tensile force is reached for half the bolts of the connection at failure.

Figure 24 :

 24 Figure 24 : Evolution of bolt forces : Specimen M12, N = 0

Figure 25 .

 25 Figure 25. Forces applied to the connection

Figure 26 .

 26 Figure 26. Deformation of the connection with a dominant bending momentThe displacement δ t,m and δ c,m can be expressed as function of the rotation φ j of the connection:

Figure 27 .

 27 Figure 27. Deformation of the connection due to bending with a dominant axial force

Figure 30 .

 30 Figure30.T-stub in compression 

Figure 33 :

 33 Figure 33 : Distribution of forces for each failure modesA distributed force f(θ) is applied to the flange such as equilibrium with the bending moment

ψ

  a reduction factor that consider axial force based on prEN 1993-1-1[START_REF]Draft of Eurocode 3, Design of steel structures -Part 1-1: General rules and rules for buildings[END_REF] : is the ratio between minimal and maximal stresses on the tube.4.3.3. Ductile failure modeWhen the failure mode is "ductile", the resultant of the compressive and tensile forces are obtained from (53):

  forces (58) and (59) into the axial equilibrium equation (55) and considering Eqs (71) and (76) one obtain an expression for the angle α defining the position of the neutral axis: the position of the neutral axis depends on the axial force, the compressive and tensile resistances of the connection. When the connection is entirely in tension (N=-N T,pl ), α is equal to 0. On the other hand, when the connection is entirely in compression (N=N c,pl ), α is equal to π. Similarly to the axial load N, the bending moments produced by the compressive and tensile parts of the connection M j,c,pl and M j,t,pl are:

  The plastic bending moment is related to M j,pl,D and to the angle α which itself depends on the axial force N.4.3.4. Non ductile failure mode 4.3.4.1. Dominant bending momentWhen the failure mode is "non-ductile" and the bending moment is dominant, the resultant forces in the compressive and the tensile parts have the following expressions: 64) and (65) into the axial equilibrium equation (55), we get an equation where the angle α is the unknown variable for the angle α cannot be determined from this equation and only a numerical solution can be obtained. The bending moments resulting from the compressive and tensile parts of the connection M j,c,pl and M j,t,pl are:

  Sum of bolt forces (see Figure34), One obtain the equivalent radius of the tensile part:

e 2 e 1 ξFigure 34 :M

 134 Figure 34 : Forces applied to the flanges

2 . 8 ,Figure 35 .Figure 36 .

 283536 Figure 35. Analytical and experimental/numerical curvesThe moment-rotation curves calculated with the analytical model for connection M1, M8, M9 and M17 are compared against those obtained with numerical analyses in Figure36.

  

  

Table 1 :

 1 Bolt preloading force

	Stage 1	B 0 (kN) Stage 2	Stage 3	Bolt
	27	135	270	M24

Table 2 .

 2 

	Component	Thickness/ length	Module of elasticity	Yield strength	Tensile strength	Elongation Necking
		mm	N/mm 2	N/mm 2	N/mm 2	%	%
	Tube	6	215717	351	492	16,2	60
	Flange	40	214419	328	529	16	73
	Bolts	120	212792	1110	1156	21	59

Table 2 :

 2 Mechanical characteristics of tubes, flanges and bolts2.5. Test results

Table 3 :

 3 Mechanical characteristics used to model experimental test

	mm 2	%

Table 5 :

 5 Mechanical characteristics -parametric study 3.3.2. Failure modesFailure modes, plastic and ultimate bending moments, along with yielded components at failure are reported in Table6.

			/mm 2	%	N/mm 2 N/mm 2 %	N/mm 2 N/mm 2	%
	M1	355	637	30	355	637	30	900	1100		10
	M2	235	468	30	235	468	30	900	1100		10
	M3-M6	355	637	30	355	637	30	900	1100		10
	M7	355	637	30	355	637	30	640	880		10
	M8-M14	355	637	30	355	637	30	900	1100		10
	M15-M17	355	637	30	355	637	30	640	880		10
	M18-M20	355	637	30	460	702	30	640	880		10
	Specimen	N kN	M j,pl kNm		M j,u kNm	M j,u /M j,pl -		Yielded components		Failure
	M1		1469		1809	1,23		Bolt			Bolt
	M2		1284		1524	1,19		Bolt			Bolt
	M3		1158		1529	1,32		Bolt			Bolt
	M4		905		1581	1,75		Bolt-tube			Bolt
	M5		990		1079	1,09		Bolt, tube		Buckling
	M6		833		943	1,13	Flange, bolt, tube	Buckling
	M7		746		882	1,18		bolt, tube		Buckling
	M8		196		313	1,60		Flange, tube		Buckling
	M9		336		413	1,23		Flange, tube		Buckling
	M9-N=-0,5MN	-500	249		424	1,70		Flange, tube		Buckling
	M9-N=-1MN	-1000	227		456	2,01		Flange, tube		Buckling
	M9-N=-1,5MN	-1500	-		372	-		Flange, tube		Buckling
	M9-N=0,5MN	500	405		424	1,05		Flange, tube		Buckling
	M9-N=1MN	1000	162		412	2,55		Tube		Buckling
	M10		523		561	1,07		Bolt, tube		Buckling
	M10-N=-1MN	-1000	406		541	1,33		Bolt, tube			Bolt
	M10-N=-2MN	-2000	226		312	1,38		Bolt			Bolt
	M10-N=1MN	1000	406		457	1,13		Tube		Buckling
	M10-N=2MN	2000	281		307	1,09		Tube		Buckling
	M11		568		590	1,04		Tube		Buckling
	M12		2784		3402	1,22		Bolt			Bolt
	M13		2732		3249	1,19		Bolt			Bolt
	M14		2122		2917	1,37	Bolt, flange, tube		Bolt
	M15		39		49	1,25	Bolt, flange, tube		Bolt
	M16		59		60	1,03		bolt, tube		Buckling
	M17		71		85	1,20		Bolt			Bolt
	M18		64		78	1,22		Bolt-flange-tube		Bolt
	M19		51		64	1,26		Bolt			Bolt
	M20		42		54	1,27		Bolt			Bolt

Table 6 :

 6 Failure modes -parametric study

  provide accurate results.

				Test			Analytical	
	Reference	Specimen	N	M j,u,exp	M j,u,ana	M t,Rk	M j,u,ana /M j,u,exp M t,Rk /M j,u,exp
			kN	kNm	kNm	kNm	-	-
	-	INSA	0	925	810	778	0,88	0,84
		BL-L-TH12	0	134	121	158	0,90	1,18
		BL-L-TH19	0	168	162	158	0,97	0,94
		BL-L-TH22	0	166	163	158	0,98	0,95
		BL-S-TH6	0	46	27	77	0,59	1,67
	Yamaguchi [19]	BL-S-TH10 BL-S-TH16	0 0	68 77	60 82	77 77	0,89 1,07	1,13 1,00
		CL-S-TH10-P00	0	55	61	83	1,10	1,51
		CL-S-TH22-P00	0	71,5	92	83	1,28	1,16
		CL-S-TH22-P10 -285	81	86	76	1,06	0,94
		CL-S-TH22-P17 -484	65	75	66	1,16	1,02
	Jakubowski [20]	VRF1	0	1870	1840	1662	0,98	0,89
	Wang et al [21]	J1	0	96	91	107	0,95	1,12
	Pavlovic et al [22]	FC1	0	2213	2142	1975	0,97	0,89

Table 9 :
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where N c,pl is the compressive resistance of the tube evaluated according to Eurocode 3 [START_REF]Eurocode 3, Design of steel structures, Part 1-6: Resistance and stability of shell[END_REF] considering the classification for class 4 of Equation (57).

Comparison against numerical results

In Table 7, the plastic bending resistance obtained via numerical analysis and the analytical model, noted M j,pl,num and M j,pl,ana respectively, are compared. In addition, the bending resistance of the tube calculated according to the equations of Rotter & Sadowski [START_REF] Rotter | Development of circular tube slenderness classifications under axial and bending actions[END_REF], noted M t,Rk , has been added. The mean value of the ratio M j,u,ana /M j,u,num is equal to 0,93 The model is conservative for most investigated cases. The analytical model can be over conservative in presence of thin flanges (specimens M4 and M8 for example) due to the fact that the ultimate tensile resistance do not consider tying effect [START_REF] Couchaux | Tensile resistances of bolted circular flange connections[END_REF]. The model overestimate the ultimate resistance of specimens M10 and M11. However, the bending resistance of the tube seems closer to the numerical resistance.

In Table 9, the ultimate bending moment calculated according to the proposed model is compared against experimental results obtained by Yamaguchi [START_REF] Yamaguchi | Fundamental study on high strength bolted tensile joints[END_REF], Jakubowski & Schmidt [START_REF] Jakubowski | Experimentelle Untersuchungen an vorgespannten Ringflanschstössen mit Imperfektionen[END_REF], Wang et al [START_REF] Wang | Bending behaviour and design model of bolted flangeplate connections[END_REF] and Pavlovic et al [START_REF] Pavlovic | Connections in towers for wind converters, part I: Evaluation of down-scaled experiments[END_REF]. Again, the ultimate bending moment is underestimated for thin flanges (BL-L-TH12, BL-S-TH6 and 10). For some specimens tested by